1 | |
---|
2 | /*-------------------------------------------------------------*/ |
---|
3 | /*--- Block sorting machinery ---*/ |
---|
4 | /*--- blocksort.c ---*/ |
---|
5 | /*-------------------------------------------------------------*/ |
---|
6 | |
---|
7 | /*-- |
---|
8 | This file is a part of bzip2 and/or libbzip2, a program and |
---|
9 | library for lossless, block-sorting data compression. |
---|
10 | |
---|
11 | Copyright (C) 1996-2002 Julian R Seward. All rights reserved. |
---|
12 | |
---|
13 | Redistribution and use in source and binary forms, with or without |
---|
14 | modification, are permitted provided that the following conditions |
---|
15 | are met: |
---|
16 | |
---|
17 | 1. Redistributions of source code must retain the above copyright |
---|
18 | notice, this list of conditions and the following disclaimer. |
---|
19 | |
---|
20 | 2. The origin of this software must not be misrepresented; you must |
---|
21 | not claim that you wrote the original software. If you use this |
---|
22 | software in a product, an acknowledgment in the product |
---|
23 | documentation would be appreciated but is not required. |
---|
24 | |
---|
25 | 3. Altered source versions must be plainly marked as such, and must |
---|
26 | not be misrepresented as being the original software. |
---|
27 | |
---|
28 | 4. The name of the author may not be used to endorse or promote |
---|
29 | products derived from this software without specific prior written |
---|
30 | permission. |
---|
31 | |
---|
32 | THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS |
---|
33 | OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
---|
34 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
---|
35 | ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
---|
36 | DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
---|
37 | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE |
---|
38 | GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
---|
39 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
---|
40 | WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
---|
41 | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
---|
42 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
43 | |
---|
44 | Julian Seward, Cambridge, UK. |
---|
45 | jseward@acm.org |
---|
46 | bzip2/libbzip2 version 1.0 of 21 March 2000 |
---|
47 | |
---|
48 | This program is based on (at least) the work of: |
---|
49 | Mike Burrows |
---|
50 | David Wheeler |
---|
51 | Peter Fenwick |
---|
52 | Alistair Moffat |
---|
53 | Radford Neal |
---|
54 | Ian H. Witten |
---|
55 | Robert Sedgewick |
---|
56 | Jon L. Bentley |
---|
57 | |
---|
58 | For more information on these sources, see the manual. |
---|
59 | |
---|
60 | To get some idea how the block sorting algorithms in this file |
---|
61 | work, read my paper |
---|
62 | On the Performance of BWT Sorting Algorithms |
---|
63 | in Proceedings of the IEEE Data Compression Conference 2000, |
---|
64 | Snowbird, Utah, USA, 27-30 March 2000. The main sort in this |
---|
65 | file implements the algorithm called cache in the paper. |
---|
66 | --*/ |
---|
67 | |
---|
68 | |
---|
69 | #include "bzlib_private.h" |
---|
70 | |
---|
71 | /*---------------------------------------------*/ |
---|
72 | /*--- Fallback O(N log(N)^2) sorting ---*/ |
---|
73 | /*--- algorithm, for repetitive blocks ---*/ |
---|
74 | /*---------------------------------------------*/ |
---|
75 | |
---|
76 | /*---------------------------------------------*/ |
---|
77 | static |
---|
78 | __inline__ |
---|
79 | void fallbackSimpleSort ( UInt32* fmap, |
---|
80 | UInt32* eclass, |
---|
81 | Int32 lo, |
---|
82 | Int32 hi ) |
---|
83 | { |
---|
84 | Int32 i, j, tmp; |
---|
85 | UInt32 ec_tmp; |
---|
86 | |
---|
87 | if (lo == hi) return; |
---|
88 | |
---|
89 | if (hi - lo > 3) { |
---|
90 | for ( i = hi-4; i >= lo; i-- ) { |
---|
91 | tmp = fmap[i]; |
---|
92 | ec_tmp = eclass[tmp]; |
---|
93 | for ( j = i+4; j <= hi && ec_tmp > eclass[fmap[j]]; j += 4 ) |
---|
94 | fmap[j-4] = fmap[j]; |
---|
95 | fmap[j-4] = tmp; |
---|
96 | } |
---|
97 | } |
---|
98 | |
---|
99 | for ( i = hi-1; i >= lo; i-- ) { |
---|
100 | tmp = fmap[i]; |
---|
101 | ec_tmp = eclass[tmp]; |
---|
102 | for ( j = i+1; j <= hi && ec_tmp > eclass[fmap[j]]; j++ ) |
---|
103 | fmap[j-1] = fmap[j]; |
---|
104 | fmap[j-1] = tmp; |
---|
105 | } |
---|
106 | } |
---|
107 | |
---|
108 | |
---|
109 | /*---------------------------------------------*/ |
---|
110 | #define fswap(zz1, zz2) \ |
---|
111 | { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; } |
---|
112 | |
---|
113 | #define fvswap(zzp1, zzp2, zzn) \ |
---|
114 | { \ |
---|
115 | Int32 yyp1 = (zzp1); \ |
---|
116 | Int32 yyp2 = (zzp2); \ |
---|
117 | Int32 yyn = (zzn); \ |
---|
118 | while (yyn > 0) { \ |
---|
119 | fswap(fmap[yyp1], fmap[yyp2]); \ |
---|
120 | yyp1++; yyp2++; yyn--; \ |
---|
121 | } \ |
---|
122 | } |
---|
123 | |
---|
124 | |
---|
125 | #define fmin(a,b) ((a) < (b)) ? (a) : (b) |
---|
126 | |
---|
127 | #define fpush(lz,hz) { stackLo[sp] = lz; \ |
---|
128 | stackHi[sp] = hz; \ |
---|
129 | sp++; } |
---|
130 | |
---|
131 | #define fpop(lz,hz) { sp--; \ |
---|
132 | lz = stackLo[sp]; \ |
---|
133 | hz = stackHi[sp]; } |
---|
134 | |
---|
135 | #define FALLBACK_QSORT_SMALL_THRESH 10 |
---|
136 | #define FALLBACK_QSORT_STACK_SIZE 100 |
---|
137 | |
---|
138 | |
---|
139 | static |
---|
140 | void fallbackQSort3 ( UInt32* fmap, |
---|
141 | UInt32* eclass, |
---|
142 | Int32 loSt, |
---|
143 | Int32 hiSt ) |
---|
144 | { |
---|
145 | Int32 unLo, unHi, ltLo, gtHi, n, m; |
---|
146 | Int32 sp, lo, hi; |
---|
147 | UInt32 med, r, r3; |
---|
148 | Int32 stackLo[FALLBACK_QSORT_STACK_SIZE]; |
---|
149 | Int32 stackHi[FALLBACK_QSORT_STACK_SIZE]; |
---|
150 | |
---|
151 | r = 0; |
---|
152 | |
---|
153 | sp = 0; |
---|
154 | fpush ( loSt, hiSt ); |
---|
155 | |
---|
156 | while (sp > 0) { |
---|
157 | |
---|
158 | AssertH ( sp < FALLBACK_QSORT_STACK_SIZE, 1004 ); |
---|
159 | |
---|
160 | fpop ( lo, hi ); |
---|
161 | if (hi - lo < FALLBACK_QSORT_SMALL_THRESH) { |
---|
162 | fallbackSimpleSort ( fmap, eclass, lo, hi ); |
---|
163 | continue; |
---|
164 | } |
---|
165 | |
---|
166 | /* Random partitioning. Median of 3 sometimes fails to |
---|
167 | avoid bad cases. Median of 9 seems to help but |
---|
168 | looks rather expensive. This too seems to work but |
---|
169 | is cheaper. Guidance for the magic constants |
---|
170 | 7621 and 32768 is taken from Sedgewick's algorithms |
---|
171 | book, chapter 35. |
---|
172 | */ |
---|
173 | r = ((r * 7621) + 1) % 32768; |
---|
174 | r3 = r % 3; |
---|
175 | if (r3 == 0) med = eclass[fmap[lo]]; else |
---|
176 | if (r3 == 1) med = eclass[fmap[(lo+hi)>>1]]; else |
---|
177 | med = eclass[fmap[hi]]; |
---|
178 | |
---|
179 | unLo = ltLo = lo; |
---|
180 | unHi = gtHi = hi; |
---|
181 | |
---|
182 | while (1) { |
---|
183 | while (1) { |
---|
184 | if (unLo > unHi) break; |
---|
185 | n = (Int32)eclass[fmap[unLo]] - (Int32)med; |
---|
186 | if (n == 0) { |
---|
187 | fswap(fmap[unLo], fmap[ltLo]); |
---|
188 | ltLo++; unLo++; |
---|
189 | continue; |
---|
190 | }; |
---|
191 | if (n > 0) break; |
---|
192 | unLo++; |
---|
193 | } |
---|
194 | while (1) { |
---|
195 | if (unLo > unHi) break; |
---|
196 | n = (Int32)eclass[fmap[unHi]] - (Int32)med; |
---|
197 | if (n == 0) { |
---|
198 | fswap(fmap[unHi], fmap[gtHi]); |
---|
199 | gtHi--; unHi--; |
---|
200 | continue; |
---|
201 | }; |
---|
202 | if (n < 0) break; |
---|
203 | unHi--; |
---|
204 | } |
---|
205 | if (unLo > unHi) break; |
---|
206 | fswap(fmap[unLo], fmap[unHi]); unLo++; unHi--; |
---|
207 | } |
---|
208 | |
---|
209 | AssertD ( unHi == unLo-1, "fallbackQSort3(2)" ); |
---|
210 | |
---|
211 | if (gtHi < ltLo) continue; |
---|
212 | |
---|
213 | n = fmin(ltLo-lo, unLo-ltLo); fvswap(lo, unLo-n, n); |
---|
214 | m = fmin(hi-gtHi, gtHi-unHi); fvswap(unLo, hi-m+1, m); |
---|
215 | |
---|
216 | n = lo + unLo - ltLo - 1; |
---|
217 | m = hi - (gtHi - unHi) + 1; |
---|
218 | |
---|
219 | if (n - lo > hi - m) { |
---|
220 | fpush ( lo, n ); |
---|
221 | fpush ( m, hi ); |
---|
222 | } else { |
---|
223 | fpush ( m, hi ); |
---|
224 | fpush ( lo, n ); |
---|
225 | } |
---|
226 | } |
---|
227 | } |
---|
228 | |
---|
229 | #undef fmin |
---|
230 | #undef fpush |
---|
231 | #undef fpop |
---|
232 | #undef fswap |
---|
233 | #undef fvswap |
---|
234 | #undef FALLBACK_QSORT_SMALL_THRESH |
---|
235 | #undef FALLBACK_QSORT_STACK_SIZE |
---|
236 | |
---|
237 | |
---|
238 | /*---------------------------------------------*/ |
---|
239 | /* Pre: |
---|
240 | nblock > 0 |
---|
241 | eclass exists for [0 .. nblock-1] |
---|
242 | ((UChar*)eclass) [0 .. nblock-1] holds block |
---|
243 | ptr exists for [0 .. nblock-1] |
---|
244 | |
---|
245 | Post: |
---|
246 | ((UChar*)eclass) [0 .. nblock-1] holds block |
---|
247 | All other areas of eclass destroyed |
---|
248 | fmap [0 .. nblock-1] holds sorted order |
---|
249 | bhtab [ 0 .. 2+(nblock/32) ] destroyed |
---|
250 | */ |
---|
251 | |
---|
252 | #define SET_BH(zz) bhtab[(zz) >> 5] |= (1 << ((zz) & 31)) |
---|
253 | #define CLEAR_BH(zz) bhtab[(zz) >> 5] &= ~(1 << ((zz) & 31)) |
---|
254 | #define ISSET_BH(zz) (bhtab[(zz) >> 5] & (1 << ((zz) & 31))) |
---|
255 | #define WORD_BH(zz) bhtab[(zz) >> 5] |
---|
256 | #define UNALIGNED_BH(zz) ((zz) & 0x01f) |
---|
257 | |
---|
258 | static |
---|
259 | void fallbackSort ( UInt32* fmap, |
---|
260 | UInt32* eclass, |
---|
261 | UInt32* bhtab, |
---|
262 | Int32 nblock, |
---|
263 | Int32 verb ) |
---|
264 | { |
---|
265 | Int32 ftab[257]; |
---|
266 | Int32 ftabCopy[256]; |
---|
267 | Int32 H, i, j, k, l, r, cc, cc1; |
---|
268 | Int32 nNotDone; |
---|
269 | Int32 nBhtab; |
---|
270 | UChar* eclass8 = (UChar*)eclass; |
---|
271 | |
---|
272 | /*-- |
---|
273 | Initial 1-char radix sort to generate |
---|
274 | initial fmap and initial BH bits. |
---|
275 | --*/ |
---|
276 | if (verb >= 4) |
---|
277 | VPrintf0 ( " bucket sorting ...\n" ); |
---|
278 | for (i = 0; i < 257; i++) ftab[i] = 0; |
---|
279 | for (i = 0; i < nblock; i++) ftab[eclass8[i]]++; |
---|
280 | for (i = 0; i < 256; i++) ftabCopy[i] = ftab[i]; |
---|
281 | for (i = 1; i < 257; i++) ftab[i] += ftab[i-1]; |
---|
282 | |
---|
283 | for (i = 0; i < nblock; i++) { |
---|
284 | j = eclass8[i]; |
---|
285 | k = ftab[j] - 1; |
---|
286 | ftab[j] = k; |
---|
287 | fmap[k] = i; |
---|
288 | } |
---|
289 | |
---|
290 | nBhtab = 2 + (nblock / 32); |
---|
291 | for (i = 0; i < nBhtab; i++) bhtab[i] = 0; |
---|
292 | for (i = 0; i < 256; i++) SET_BH(ftab[i]); |
---|
293 | |
---|
294 | /*-- |
---|
295 | Inductively refine the buckets. Kind-of an |
---|
296 | "exponential radix sort" (!), inspired by the |
---|
297 | Manber-Myers suffix array construction algorithm. |
---|
298 | --*/ |
---|
299 | |
---|
300 | /*-- set sentinel bits for block-end detection --*/ |
---|
301 | for (i = 0; i < 32; i++) { |
---|
302 | SET_BH(nblock + 2*i); |
---|
303 | CLEAR_BH(nblock + 2*i + 1); |
---|
304 | } |
---|
305 | |
---|
306 | /*-- the log(N) loop --*/ |
---|
307 | H = 1; |
---|
308 | while (1) { |
---|
309 | |
---|
310 | if (verb >= 4) |
---|
311 | VPrintf1 ( " depth %6d has ", H ); |
---|
312 | |
---|
313 | j = 0; |
---|
314 | for (i = 0; i < nblock; i++) { |
---|
315 | if (ISSET_BH(i)) j = i; |
---|
316 | k = fmap[i] - H; if (k < 0) k += nblock; |
---|
317 | eclass[k] = j; |
---|
318 | } |
---|
319 | |
---|
320 | nNotDone = 0; |
---|
321 | r = -1; |
---|
322 | while (1) { |
---|
323 | |
---|
324 | /*-- find the next non-singleton bucket --*/ |
---|
325 | k = r + 1; |
---|
326 | while (ISSET_BH(k) && UNALIGNED_BH(k)) k++; |
---|
327 | if (ISSET_BH(k)) { |
---|
328 | while (WORD_BH(k) == 0xffffffff) k += 32; |
---|
329 | while (ISSET_BH(k)) k++; |
---|
330 | } |
---|
331 | l = k - 1; |
---|
332 | if (l >= nblock) break; |
---|
333 | while (!ISSET_BH(k) && UNALIGNED_BH(k)) k++; |
---|
334 | if (!ISSET_BH(k)) { |
---|
335 | while (WORD_BH(k) == 0x00000000) k += 32; |
---|
336 | while (!ISSET_BH(k)) k++; |
---|
337 | } |
---|
338 | r = k - 1; |
---|
339 | if (r >= nblock) break; |
---|
340 | |
---|
341 | /*-- now [l, r] bracket current bucket --*/ |
---|
342 | if (r > l) { |
---|
343 | nNotDone += (r - l + 1); |
---|
344 | fallbackQSort3 ( fmap, eclass, l, r ); |
---|
345 | |
---|
346 | /*-- scan bucket and generate header bits-- */ |
---|
347 | cc = -1; |
---|
348 | for (i = l; i <= r; i++) { |
---|
349 | cc1 = eclass[fmap[i]]; |
---|
350 | if (cc != cc1) { SET_BH(i); cc = cc1; }; |
---|
351 | } |
---|
352 | } |
---|
353 | } |
---|
354 | |
---|
355 | if (verb >= 4) |
---|
356 | VPrintf1 ( "%6d unresolved strings\n", nNotDone ); |
---|
357 | |
---|
358 | H *= 2; |
---|
359 | if (H > nblock || nNotDone == 0) break; |
---|
360 | } |
---|
361 | |
---|
362 | /*-- |
---|
363 | Reconstruct the original block in |
---|
364 | eclass8 [0 .. nblock-1], since the |
---|
365 | previous phase destroyed it. |
---|
366 | --*/ |
---|
367 | if (verb >= 4) |
---|
368 | VPrintf0 ( " reconstructing block ...\n" ); |
---|
369 | j = 0; |
---|
370 | for (i = 0; i < nblock; i++) { |
---|
371 | while (ftabCopy[j] == 0) j++; |
---|
372 | ftabCopy[j]--; |
---|
373 | eclass8[fmap[i]] = (UChar)j; |
---|
374 | } |
---|
375 | AssertH ( j < 256, 1005 ); |
---|
376 | } |
---|
377 | |
---|
378 | #undef SET_BH |
---|
379 | #undef CLEAR_BH |
---|
380 | #undef ISSET_BH |
---|
381 | #undef WORD_BH |
---|
382 | #undef UNALIGNED_BH |
---|
383 | |
---|
384 | |
---|
385 | /*---------------------------------------------*/ |
---|
386 | /*--- The main, O(N^2 log(N)) sorting ---*/ |
---|
387 | /*--- algorithm. Faster for "normal" ---*/ |
---|
388 | /*--- non-repetitive blocks. ---*/ |
---|
389 | /*---------------------------------------------*/ |
---|
390 | |
---|
391 | /*---------------------------------------------*/ |
---|
392 | static |
---|
393 | __inline__ |
---|
394 | Bool mainGtU ( UInt32 i1, |
---|
395 | UInt32 i2, |
---|
396 | UChar* block, |
---|
397 | UInt16* quadrant, |
---|
398 | UInt32 nblock, |
---|
399 | Int32* budget ) |
---|
400 | { |
---|
401 | Int32 k; |
---|
402 | UChar c1, c2; |
---|
403 | UInt16 s1, s2; |
---|
404 | |
---|
405 | AssertD ( i1 != i2, "mainGtU" ); |
---|
406 | /* 1 */ |
---|
407 | c1 = block[i1]; c2 = block[i2]; |
---|
408 | if (c1 != c2) return (c1 > c2); |
---|
409 | i1++; i2++; |
---|
410 | /* 2 */ |
---|
411 | c1 = block[i1]; c2 = block[i2]; |
---|
412 | if (c1 != c2) return (c1 > c2); |
---|
413 | i1++; i2++; |
---|
414 | /* 3 */ |
---|
415 | c1 = block[i1]; c2 = block[i2]; |
---|
416 | if (c1 != c2) return (c1 > c2); |
---|
417 | i1++; i2++; |
---|
418 | /* 4 */ |
---|
419 | c1 = block[i1]; c2 = block[i2]; |
---|
420 | if (c1 != c2) return (c1 > c2); |
---|
421 | i1++; i2++; |
---|
422 | /* 5 */ |
---|
423 | c1 = block[i1]; c2 = block[i2]; |
---|
424 | if (c1 != c2) return (c1 > c2); |
---|
425 | i1++; i2++; |
---|
426 | /* 6 */ |
---|
427 | c1 = block[i1]; c2 = block[i2]; |
---|
428 | if (c1 != c2) return (c1 > c2); |
---|
429 | i1++; i2++; |
---|
430 | /* 7 */ |
---|
431 | c1 = block[i1]; c2 = block[i2]; |
---|
432 | if (c1 != c2) return (c1 > c2); |
---|
433 | i1++; i2++; |
---|
434 | /* 8 */ |
---|
435 | c1 = block[i1]; c2 = block[i2]; |
---|
436 | if (c1 != c2) return (c1 > c2); |
---|
437 | i1++; i2++; |
---|
438 | /* 9 */ |
---|
439 | c1 = block[i1]; c2 = block[i2]; |
---|
440 | if (c1 != c2) return (c1 > c2); |
---|
441 | i1++; i2++; |
---|
442 | /* 10 */ |
---|
443 | c1 = block[i1]; c2 = block[i2]; |
---|
444 | if (c1 != c2) return (c1 > c2); |
---|
445 | i1++; i2++; |
---|
446 | /* 11 */ |
---|
447 | c1 = block[i1]; c2 = block[i2]; |
---|
448 | if (c1 != c2) return (c1 > c2); |
---|
449 | i1++; i2++; |
---|
450 | /* 12 */ |
---|
451 | c1 = block[i1]; c2 = block[i2]; |
---|
452 | if (c1 != c2) return (c1 > c2); |
---|
453 | i1++; i2++; |
---|
454 | |
---|
455 | k = nblock + 8; |
---|
456 | |
---|
457 | do { |
---|
458 | /* 1 */ |
---|
459 | c1 = block[i1]; c2 = block[i2]; |
---|
460 | if (c1 != c2) return (c1 > c2); |
---|
461 | s1 = quadrant[i1]; s2 = quadrant[i2]; |
---|
462 | if (s1 != s2) return (s1 > s2); |
---|
463 | i1++; i2++; |
---|
464 | /* 2 */ |
---|
465 | c1 = block[i1]; c2 = block[i2]; |
---|
466 | if (c1 != c2) return (c1 > c2); |
---|
467 | s1 = quadrant[i1]; s2 = quadrant[i2]; |
---|
468 | if (s1 != s2) return (s1 > s2); |
---|
469 | i1++; i2++; |
---|
470 | /* 3 */ |
---|
471 | c1 = block[i1]; c2 = block[i2]; |
---|
472 | if (c1 != c2) return (c1 > c2); |
---|
473 | s1 = quadrant[i1]; s2 = quadrant[i2]; |
---|
474 | if (s1 != s2) return (s1 > s2); |
---|
475 | i1++; i2++; |
---|
476 | /* 4 */ |
---|
477 | c1 = block[i1]; c2 = block[i2]; |
---|
478 | if (c1 != c2) return (c1 > c2); |
---|
479 | s1 = quadrant[i1]; s2 = quadrant[i2]; |
---|
480 | if (s1 != s2) return (s1 > s2); |
---|
481 | i1++; i2++; |
---|
482 | /* 5 */ |
---|
483 | c1 = block[i1]; c2 = block[i2]; |
---|
484 | if (c1 != c2) return (c1 > c2); |
---|
485 | s1 = quadrant[i1]; s2 = quadrant[i2]; |
---|
486 | if (s1 != s2) return (s1 > s2); |
---|
487 | i1++; i2++; |
---|
488 | /* 6 */ |
---|
489 | c1 = block[i1]; c2 = block[i2]; |
---|
490 | if (c1 != c2) return (c1 > c2); |
---|
491 | s1 = quadrant[i1]; s2 = quadrant[i2]; |
---|
492 | if (s1 != s2) return (s1 > s2); |
---|
493 | i1++; i2++; |
---|
494 | /* 7 */ |
---|
495 | c1 = block[i1]; c2 = block[i2]; |
---|
496 | if (c1 != c2) return (c1 > c2); |
---|
497 | s1 = quadrant[i1]; s2 = quadrant[i2]; |
---|
498 | if (s1 != s2) return (s1 > s2); |
---|
499 | i1++; i2++; |
---|
500 | /* 8 */ |
---|
501 | c1 = block[i1]; c2 = block[i2]; |
---|
502 | if (c1 != c2) return (c1 > c2); |
---|
503 | s1 = quadrant[i1]; s2 = quadrant[i2]; |
---|
504 | if (s1 != s2) return (s1 > s2); |
---|
505 | i1++; i2++; |
---|
506 | |
---|
507 | if (i1 >= nblock) i1 -= nblock; |
---|
508 | if (i2 >= nblock) i2 -= nblock; |
---|
509 | |
---|
510 | k -= 8; |
---|
511 | (*budget)--; |
---|
512 | } |
---|
513 | while (k >= 0); |
---|
514 | |
---|
515 | return False; |
---|
516 | } |
---|
517 | |
---|
518 | |
---|
519 | /*---------------------------------------------*/ |
---|
520 | /*-- |
---|
521 | Knuth's increments seem to work better |
---|
522 | than Incerpi-Sedgewick here. Possibly |
---|
523 | because the number of elems to sort is |
---|
524 | usually small, typically <= 20. |
---|
525 | --*/ |
---|
526 | static |
---|
527 | Int32 incs[14] = { 1, 4, 13, 40, 121, 364, 1093, 3280, |
---|
528 | 9841, 29524, 88573, 265720, |
---|
529 | 797161, 2391484 }; |
---|
530 | |
---|
531 | static |
---|
532 | void mainSimpleSort ( UInt32* ptr, |
---|
533 | UChar* block, |
---|
534 | UInt16* quadrant, |
---|
535 | Int32 nblock, |
---|
536 | Int32 lo, |
---|
537 | Int32 hi, |
---|
538 | Int32 d, |
---|
539 | Int32* budget ) |
---|
540 | { |
---|
541 | Int32 i, j, h, bigN, hp; |
---|
542 | UInt32 v; |
---|
543 | |
---|
544 | bigN = hi - lo + 1; |
---|
545 | if (bigN < 2) return; |
---|
546 | |
---|
547 | hp = 0; |
---|
548 | while (incs[hp] < bigN) hp++; |
---|
549 | hp--; |
---|
550 | |
---|
551 | for (; hp >= 0; hp--) { |
---|
552 | h = incs[hp]; |
---|
553 | |
---|
554 | i = lo + h; |
---|
555 | while (True) { |
---|
556 | |
---|
557 | /*-- copy 1 --*/ |
---|
558 | if (i > hi) break; |
---|
559 | v = ptr[i]; |
---|
560 | j = i; |
---|
561 | while ( mainGtU ( |
---|
562 | ptr[j-h]+d, v+d, block, quadrant, nblock, budget |
---|
563 | ) ) { |
---|
564 | ptr[j] = ptr[j-h]; |
---|
565 | j = j - h; |
---|
566 | if (j <= (lo + h - 1)) break; |
---|
567 | } |
---|
568 | ptr[j] = v; |
---|
569 | i++; |
---|
570 | |
---|
571 | /*-- copy 2 --*/ |
---|
572 | if (i > hi) break; |
---|
573 | v = ptr[i]; |
---|
574 | j = i; |
---|
575 | while ( mainGtU ( |
---|
576 | ptr[j-h]+d, v+d, block, quadrant, nblock, budget |
---|
577 | ) ) { |
---|
578 | ptr[j] = ptr[j-h]; |
---|
579 | j = j - h; |
---|
580 | if (j <= (lo + h - 1)) break; |
---|
581 | } |
---|
582 | ptr[j] = v; |
---|
583 | i++; |
---|
584 | |
---|
585 | /*-- copy 3 --*/ |
---|
586 | if (i > hi) break; |
---|
587 | v = ptr[i]; |
---|
588 | j = i; |
---|
589 | while ( mainGtU ( |
---|
590 | ptr[j-h]+d, v+d, block, quadrant, nblock, budget |
---|
591 | ) ) { |
---|
592 | ptr[j] = ptr[j-h]; |
---|
593 | j = j - h; |
---|
594 | if (j <= (lo + h - 1)) break; |
---|
595 | } |
---|
596 | ptr[j] = v; |
---|
597 | i++; |
---|
598 | |
---|
599 | if (*budget < 0) return; |
---|
600 | } |
---|
601 | } |
---|
602 | } |
---|
603 | |
---|
604 | |
---|
605 | /*---------------------------------------------*/ |
---|
606 | /*-- |
---|
607 | The following is an implementation of |
---|
608 | an elegant 3-way quicksort for strings, |
---|
609 | described in a paper "Fast Algorithms for |
---|
610 | Sorting and Searching Strings", by Robert |
---|
611 | Sedgewick and Jon L. Bentley. |
---|
612 | --*/ |
---|
613 | |
---|
614 | #define mswap(zz1, zz2) \ |
---|
615 | { Int32 zztmp = zz1; zz1 = zz2; zz2 = zztmp; } |
---|
616 | |
---|
617 | #define mvswap(zzp1, zzp2, zzn) \ |
---|
618 | { \ |
---|
619 | Int32 yyp1 = (zzp1); \ |
---|
620 | Int32 yyp2 = (zzp2); \ |
---|
621 | Int32 yyn = (zzn); \ |
---|
622 | while (yyn > 0) { \ |
---|
623 | mswap(ptr[yyp1], ptr[yyp2]); \ |
---|
624 | yyp1++; yyp2++; yyn--; \ |
---|
625 | } \ |
---|
626 | } |
---|
627 | |
---|
628 | static |
---|
629 | __inline__ |
---|
630 | UChar mmed3 ( UChar a, UChar b, UChar c ) |
---|
631 | { |
---|
632 | UChar t; |
---|
633 | if (a > b) { t = a; a = b; b = t; }; |
---|
634 | if (b > c) { |
---|
635 | b = c; |
---|
636 | if (a > b) b = a; |
---|
637 | } |
---|
638 | return b; |
---|
639 | } |
---|
640 | |
---|
641 | #define mmin(a,b) ((a) < (b)) ? (a) : (b) |
---|
642 | |
---|
643 | #define mpush(lz,hz,dz) { stackLo[sp] = lz; \ |
---|
644 | stackHi[sp] = hz; \ |
---|
645 | stackD [sp] = dz; \ |
---|
646 | sp++; } |
---|
647 | |
---|
648 | #define mpop(lz,hz,dz) { sp--; \ |
---|
649 | lz = stackLo[sp]; \ |
---|
650 | hz = stackHi[sp]; \ |
---|
651 | dz = stackD [sp]; } |
---|
652 | |
---|
653 | |
---|
654 | #define mnextsize(az) (nextHi[az]-nextLo[az]) |
---|
655 | |
---|
656 | #define mnextswap(az,bz) \ |
---|
657 | { Int32 tz; \ |
---|
658 | tz = nextLo[az]; nextLo[az] = nextLo[bz]; nextLo[bz] = tz; \ |
---|
659 | tz = nextHi[az]; nextHi[az] = nextHi[bz]; nextHi[bz] = tz; \ |
---|
660 | tz = nextD [az]; nextD [az] = nextD [bz]; nextD [bz] = tz; } |
---|
661 | |
---|
662 | |
---|
663 | #define MAIN_QSORT_SMALL_THRESH 20 |
---|
664 | #define MAIN_QSORT_DEPTH_THRESH (BZ_N_RADIX + BZ_N_QSORT) |
---|
665 | #define MAIN_QSORT_STACK_SIZE 100 |
---|
666 | |
---|
667 | static |
---|
668 | void mainQSort3 ( UInt32* ptr, |
---|
669 | UChar* block, |
---|
670 | UInt16* quadrant, |
---|
671 | Int32 nblock, |
---|
672 | Int32 loSt, |
---|
673 | Int32 hiSt, |
---|
674 | Int32 dSt, |
---|
675 | Int32* budget ) |
---|
676 | { |
---|
677 | Int32 unLo, unHi, ltLo, gtHi, n, m, med; |
---|
678 | Int32 sp, lo, hi, d; |
---|
679 | |
---|
680 | Int32 stackLo[MAIN_QSORT_STACK_SIZE]; |
---|
681 | Int32 stackHi[MAIN_QSORT_STACK_SIZE]; |
---|
682 | Int32 stackD [MAIN_QSORT_STACK_SIZE]; |
---|
683 | |
---|
684 | Int32 nextLo[3]; |
---|
685 | Int32 nextHi[3]; |
---|
686 | Int32 nextD [3]; |
---|
687 | |
---|
688 | sp = 0; |
---|
689 | mpush ( loSt, hiSt, dSt ); |
---|
690 | |
---|
691 | while (sp > 0) { |
---|
692 | |
---|
693 | AssertH ( sp < MAIN_QSORT_STACK_SIZE, 1001 ); |
---|
694 | |
---|
695 | mpop ( lo, hi, d ); |
---|
696 | if (hi - lo < MAIN_QSORT_SMALL_THRESH || |
---|
697 | d > MAIN_QSORT_DEPTH_THRESH) { |
---|
698 | mainSimpleSort ( ptr, block, quadrant, nblock, lo, hi, d, budget ); |
---|
699 | if (*budget < 0) return; |
---|
700 | continue; |
---|
701 | } |
---|
702 | |
---|
703 | med = (Int32) |
---|
704 | mmed3 ( block[ptr[ lo ]+d], |
---|
705 | block[ptr[ hi ]+d], |
---|
706 | block[ptr[ (lo+hi)>>1 ]+d] ); |
---|
707 | |
---|
708 | unLo = ltLo = lo; |
---|
709 | unHi = gtHi = hi; |
---|
710 | |
---|
711 | while (True) { |
---|
712 | while (True) { |
---|
713 | if (unLo > unHi) break; |
---|
714 | n = ((Int32)block[ptr[unLo]+d]) - med; |
---|
715 | if (n == 0) { |
---|
716 | mswap(ptr[unLo], ptr[ltLo]); |
---|
717 | ltLo++; unLo++; continue; |
---|
718 | }; |
---|
719 | if (n > 0) break; |
---|
720 | unLo++; |
---|
721 | } |
---|
722 | while (True) { |
---|
723 | if (unLo > unHi) break; |
---|
724 | n = ((Int32)block[ptr[unHi]+d]) - med; |
---|
725 | if (n == 0) { |
---|
726 | mswap(ptr[unHi], ptr[gtHi]); |
---|
727 | gtHi--; unHi--; continue; |
---|
728 | }; |
---|
729 | if (n < 0) break; |
---|
730 | unHi--; |
---|
731 | } |
---|
732 | if (unLo > unHi) break; |
---|
733 | mswap(ptr[unLo], ptr[unHi]); unLo++; unHi--; |
---|
734 | } |
---|
735 | |
---|
736 | AssertD ( unHi == unLo-1, "mainQSort3(2)" ); |
---|
737 | |
---|
738 | if (gtHi < ltLo) { |
---|
739 | mpush(lo, hi, d+1 ); |
---|
740 | continue; |
---|
741 | } |
---|
742 | |
---|
743 | n = mmin(ltLo-lo, unLo-ltLo); mvswap(lo, unLo-n, n); |
---|
744 | m = mmin(hi-gtHi, gtHi-unHi); mvswap(unLo, hi-m+1, m); |
---|
745 | |
---|
746 | n = lo + unLo - ltLo - 1; |
---|
747 | m = hi - (gtHi - unHi) + 1; |
---|
748 | |
---|
749 | nextLo[0] = lo; nextHi[0] = n; nextD[0] = d; |
---|
750 | nextLo[1] = m; nextHi[1] = hi; nextD[1] = d; |
---|
751 | nextLo[2] = n+1; nextHi[2] = m-1; nextD[2] = d+1; |
---|
752 | |
---|
753 | if (mnextsize(0) < mnextsize(1)) mnextswap(0,1); |
---|
754 | if (mnextsize(1) < mnextsize(2)) mnextswap(1,2); |
---|
755 | if (mnextsize(0) < mnextsize(1)) mnextswap(0,1); |
---|
756 | |
---|
757 | AssertD (mnextsize(0) >= mnextsize(1), "mainQSort3(8)" ); |
---|
758 | AssertD (mnextsize(1) >= mnextsize(2), "mainQSort3(9)" ); |
---|
759 | |
---|
760 | mpush (nextLo[0], nextHi[0], nextD[0]); |
---|
761 | mpush (nextLo[1], nextHi[1], nextD[1]); |
---|
762 | mpush (nextLo[2], nextHi[2], nextD[2]); |
---|
763 | } |
---|
764 | } |
---|
765 | |
---|
766 | #undef mswap |
---|
767 | #undef mvswap |
---|
768 | #undef mpush |
---|
769 | #undef mpop |
---|
770 | #undef mmin |
---|
771 | #undef mnextsize |
---|
772 | #undef mnextswap |
---|
773 | #undef MAIN_QSORT_SMALL_THRESH |
---|
774 | #undef MAIN_QSORT_DEPTH_THRESH |
---|
775 | #undef MAIN_QSORT_STACK_SIZE |
---|
776 | |
---|
777 | |
---|
778 | /*---------------------------------------------*/ |
---|
779 | /* Pre: |
---|
780 | nblock > N_OVERSHOOT |
---|
781 | block32 exists for [0 .. nblock-1 +N_OVERSHOOT] |
---|
782 | ((UChar*)block32) [0 .. nblock-1] holds block |
---|
783 | ptr exists for [0 .. nblock-1] |
---|
784 | |
---|
785 | Post: |
---|
786 | ((UChar*)block32) [0 .. nblock-1] holds block |
---|
787 | All other areas of block32 destroyed |
---|
788 | ftab [0 .. 65536 ] destroyed |
---|
789 | ptr [0 .. nblock-1] holds sorted order |
---|
790 | if (*budget < 0), sorting was abandoned |
---|
791 | */ |
---|
792 | |
---|
793 | #define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8]) |
---|
794 | #define SETMASK (1 << 21) |
---|
795 | #define CLEARMASK (~(SETMASK)) |
---|
796 | |
---|
797 | static |
---|
798 | void mainSort ( UInt32* ptr, |
---|
799 | UChar* block, |
---|
800 | UInt16* quadrant, |
---|
801 | UInt32* ftab, |
---|
802 | Int32 nblock, |
---|
803 | Int32 verb, |
---|
804 | Int32* budget ) |
---|
805 | { |
---|
806 | Int32 i, j, k, ss, sb; |
---|
807 | Int32 runningOrder[256]; |
---|
808 | Bool bigDone[256]; |
---|
809 | Int32 copyStart[256]; |
---|
810 | Int32 copyEnd [256]; |
---|
811 | UChar c1; |
---|
812 | Int32 numQSorted; |
---|
813 | UInt16 s; |
---|
814 | if (verb >= 4) VPrintf0 ( " main sort initialise ...\n" ); |
---|
815 | |
---|
816 | /*-- set up the 2-byte frequency table --*/ |
---|
817 | for (i = 65536; i >= 0; i--) ftab[i] = 0; |
---|
818 | |
---|
819 | j = block[0] << 8; |
---|
820 | i = nblock-1; |
---|
821 | for (; i >= 3; i -= 4) { |
---|
822 | quadrant[i] = 0; |
---|
823 | j = (j >> 8) | ( ((UInt16)block[i]) << 8); |
---|
824 | ftab[j]++; |
---|
825 | quadrant[i-1] = 0; |
---|
826 | j = (j >> 8) | ( ((UInt16)block[i-1]) << 8); |
---|
827 | ftab[j]++; |
---|
828 | quadrant[i-2] = 0; |
---|
829 | j = (j >> 8) | ( ((UInt16)block[i-2]) << 8); |
---|
830 | ftab[j]++; |
---|
831 | quadrant[i-3] = 0; |
---|
832 | j = (j >> 8) | ( ((UInt16)block[i-3]) << 8); |
---|
833 | ftab[j]++; |
---|
834 | } |
---|
835 | for (; i >= 0; i--) { |
---|
836 | quadrant[i] = 0; |
---|
837 | j = (j >> 8) | ( ((UInt16)block[i]) << 8); |
---|
838 | ftab[j]++; |
---|
839 | } |
---|
840 | |
---|
841 | /*-- (emphasises close relationship of block & quadrant) --*/ |
---|
842 | for (i = 0; i < BZ_N_OVERSHOOT; i++) { |
---|
843 | block [nblock+i] = block[i]; |
---|
844 | quadrant[nblock+i] = 0; |
---|
845 | } |
---|
846 | |
---|
847 | if (verb >= 4) VPrintf0 ( " bucket sorting ...\n" ); |
---|
848 | |
---|
849 | /*-- Complete the initial radix sort --*/ |
---|
850 | for (i = 1; i <= 65536; i++) ftab[i] += ftab[i-1]; |
---|
851 | |
---|
852 | s = block[0] << 8; |
---|
853 | i = nblock-1; |
---|
854 | for (; i >= 3; i -= 4) { |
---|
855 | s = (s >> 8) | (block[i] << 8); |
---|
856 | j = ftab[s] -1; |
---|
857 | ftab[s] = j; |
---|
858 | ptr[j] = i; |
---|
859 | s = (s >> 8) | (block[i-1] << 8); |
---|
860 | j = ftab[s] -1; |
---|
861 | ftab[s] = j; |
---|
862 | ptr[j] = i-1; |
---|
863 | s = (s >> 8) | (block[i-2] << 8); |
---|
864 | j = ftab[s] -1; |
---|
865 | ftab[s] = j; |
---|
866 | ptr[j] = i-2; |
---|
867 | s = (s >> 8) | (block[i-3] << 8); |
---|
868 | j = ftab[s] -1; |
---|
869 | ftab[s] = j; |
---|
870 | ptr[j] = i-3; |
---|
871 | } |
---|
872 | for (; i >= 0; i--) { |
---|
873 | s = (s >> 8) | (block[i] << 8); |
---|
874 | j = ftab[s] -1; |
---|
875 | ftab[s] = j; |
---|
876 | ptr[j] = i; |
---|
877 | } |
---|
878 | |
---|
879 | /*-- |
---|
880 | Now ftab contains the first loc of every small bucket. |
---|
881 | Calculate the running order, from smallest to largest |
---|
882 | big bucket. |
---|
883 | --*/ |
---|
884 | for (i = 0; i <= 255; i++) { |
---|
885 | bigDone [i] = False; |
---|
886 | runningOrder[i] = i; |
---|
887 | } |
---|
888 | |
---|
889 | { |
---|
890 | Int32 vv; |
---|
891 | Int32 h = 1; |
---|
892 | do h = 3 * h + 1; while (h <= 256); |
---|
893 | do { |
---|
894 | h = h / 3; |
---|
895 | for (i = h; i <= 255; i++) { |
---|
896 | vv = runningOrder[i]; |
---|
897 | j = i; |
---|
898 | while ( BIGFREQ(runningOrder[j-h]) > BIGFREQ(vv) ) { |
---|
899 | runningOrder[j] = runningOrder[j-h]; |
---|
900 | j = j - h; |
---|
901 | if (j <= (h - 1)) goto zero; |
---|
902 | } |
---|
903 | zero: |
---|
904 | runningOrder[j] = vv; |
---|
905 | } |
---|
906 | } while (h != 1); |
---|
907 | } |
---|
908 | |
---|
909 | /*-- |
---|
910 | The main sorting loop. |
---|
911 | --*/ |
---|
912 | |
---|
913 | numQSorted = 0; |
---|
914 | |
---|
915 | for (i = 0; i <= 255; i++) { |
---|
916 | |
---|
917 | /*-- |
---|
918 | Process big buckets, starting with the least full. |
---|
919 | Basically this is a 3-step process in which we call |
---|
920 | mainQSort3 to sort the small buckets [ss, j], but |
---|
921 | also make a big effort to avoid the calls if we can. |
---|
922 | --*/ |
---|
923 | ss = runningOrder[i]; |
---|
924 | |
---|
925 | /*-- |
---|
926 | Step 1: |
---|
927 | Complete the big bucket [ss] by quicksorting |
---|
928 | any unsorted small buckets [ss, j], for j != ss. |
---|
929 | Hopefully previous pointer-scanning phases have already |
---|
930 | completed many of the small buckets [ss, j], so |
---|
931 | we don't have to sort them at all. |
---|
932 | --*/ |
---|
933 | for (j = 0; j <= 255; j++) { |
---|
934 | if (j != ss) { |
---|
935 | sb = (ss << 8) + j; |
---|
936 | if ( ! (ftab[sb] & SETMASK) ) { |
---|
937 | Int32 lo = ftab[sb] & CLEARMASK; |
---|
938 | Int32 hi = (ftab[sb+1] & CLEARMASK) - 1; |
---|
939 | if (hi > lo) { |
---|
940 | if (verb >= 4) |
---|
941 | VPrintf4 ( " qsort [0x%x, 0x%x] " |
---|
942 | "done %d this %d\n", |
---|
943 | ss, j, numQSorted, hi - lo + 1 ); |
---|
944 | mainQSort3 ( |
---|
945 | ptr, block, quadrant, nblock, |
---|
946 | lo, hi, BZ_N_RADIX, budget |
---|
947 | ); |
---|
948 | numQSorted += (hi - lo + 1); |
---|
949 | if (*budget < 0) return; |
---|
950 | } |
---|
951 | } |
---|
952 | ftab[sb] |= SETMASK; |
---|
953 | } |
---|
954 | } |
---|
955 | |
---|
956 | AssertH ( !bigDone[ss], 1006 ); |
---|
957 | |
---|
958 | /*-- |
---|
959 | Step 2: |
---|
960 | Now scan this big bucket [ss] so as to synthesise the |
---|
961 | sorted order for small buckets [t, ss] for all t, |
---|
962 | including, magically, the bucket [ss,ss] too. |
---|
963 | This will avoid doing Real Work in subsequent Step 1's. |
---|
964 | --*/ |
---|
965 | { |
---|
966 | for (j = 0; j <= 255; j++) { |
---|
967 | copyStart[j] = ftab[(j << 8) + ss] & CLEARMASK; |
---|
968 | copyEnd [j] = (ftab[(j << 8) + ss + 1] & CLEARMASK) - 1; |
---|
969 | } |
---|
970 | for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) { |
---|
971 | k = ptr[j]-1; if (k < 0) k += nblock; |
---|
972 | c1 = block[k]; |
---|
973 | if (!bigDone[c1]) |
---|
974 | ptr[ copyStart[c1]++ ] = k; |
---|
975 | } |
---|
976 | for (j = (ftab[(ss+1) << 8] & CLEARMASK) - 1; j > copyEnd[ss]; j--) { |
---|
977 | k = ptr[j]-1; if (k < 0) k += nblock; |
---|
978 | c1 = block[k]; |
---|
979 | if (!bigDone[c1]) |
---|
980 | ptr[ copyEnd[c1]-- ] = k; |
---|
981 | } |
---|
982 | } |
---|
983 | |
---|
984 | AssertH ( (copyStart[ss]-1 == copyEnd[ss]) |
---|
985 | || |
---|
986 | /* Extremely rare case missing in bzip2-1.0.0 and 1.0.1. |
---|
987 | Necessity for this case is demonstrated by compressing |
---|
988 | a sequence of approximately 48.5 million of character |
---|
989 | 251; 1.0.0/1.0.1 will then die here. */ |
---|
990 | (copyStart[ss] == 0 && copyEnd[ss] == nblock-1), |
---|
991 | 1007 ) |
---|
992 | |
---|
993 | for (j = 0; j <= 255; j++) ftab[(j << 8) + ss] |= SETMASK; |
---|
994 | |
---|
995 | /*-- |
---|
996 | Step 3: |
---|
997 | The [ss] big bucket is now done. Record this fact, |
---|
998 | and update the quadrant descriptors. Remember to |
---|
999 | update quadrants in the overshoot area too, if |
---|
1000 | necessary. The "if (i < 255)" test merely skips |
---|
1001 | this updating for the last bucket processed, since |
---|
1002 | updating for the last bucket is pointless. |
---|
1003 | |
---|
1004 | The quadrant array provides a way to incrementally |
---|
1005 | cache sort orderings, as they appear, so as to |
---|
1006 | make subsequent comparisons in fullGtU() complete |
---|
1007 | faster. For repetitive blocks this makes a big |
---|
1008 | difference (but not big enough to be able to avoid |
---|
1009 | the fallback sorting mechanism, exponential radix sort). |
---|
1010 | |
---|
1011 | The precise meaning is: at all times: |
---|
1012 | |
---|
1013 | for 0 <= i < nblock and 0 <= j <= nblock |
---|
1014 | |
---|
1015 | if block[i] != block[j], |
---|
1016 | |
---|
1017 | then the relative values of quadrant[i] and |
---|
1018 | quadrant[j] are meaningless. |
---|
1019 | |
---|
1020 | else { |
---|
1021 | if quadrant[i] < quadrant[j] |
---|
1022 | then the string starting at i lexicographically |
---|
1023 | precedes the string starting at j |
---|
1024 | |
---|
1025 | else if quadrant[i] > quadrant[j] |
---|
1026 | then the string starting at j lexicographically |
---|
1027 | precedes the string starting at i |
---|
1028 | |
---|
1029 | else |
---|
1030 | the relative ordering of the strings starting |
---|
1031 | at i and j has not yet been determined. |
---|
1032 | } |
---|
1033 | --*/ |
---|
1034 | bigDone[ss] = True; |
---|
1035 | |
---|
1036 | if (i < 255) { |
---|
1037 | Int32 bbStart = ftab[ss << 8] & CLEARMASK; |
---|
1038 | Int32 bbSize = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart; |
---|
1039 | Int32 shifts = 0; |
---|
1040 | |
---|
1041 | while ((bbSize >> shifts) > 65534) shifts++; |
---|
1042 | |
---|
1043 | for (j = bbSize-1; j >= 0; j--) { |
---|
1044 | Int32 a2update = ptr[bbStart + j]; |
---|
1045 | UInt16 qVal = (UInt16)(j >> shifts); |
---|
1046 | quadrant[a2update] = qVal; |
---|
1047 | if (a2update < BZ_N_OVERSHOOT) |
---|
1048 | quadrant[a2update + nblock] = qVal; |
---|
1049 | } |
---|
1050 | AssertH ( ((bbSize-1) >> shifts) <= 65535, 1002 ); |
---|
1051 | } |
---|
1052 | |
---|
1053 | } |
---|
1054 | |
---|
1055 | if (verb >= 4) |
---|
1056 | VPrintf3 ( " %d pointers, %d sorted, %d scanned\n", |
---|
1057 | nblock, numQSorted, nblock - numQSorted ); |
---|
1058 | } |
---|
1059 | |
---|
1060 | #undef BIGFREQ |
---|
1061 | #undef SETMASK |
---|
1062 | #undef CLEARMASK |
---|
1063 | |
---|
1064 | |
---|
1065 | /*---------------------------------------------*/ |
---|
1066 | /* Pre: |
---|
1067 | nblock > 0 |
---|
1068 | arr2 exists for [0 .. nblock-1 +N_OVERSHOOT] |
---|
1069 | ((UChar*)arr2) [0 .. nblock-1] holds block |
---|
1070 | arr1 exists for [0 .. nblock-1] |
---|
1071 | |
---|
1072 | Post: |
---|
1073 | ((UChar*)arr2) [0 .. nblock-1] holds block |
---|
1074 | All other areas of block destroyed |
---|
1075 | ftab [ 0 .. 65536 ] destroyed |
---|
1076 | arr1 [0 .. nblock-1] holds sorted order |
---|
1077 | */ |
---|
1078 | void BZ2_blockSort ( EState* s ) |
---|
1079 | { |
---|
1080 | UInt32* ptr = s->ptr; |
---|
1081 | UChar* block = s->block; |
---|
1082 | UInt32* ftab = s->ftab; |
---|
1083 | Int32 nblock = s->nblock; |
---|
1084 | Int32 verb = s->verbosity; |
---|
1085 | Int32 wfact = s->workFactor; |
---|
1086 | UInt16* quadrant; |
---|
1087 | Int32 budget; |
---|
1088 | Int32 budgetInit; |
---|
1089 | Int32 i; |
---|
1090 | |
---|
1091 | if (nblock < 10000) { |
---|
1092 | fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb ); |
---|
1093 | } else { |
---|
1094 | /* Calculate the location for quadrant, remembering to get |
---|
1095 | the alignment right. Assumes that &(block[0]) is at least |
---|
1096 | 2-byte aligned -- this should be ok since block is really |
---|
1097 | the first section of arr2. |
---|
1098 | */ |
---|
1099 | i = nblock+BZ_N_OVERSHOOT; |
---|
1100 | if (i & 1) i++; |
---|
1101 | quadrant = (UInt16*)(&(block[i])); |
---|
1102 | |
---|
1103 | /* (wfact-1) / 3 puts the default-factor-30 |
---|
1104 | transition point at very roughly the same place as |
---|
1105 | with v0.1 and v0.9.0. |
---|
1106 | Not that it particularly matters any more, since the |
---|
1107 | resulting compressed stream is now the same regardless |
---|
1108 | of whether or not we use the main sort or fallback sort. |
---|
1109 | */ |
---|
1110 | if (wfact < 1 ) wfact = 1; |
---|
1111 | if (wfact > 100) wfact = 100; |
---|
1112 | budgetInit = nblock * ((wfact-1) / 3); |
---|
1113 | budget = budgetInit; |
---|
1114 | |
---|
1115 | mainSort ( ptr, block, quadrant, ftab, nblock, verb, &budget ); |
---|
1116 | if (verb >= 3) |
---|
1117 | VPrintf3 ( " %d work, %d block, ratio %5.2f\n", |
---|
1118 | budgetInit - budget, |
---|
1119 | nblock, |
---|
1120 | (float)(budgetInit - budget) / |
---|
1121 | (float)(nblock==0 ? 1 : nblock) ); |
---|
1122 | if (budget < 0) { |
---|
1123 | if (verb >= 2) |
---|
1124 | VPrintf0 ( " too repetitive; using fallback" |
---|
1125 | " sorting algorithm\n" ); |
---|
1126 | fallbackSort ( s->arr1, s->arr2, ftab, nblock, verb ); |
---|
1127 | } |
---|
1128 | } |
---|
1129 | |
---|
1130 | s->origPtr = -1; |
---|
1131 | for (i = 0; i < s->nblock; i++) |
---|
1132 | if (ptr[i] == 0) |
---|
1133 | { s->origPtr = i; break; }; |
---|
1134 | |
---|
1135 | AssertH( s->origPtr != -1, 1003 ); |
---|
1136 | } |
---|
1137 | |
---|
1138 | |
---|
1139 | /*-------------------------------------------------------------*/ |
---|
1140 | /*--- end blocksort.c ---*/ |
---|
1141 | /*-------------------------------------------------------------*/ |
---|