1 | /* Extended regular expression matching and search library, |
---|
2 | version 0.12. |
---|
3 | (Implements POSIX draft P10003.2/D11.2, except for |
---|
4 | internationalization features.) |
---|
5 | |
---|
6 | Copyright (C) 1993, 1994 Free Software Foundation, Inc. |
---|
7 | |
---|
8 | This program is free software; you can redistribute it and/or modify |
---|
9 | it under the terms of the GNU General Public License as published by |
---|
10 | the Free Software Foundation; either version 2, or (at your option) |
---|
11 | any later version. |
---|
12 | |
---|
13 | This program is distributed in the hope that it will be useful, |
---|
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
16 | GNU General Public License for more details. |
---|
17 | |
---|
18 | You should have received a copy of the GNU General Public License |
---|
19 | along with this program; if not, write to the Free Software |
---|
20 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ |
---|
21 | |
---|
22 | /* AIX requires this to be the first thing in the file. */ |
---|
23 | #if defined (_AIX) && !defined (REGEX_MALLOC) |
---|
24 | #pragma alloca |
---|
25 | #endif |
---|
26 | |
---|
27 | #define _GNU_SOURCE |
---|
28 | |
---|
29 | #ifdef HAVE_CONFIG_H |
---|
30 | #include <config.h> |
---|
31 | #endif |
---|
32 | |
---|
33 | /* We need this for `regex.h', and perhaps for the Emacs include files. */ |
---|
34 | #include <sys/types.h> |
---|
35 | |
---|
36 | /* The `emacs' switch turns on certain matching commands |
---|
37 | that make sense only in Emacs. */ |
---|
38 | #ifdef emacs |
---|
39 | |
---|
40 | #include "lisp.h" |
---|
41 | #include "buffer.h" |
---|
42 | #include "syntax.h" |
---|
43 | |
---|
44 | /* Emacs uses `NULL' as a predicate. */ |
---|
45 | #undef NULL |
---|
46 | |
---|
47 | #else /* not emacs */ |
---|
48 | |
---|
49 | #ifdef STDC_HEADERS |
---|
50 | #include <stdlib.h> |
---|
51 | #else |
---|
52 | char *malloc (); |
---|
53 | char *realloc (); |
---|
54 | #endif |
---|
55 | |
---|
56 | |
---|
57 | /* We used to test for `BSTRING' here, but only GCC and Emacs define |
---|
58 | `BSTRING', as far as I know, and neither of them use this code. */ |
---|
59 | #ifndef INHIBIT_STRING_HEADER |
---|
60 | #if HAVE_STRING_H || STDC_HEADERS |
---|
61 | #include <string.h> |
---|
62 | #ifndef bcmp |
---|
63 | #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n)) |
---|
64 | #endif |
---|
65 | #ifndef bcopy |
---|
66 | #define bcopy(s, d, n) memcpy ((d), (s), (n)) |
---|
67 | #endif |
---|
68 | #ifndef bzero |
---|
69 | #define bzero(s, n) memset ((s), 0, (n)) |
---|
70 | #endif |
---|
71 | #else |
---|
72 | #include <strings.h> |
---|
73 | #endif |
---|
74 | #endif |
---|
75 | |
---|
76 | /* Define the syntax stuff for \<, \>, etc. */ |
---|
77 | |
---|
78 | /* This must be nonzero for the wordchar and notwordchar pattern |
---|
79 | commands in re_match_2. */ |
---|
80 | #ifndef Sword |
---|
81 | #define Sword 1 |
---|
82 | #endif |
---|
83 | |
---|
84 | #ifdef SYNTAX_TABLE |
---|
85 | |
---|
86 | extern char *re_syntax_table; |
---|
87 | |
---|
88 | #else /* not SYNTAX_TABLE */ |
---|
89 | |
---|
90 | /* How many characters in the character set. */ |
---|
91 | #define CHAR_SET_SIZE 256 |
---|
92 | |
---|
93 | static char re_syntax_table[CHAR_SET_SIZE]; |
---|
94 | |
---|
95 | static void |
---|
96 | init_syntax_once () |
---|
97 | { |
---|
98 | register int c; |
---|
99 | static int done = 0; |
---|
100 | |
---|
101 | if (done) |
---|
102 | return; |
---|
103 | |
---|
104 | bzero (re_syntax_table, sizeof re_syntax_table); |
---|
105 | |
---|
106 | for (c = 'a'; c <= 'z'; c++) |
---|
107 | re_syntax_table[c] = Sword; |
---|
108 | |
---|
109 | for (c = 'A'; c <= 'Z'; c++) |
---|
110 | re_syntax_table[c] = Sword; |
---|
111 | |
---|
112 | for (c = '0'; c <= '9'; c++) |
---|
113 | re_syntax_table[c] = Sword; |
---|
114 | |
---|
115 | re_syntax_table['_'] = Sword; |
---|
116 | |
---|
117 | done = 1; |
---|
118 | } |
---|
119 | |
---|
120 | #endif /* not SYNTAX_TABLE */ |
---|
121 | |
---|
122 | #define SYNTAX(c) re_syntax_table[c] |
---|
123 | |
---|
124 | #endif /* not emacs */ |
---|
125 | |
---|
126 | /* Get the interface, including the syntax bits. */ |
---|
127 | #include "regex.h" |
---|
128 | |
---|
129 | /* isalpha etc. are used for the character classes. */ |
---|
130 | #include <ctype.h> |
---|
131 | |
---|
132 | /* Jim Meyering writes: |
---|
133 | |
---|
134 | "... Some ctype macros are valid only for character codes that |
---|
135 | isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when |
---|
136 | using /bin/cc or gcc but without giving an ansi option). So, all |
---|
137 | ctype uses should be through macros like ISPRINT... If |
---|
138 | STDC_HEADERS is defined, then autoconf has verified that the ctype |
---|
139 | macros don't need to be guarded with references to isascii. ... |
---|
140 | Defining isascii to 1 should let any compiler worth its salt |
---|
141 | eliminate the && through constant folding." */ |
---|
142 | |
---|
143 | #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII)) |
---|
144 | #define ISASCII(c) 1 |
---|
145 | #else |
---|
146 | #define ISASCII(c) isascii(c) |
---|
147 | #endif |
---|
148 | |
---|
149 | #ifdef isblank |
---|
150 | #define ISBLANK(c) (ISASCII (c) && isblank (c)) |
---|
151 | #else |
---|
152 | #define ISBLANK(c) ((c) == ' ' || (c) == '\t') |
---|
153 | #endif |
---|
154 | #ifdef isgraph |
---|
155 | #define ISGRAPH(c) (ISASCII (c) && isgraph (c)) |
---|
156 | #else |
---|
157 | #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c)) |
---|
158 | #endif |
---|
159 | |
---|
160 | #define ISPRINT(c) (ISASCII (c) && isprint (c)) |
---|
161 | #define ISDIGIT(c) (ISASCII (c) && isdigit (c)) |
---|
162 | #define ISALNUM(c) (ISASCII (c) && isalnum (c)) |
---|
163 | #define ISALPHA(c) (ISASCII (c) && isalpha (c)) |
---|
164 | #define ISCNTRL(c) (ISASCII (c) && iscntrl (c)) |
---|
165 | #define ISLOWER(c) (ISASCII (c) && islower (c)) |
---|
166 | #define ISPUNCT(c) (ISASCII (c) && ispunct (c)) |
---|
167 | #define ISSPACE(c) (ISASCII (c) && isspace (c)) |
---|
168 | #define ISUPPER(c) (ISASCII (c) && isupper (c)) |
---|
169 | #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c)) |
---|
170 | |
---|
171 | #ifndef NULL |
---|
172 | #define NULL 0 |
---|
173 | #endif |
---|
174 | |
---|
175 | /* We remove any previous definition of `SIGN_EXTEND_CHAR', |
---|
176 | since ours (we hope) works properly with all combinations of |
---|
177 | machines, compilers, `char' and `unsigned char' argument types. |
---|
178 | (Per Bothner suggested the basic approach.) */ |
---|
179 | #undef SIGN_EXTEND_CHAR |
---|
180 | #if __STDC__ |
---|
181 | #define SIGN_EXTEND_CHAR(c) ((signed char) (c)) |
---|
182 | #else /* not __STDC__ */ |
---|
183 | /* As in Harbison and Steele. */ |
---|
184 | #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) |
---|
185 | #endif |
---|
186 | |
---|
187 | /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we |
---|
188 | use `alloca' instead of `malloc'. This is because using malloc in |
---|
189 | re_search* or re_match* could cause memory leaks when C-g is used in |
---|
190 | Emacs; also, malloc is slower and causes storage fragmentation. On |
---|
191 | the other hand, malloc is more portable, and easier to debug. |
---|
192 | |
---|
193 | Because we sometimes use alloca, some routines have to be macros, |
---|
194 | not functions -- `alloca'-allocated space disappears at the end of the |
---|
195 | function it is called in. */ |
---|
196 | |
---|
197 | #ifdef REGEX_MALLOC |
---|
198 | |
---|
199 | #define REGEX_ALLOCATE malloc |
---|
200 | #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize) |
---|
201 | |
---|
202 | #else /* not REGEX_MALLOC */ |
---|
203 | |
---|
204 | /* Emacs already defines alloca, sometimes. */ |
---|
205 | #ifndef alloca |
---|
206 | |
---|
207 | /* Make alloca work the best possible way. */ |
---|
208 | #ifdef __GNUC__ |
---|
209 | #define alloca __builtin_alloca |
---|
210 | #else /* not __GNUC__ */ |
---|
211 | #if HAVE_ALLOCA_H |
---|
212 | #include <alloca.h> |
---|
213 | #else /* not __GNUC__ or HAVE_ALLOCA_H */ |
---|
214 | #ifndef _AIX /* Already did AIX, up at the top. */ |
---|
215 | char *alloca (); |
---|
216 | #endif /* not _AIX */ |
---|
217 | #endif /* not HAVE_ALLOCA_H */ |
---|
218 | #endif /* not __GNUC__ */ |
---|
219 | |
---|
220 | #endif /* not alloca */ |
---|
221 | |
---|
222 | #define REGEX_ALLOCATE alloca |
---|
223 | |
---|
224 | /* Assumes a `char *destination' variable. */ |
---|
225 | #define REGEX_REALLOCATE(source, osize, nsize) \ |
---|
226 | (destination = (char *) alloca (nsize), \ |
---|
227 | bcopy (source, destination, osize), \ |
---|
228 | destination) |
---|
229 | |
---|
230 | #endif /* not REGEX_MALLOC */ |
---|
231 | |
---|
232 | |
---|
233 | /* True if `size1' is non-NULL and PTR is pointing anywhere inside |
---|
234 | `string1' or just past its end. This works if PTR is NULL, which is |
---|
235 | a good thing. */ |
---|
236 | #define FIRST_STRING_P(ptr) \ |
---|
237 | (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) |
---|
238 | |
---|
239 | /* (Re)Allocate N items of type T using malloc, or fail. */ |
---|
240 | #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) |
---|
241 | #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) |
---|
242 | #define RETALLOC_IF(addr, n, t) \ |
---|
243 | if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t) |
---|
244 | #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) |
---|
245 | |
---|
246 | #define BYTEWIDTH 8 /* In bits. */ |
---|
247 | |
---|
248 | #define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) |
---|
249 | |
---|
250 | #undef MAX |
---|
251 | #undef MIN |
---|
252 | #define MAX(a, b) ((a) > (b) ? (a) : (b)) |
---|
253 | #define MIN(a, b) ((a) < (b) ? (a) : (b)) |
---|
254 | |
---|
255 | typedef char boolean; |
---|
256 | #define false 0 |
---|
257 | #define true 1 |
---|
258 | |
---|
259 | static int re_match_2_internal (); |
---|
260 | |
---|
261 | /* These are the command codes that appear in compiled regular |
---|
262 | expressions. Some opcodes are followed by argument bytes. A |
---|
263 | command code can specify any interpretation whatsoever for its |
---|
264 | arguments. Zero bytes may appear in the compiled regular expression. |
---|
265 | |
---|
266 | The value of `exactn' is needed in search.c (search_buffer) in Emacs. |
---|
267 | So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of |
---|
268 | `exactn' we use here must also be 1. */ |
---|
269 | |
---|
270 | typedef enum |
---|
271 | { |
---|
272 | no_op = 0, |
---|
273 | |
---|
274 | /* Followed by one byte giving n, then by n literal bytes. */ |
---|
275 | exactn = 1, |
---|
276 | |
---|
277 | /* Matches any (more or less) character. */ |
---|
278 | anychar, |
---|
279 | |
---|
280 | /* Matches any one char belonging to specified set. First |
---|
281 | following byte is number of bitmap bytes. Then come bytes |
---|
282 | for a bitmap saying which chars are in. Bits in each byte |
---|
283 | are ordered low-bit-first. A character is in the set if its |
---|
284 | bit is 1. A character too large to have a bit in the map is |
---|
285 | automatically not in the set. */ |
---|
286 | charset, |
---|
287 | |
---|
288 | /* Same parameters as charset, but match any character that is |
---|
289 | not one of those specified. */ |
---|
290 | charset_not, |
---|
291 | |
---|
292 | /* Start remembering the text that is matched, for storing in a |
---|
293 | register. Followed by one byte with the register number, in |
---|
294 | the range 0 to one less than the pattern buffer's re_nsub |
---|
295 | field. Then followed by one byte with the number of groups |
---|
296 | inner to this one. (This last has to be part of the |
---|
297 | start_memory only because we need it in the on_failure_jump |
---|
298 | of re_match_2.) */ |
---|
299 | start_memory, |
---|
300 | |
---|
301 | /* Stop remembering the text that is matched and store it in a |
---|
302 | memory register. Followed by one byte with the register |
---|
303 | number, in the range 0 to one less than `re_nsub' in the |
---|
304 | pattern buffer, and one byte with the number of inner groups, |
---|
305 | just like `start_memory'. (We need the number of inner |
---|
306 | groups here because we don't have any easy way of finding the |
---|
307 | corresponding start_memory when we're at a stop_memory.) */ |
---|
308 | stop_memory, |
---|
309 | |
---|
310 | /* Match a duplicate of something remembered. Followed by one |
---|
311 | byte containing the register number. */ |
---|
312 | duplicate, |
---|
313 | |
---|
314 | /* Fail unless at beginning of line. */ |
---|
315 | begline, |
---|
316 | |
---|
317 | /* Fail unless at end of line. */ |
---|
318 | endline, |
---|
319 | |
---|
320 | /* Succeeds if at beginning of buffer (if emacs) or at beginning |
---|
321 | of string to be matched (if not). */ |
---|
322 | begbuf, |
---|
323 | |
---|
324 | /* Analogously, for end of buffer/string. */ |
---|
325 | endbuf, |
---|
326 | |
---|
327 | /* Followed by two byte relative address to which to jump. */ |
---|
328 | jump, |
---|
329 | |
---|
330 | /* Same as jump, but marks the end of an alternative. */ |
---|
331 | jump_past_alt, |
---|
332 | |
---|
333 | /* Followed by two-byte relative address of place to resume at |
---|
334 | in case of failure. */ |
---|
335 | on_failure_jump, |
---|
336 | |
---|
337 | /* Like on_failure_jump, but pushes a placeholder instead of the |
---|
338 | current string position when executed. */ |
---|
339 | on_failure_keep_string_jump, |
---|
340 | |
---|
341 | /* Throw away latest failure point and then jump to following |
---|
342 | two-byte relative address. */ |
---|
343 | pop_failure_jump, |
---|
344 | |
---|
345 | /* Change to pop_failure_jump if know won't have to backtrack to |
---|
346 | match; otherwise change to jump. This is used to jump |
---|
347 | back to the beginning of a repeat. If what follows this jump |
---|
348 | clearly won't match what the repeat does, such that we can be |
---|
349 | sure that there is no use backtracking out of repetitions |
---|
350 | already matched, then we change it to a pop_failure_jump. |
---|
351 | Followed by two-byte address. */ |
---|
352 | maybe_pop_jump, |
---|
353 | |
---|
354 | /* Jump to following two-byte address, and push a dummy failure |
---|
355 | point. This failure point will be thrown away if an attempt |
---|
356 | is made to use it for a failure. A `+' construct makes this |
---|
357 | before the first repeat. Also used as an intermediary kind |
---|
358 | of jump when compiling an alternative. */ |
---|
359 | dummy_failure_jump, |
---|
360 | |
---|
361 | /* Push a dummy failure point and continue. Used at the end of |
---|
362 | alternatives. */ |
---|
363 | push_dummy_failure, |
---|
364 | |
---|
365 | /* Followed by two-byte relative address and two-byte number n. |
---|
366 | After matching N times, jump to the address upon failure. */ |
---|
367 | succeed_n, |
---|
368 | |
---|
369 | /* Followed by two-byte relative address, and two-byte number n. |
---|
370 | Jump to the address N times, then fail. */ |
---|
371 | jump_n, |
---|
372 | |
---|
373 | /* Set the following two-byte relative address to the |
---|
374 | subsequent two-byte number. The address *includes* the two |
---|
375 | bytes of number. */ |
---|
376 | set_number_at, |
---|
377 | |
---|
378 | wordchar, /* Matches any word-constituent character. */ |
---|
379 | notwordchar, /* Matches any char that is not a word-constituent. */ |
---|
380 | |
---|
381 | wordbeg, /* Succeeds if at word beginning. */ |
---|
382 | wordend, /* Succeeds if at word end. */ |
---|
383 | |
---|
384 | wordbound, /* Succeeds if at a word boundary. */ |
---|
385 | notwordbound /* Succeeds if not at a word boundary. */ |
---|
386 | |
---|
387 | #ifdef emacs |
---|
388 | ,before_dot, /* Succeeds if before point. */ |
---|
389 | at_dot, /* Succeeds if at point. */ |
---|
390 | after_dot, /* Succeeds if after point. */ |
---|
391 | |
---|
392 | /* Matches any character whose syntax is specified. Followed by |
---|
393 | a byte which contains a syntax code, e.g., Sword. */ |
---|
394 | syntaxspec, |
---|
395 | |
---|
396 | /* Matches any character whose syntax is not that specified. */ |
---|
397 | notsyntaxspec |
---|
398 | #endif /* emacs */ |
---|
399 | } re_opcode_t; |
---|
400 | |
---|
401 | /* Common operations on the compiled pattern. */ |
---|
402 | |
---|
403 | /* Store NUMBER in two contiguous bytes starting at DESTINATION. */ |
---|
404 | |
---|
405 | #define STORE_NUMBER(destination, number) \ |
---|
406 | do { \ |
---|
407 | (destination)[0] = (number) & 0377; \ |
---|
408 | (destination)[1] = (number) >> 8; \ |
---|
409 | } while (0) |
---|
410 | |
---|
411 | /* Same as STORE_NUMBER, except increment DESTINATION to |
---|
412 | the byte after where the number is stored. Therefore, DESTINATION |
---|
413 | must be an lvalue. */ |
---|
414 | |
---|
415 | #define STORE_NUMBER_AND_INCR(destination, number) \ |
---|
416 | do { \ |
---|
417 | STORE_NUMBER (destination, number); \ |
---|
418 | (destination) += 2; \ |
---|
419 | } while (0) |
---|
420 | |
---|
421 | /* Put into DESTINATION a number stored in two contiguous bytes starting |
---|
422 | at SOURCE. */ |
---|
423 | |
---|
424 | #define EXTRACT_NUMBER(destination, source) \ |
---|
425 | do { \ |
---|
426 | (destination) = *(source) & 0377; \ |
---|
427 | (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \ |
---|
428 | } while (0) |
---|
429 | |
---|
430 | #ifdef DEBUG |
---|
431 | static void |
---|
432 | extract_number (dest, source) |
---|
433 | int *dest; |
---|
434 | unsigned char *source; |
---|
435 | { |
---|
436 | int temp = SIGN_EXTEND_CHAR (*(source + 1)); |
---|
437 | *dest = *source & 0377; |
---|
438 | *dest += temp << 8; |
---|
439 | } |
---|
440 | |
---|
441 | #ifndef EXTRACT_MACROS /* To debug the macros. */ |
---|
442 | #undef EXTRACT_NUMBER |
---|
443 | #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) |
---|
444 | #endif /* not EXTRACT_MACROS */ |
---|
445 | |
---|
446 | #endif /* DEBUG */ |
---|
447 | |
---|
448 | /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. |
---|
449 | SOURCE must be an lvalue. */ |
---|
450 | |
---|
451 | #define EXTRACT_NUMBER_AND_INCR(destination, source) \ |
---|
452 | do { \ |
---|
453 | EXTRACT_NUMBER (destination, source); \ |
---|
454 | (source) += 2; \ |
---|
455 | } while (0) |
---|
456 | |
---|
457 | #ifdef DEBUG |
---|
458 | static void |
---|
459 | extract_number_and_incr (destination, source) |
---|
460 | int *destination; |
---|
461 | unsigned char **source; |
---|
462 | { |
---|
463 | extract_number (destination, *source); |
---|
464 | *source += 2; |
---|
465 | } |
---|
466 | |
---|
467 | #ifndef EXTRACT_MACROS |
---|
468 | #undef EXTRACT_NUMBER_AND_INCR |
---|
469 | #define EXTRACT_NUMBER_AND_INCR(dest, src) \ |
---|
470 | extract_number_and_incr (&dest, &src) |
---|
471 | #endif /* not EXTRACT_MACROS */ |
---|
472 | |
---|
473 | #endif /* DEBUG */ |
---|
474 | |
---|
475 | /* If DEBUG is defined, Regex prints many voluminous messages about what |
---|
476 | it is doing (if the variable `debug' is nonzero). If linked with the |
---|
477 | main program in `iregex.c', you can enter patterns and strings |
---|
478 | interactively. And if linked with the main program in `main.c' and |
---|
479 | the other test files, you can run the already-written tests. */ |
---|
480 | |
---|
481 | #ifdef DEBUG |
---|
482 | |
---|
483 | /* We use standard I/O for debugging. */ |
---|
484 | #include <stdio.h> |
---|
485 | |
---|
486 | /* It is useful to test things that ``must'' be true when debugging. */ |
---|
487 | #include <assert.h> |
---|
488 | |
---|
489 | static int debug = 0; |
---|
490 | |
---|
491 | #define DEBUG_STATEMENT(e) e |
---|
492 | #define DEBUG_PRINT1(x) if (debug) printf (x) |
---|
493 | #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) |
---|
494 | #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) |
---|
495 | #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) |
---|
496 | #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ |
---|
497 | if (debug) print_partial_compiled_pattern (s, e) |
---|
498 | #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ |
---|
499 | if (debug) print_double_string (w, s1, sz1, s2, sz2) |
---|
500 | |
---|
501 | |
---|
502 | extern void printchar (); |
---|
503 | |
---|
504 | /* Print the fastmap in human-readable form. */ |
---|
505 | |
---|
506 | void |
---|
507 | print_fastmap (fastmap) |
---|
508 | char *fastmap; |
---|
509 | { |
---|
510 | unsigned was_a_range = 0; |
---|
511 | unsigned i = 0; |
---|
512 | |
---|
513 | while (i < (1 << BYTEWIDTH)) |
---|
514 | { |
---|
515 | if (fastmap[i++]) |
---|
516 | { |
---|
517 | was_a_range = 0; |
---|
518 | printchar (i - 1); |
---|
519 | while (i < (1 << BYTEWIDTH) && fastmap[i]) |
---|
520 | { |
---|
521 | was_a_range = 1; |
---|
522 | i++; |
---|
523 | } |
---|
524 | if (was_a_range) |
---|
525 | { |
---|
526 | printf ("-"); |
---|
527 | printchar (i - 1); |
---|
528 | } |
---|
529 | } |
---|
530 | } |
---|
531 | putchar ('\n'); |
---|
532 | } |
---|
533 | |
---|
534 | |
---|
535 | /* Print a compiled pattern string in human-readable form, starting at |
---|
536 | the START pointer into it and ending just before the pointer END. */ |
---|
537 | |
---|
538 | void |
---|
539 | print_partial_compiled_pattern (start, end) |
---|
540 | unsigned char *start; |
---|
541 | unsigned char *end; |
---|
542 | { |
---|
543 | int mcnt, mcnt2; |
---|
544 | unsigned char *p = start; |
---|
545 | unsigned char *pend = end; |
---|
546 | |
---|
547 | if (start == NULL) |
---|
548 | { |
---|
549 | printf ("(null)\n"); |
---|
550 | return; |
---|
551 | } |
---|
552 | |
---|
553 | /* Loop over pattern commands. */ |
---|
554 | while (p < pend) |
---|
555 | { |
---|
556 | printf ("%d:\t", p - start); |
---|
557 | |
---|
558 | switch ((re_opcode_t) *p++) |
---|
559 | { |
---|
560 | case no_op: |
---|
561 | printf ("/no_op"); |
---|
562 | break; |
---|
563 | |
---|
564 | case exactn: |
---|
565 | mcnt = *p++; |
---|
566 | printf ("/exactn/%d", mcnt); |
---|
567 | do |
---|
568 | { |
---|
569 | putchar ('/'); |
---|
570 | printchar (*p++); |
---|
571 | } |
---|
572 | while (--mcnt); |
---|
573 | break; |
---|
574 | |
---|
575 | case start_memory: |
---|
576 | mcnt = *p++; |
---|
577 | printf ("/start_memory/%d/%d", mcnt, *p++); |
---|
578 | break; |
---|
579 | |
---|
580 | case stop_memory: |
---|
581 | mcnt = *p++; |
---|
582 | printf ("/stop_memory/%d/%d", mcnt, *p++); |
---|
583 | break; |
---|
584 | |
---|
585 | case duplicate: |
---|
586 | printf ("/duplicate/%d", *p++); |
---|
587 | break; |
---|
588 | |
---|
589 | case anychar: |
---|
590 | printf ("/anychar"); |
---|
591 | break; |
---|
592 | |
---|
593 | case charset: |
---|
594 | case charset_not: |
---|
595 | { |
---|
596 | register int c, last = -100; |
---|
597 | register int in_range = 0; |
---|
598 | |
---|
599 | printf ("/charset [%s", |
---|
600 | (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); |
---|
601 | |
---|
602 | assert (p + *p < pend); |
---|
603 | |
---|
604 | for (c = 0; c < 256; c++) |
---|
605 | if (c / 8 < *p |
---|
606 | && (p[1 + (c/8)] & (1 << (c % 8)))) |
---|
607 | { |
---|
608 | /* Are we starting a range? */ |
---|
609 | if (last + 1 == c && ! in_range) |
---|
610 | { |
---|
611 | putchar ('-'); |
---|
612 | in_range = 1; |
---|
613 | } |
---|
614 | /* Have we broken a range? */ |
---|
615 | else if (last + 1 != c && in_range) |
---|
616 | { |
---|
617 | printchar (last); |
---|
618 | in_range = 0; |
---|
619 | } |
---|
620 | |
---|
621 | if (! in_range) |
---|
622 | printchar (c); |
---|
623 | |
---|
624 | last = c; |
---|
625 | } |
---|
626 | |
---|
627 | if (in_range) |
---|
628 | printchar (last); |
---|
629 | |
---|
630 | putchar (']'); |
---|
631 | |
---|
632 | p += 1 + *p; |
---|
633 | } |
---|
634 | break; |
---|
635 | |
---|
636 | case begline: |
---|
637 | printf ("/begline"); |
---|
638 | break; |
---|
639 | |
---|
640 | case endline: |
---|
641 | printf ("/endline"); |
---|
642 | break; |
---|
643 | |
---|
644 | case on_failure_jump: |
---|
645 | extract_number_and_incr (&mcnt, &p); |
---|
646 | printf ("/on_failure_jump to %d", p + mcnt - start); |
---|
647 | break; |
---|
648 | |
---|
649 | case on_failure_keep_string_jump: |
---|
650 | extract_number_and_incr (&mcnt, &p); |
---|
651 | printf ("/on_failure_keep_string_jump to %d", p + mcnt - start); |
---|
652 | break; |
---|
653 | |
---|
654 | case dummy_failure_jump: |
---|
655 | extract_number_and_incr (&mcnt, &p); |
---|
656 | printf ("/dummy_failure_jump to %d", p + mcnt - start); |
---|
657 | break; |
---|
658 | |
---|
659 | case push_dummy_failure: |
---|
660 | printf ("/push_dummy_failure"); |
---|
661 | break; |
---|
662 | |
---|
663 | case maybe_pop_jump: |
---|
664 | extract_number_and_incr (&mcnt, &p); |
---|
665 | printf ("/maybe_pop_jump to %d", p + mcnt - start); |
---|
666 | break; |
---|
667 | |
---|
668 | case pop_failure_jump: |
---|
669 | extract_number_and_incr (&mcnt, &p); |
---|
670 | printf ("/pop_failure_jump to %d", p + mcnt - start); |
---|
671 | break; |
---|
672 | |
---|
673 | case jump_past_alt: |
---|
674 | extract_number_and_incr (&mcnt, &p); |
---|
675 | printf ("/jump_past_alt to %d", p + mcnt - start); |
---|
676 | break; |
---|
677 | |
---|
678 | case jump: |
---|
679 | extract_number_and_incr (&mcnt, &p); |
---|
680 | printf ("/jump to %d", p + mcnt - start); |
---|
681 | break; |
---|
682 | |
---|
683 | case succeed_n: |
---|
684 | extract_number_and_incr (&mcnt, &p); |
---|
685 | extract_number_and_incr (&mcnt2, &p); |
---|
686 | printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2); |
---|
687 | break; |
---|
688 | |
---|
689 | case jump_n: |
---|
690 | extract_number_and_incr (&mcnt, &p); |
---|
691 | extract_number_and_incr (&mcnt2, &p); |
---|
692 | printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2); |
---|
693 | break; |
---|
694 | |
---|
695 | case set_number_at: |
---|
696 | extract_number_and_incr (&mcnt, &p); |
---|
697 | extract_number_and_incr (&mcnt2, &p); |
---|
698 | printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2); |
---|
699 | break; |
---|
700 | |
---|
701 | case wordbound: |
---|
702 | printf ("/wordbound"); |
---|
703 | break; |
---|
704 | |
---|
705 | case notwordbound: |
---|
706 | printf ("/notwordbound"); |
---|
707 | break; |
---|
708 | |
---|
709 | case wordbeg: |
---|
710 | printf ("/wordbeg"); |
---|
711 | break; |
---|
712 | |
---|
713 | case wordend: |
---|
714 | printf ("/wordend"); |
---|
715 | |
---|
716 | #ifdef emacs |
---|
717 | case before_dot: |
---|
718 | printf ("/before_dot"); |
---|
719 | break; |
---|
720 | |
---|
721 | case at_dot: |
---|
722 | printf ("/at_dot"); |
---|
723 | break; |
---|
724 | |
---|
725 | case after_dot: |
---|
726 | printf ("/after_dot"); |
---|
727 | break; |
---|
728 | |
---|
729 | case syntaxspec: |
---|
730 | printf ("/syntaxspec"); |
---|
731 | mcnt = *p++; |
---|
732 | printf ("/%d", mcnt); |
---|
733 | break; |
---|
734 | |
---|
735 | case notsyntaxspec: |
---|
736 | printf ("/notsyntaxspec"); |
---|
737 | mcnt = *p++; |
---|
738 | printf ("/%d", mcnt); |
---|
739 | break; |
---|
740 | #endif /* emacs */ |
---|
741 | |
---|
742 | case wordchar: |
---|
743 | printf ("/wordchar"); |
---|
744 | break; |
---|
745 | |
---|
746 | case notwordchar: |
---|
747 | printf ("/notwordchar"); |
---|
748 | break; |
---|
749 | |
---|
750 | case begbuf: |
---|
751 | printf ("/begbuf"); |
---|
752 | break; |
---|
753 | |
---|
754 | case endbuf: |
---|
755 | printf ("/endbuf"); |
---|
756 | break; |
---|
757 | |
---|
758 | default: |
---|
759 | printf ("?%d", *(p-1)); |
---|
760 | } |
---|
761 | |
---|
762 | putchar ('\n'); |
---|
763 | } |
---|
764 | |
---|
765 | printf ("%d:\tend of pattern.\n", p - start); |
---|
766 | } |
---|
767 | |
---|
768 | |
---|
769 | void |
---|
770 | print_compiled_pattern (bufp) |
---|
771 | struct re_pattern_buffer *bufp; |
---|
772 | { |
---|
773 | unsigned char *buffer = bufp->buffer; |
---|
774 | |
---|
775 | print_partial_compiled_pattern (buffer, buffer + bufp->used); |
---|
776 | printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated); |
---|
777 | |
---|
778 | if (bufp->fastmap_accurate && bufp->fastmap) |
---|
779 | { |
---|
780 | printf ("fastmap: "); |
---|
781 | print_fastmap (bufp->fastmap); |
---|
782 | } |
---|
783 | |
---|
784 | printf ("re_nsub: %d\t", bufp->re_nsub); |
---|
785 | printf ("regs_alloc: %d\t", bufp->regs_allocated); |
---|
786 | printf ("can_be_null: %d\t", bufp->can_be_null); |
---|
787 | printf ("newline_anchor: %d\n", bufp->newline_anchor); |
---|
788 | printf ("no_sub: %d\t", bufp->no_sub); |
---|
789 | printf ("not_bol: %d\t", bufp->not_bol); |
---|
790 | printf ("not_eol: %d\t", bufp->not_eol); |
---|
791 | printf ("syntax: %d\n", bufp->syntax); |
---|
792 | /* Perhaps we should print the translate table? */ |
---|
793 | } |
---|
794 | |
---|
795 | |
---|
796 | void |
---|
797 | print_double_string (where, string1, size1, string2, size2) |
---|
798 | const char *where; |
---|
799 | const char *string1; |
---|
800 | const char *string2; |
---|
801 | int size1; |
---|
802 | int size2; |
---|
803 | { |
---|
804 | unsigned this_char; |
---|
805 | |
---|
806 | if (where == NULL) |
---|
807 | printf ("(null)"); |
---|
808 | else |
---|
809 | { |
---|
810 | if (FIRST_STRING_P (where)) |
---|
811 | { |
---|
812 | for (this_char = where - string1; this_char < size1; this_char++) |
---|
813 | printchar (string1[this_char]); |
---|
814 | |
---|
815 | where = string2; |
---|
816 | } |
---|
817 | |
---|
818 | for (this_char = where - string2; this_char < size2; this_char++) |
---|
819 | printchar (string2[this_char]); |
---|
820 | } |
---|
821 | } |
---|
822 | |
---|
823 | #else /* not DEBUG */ |
---|
824 | |
---|
825 | #undef assert |
---|
826 | #define assert(e) |
---|
827 | |
---|
828 | #define DEBUG_STATEMENT(e) |
---|
829 | #define DEBUG_PRINT1(x) |
---|
830 | #define DEBUG_PRINT2(x1, x2) |
---|
831 | #define DEBUG_PRINT3(x1, x2, x3) |
---|
832 | #define DEBUG_PRINT4(x1, x2, x3, x4) |
---|
833 | #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) |
---|
834 | #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) |
---|
835 | |
---|
836 | #endif /* not DEBUG */ |
---|
837 | |
---|
838 | /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can |
---|
839 | also be assigned to arbitrarily: each pattern buffer stores its own |
---|
840 | syntax, so it can be changed between regex compilations. */ |
---|
841 | reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS; |
---|
842 | |
---|
843 | |
---|
844 | /* Specify the precise syntax of regexps for compilation. This provides |
---|
845 | for compatibility for various utilities which historically have |
---|
846 | different, incompatible syntaxes. |
---|
847 | |
---|
848 | The argument SYNTAX is a bit mask comprised of the various bits |
---|
849 | defined in regex.h. We return the old syntax. */ |
---|
850 | |
---|
851 | reg_syntax_t |
---|
852 | re_set_syntax (syntax) |
---|
853 | reg_syntax_t syntax; |
---|
854 | { |
---|
855 | reg_syntax_t ret = re_syntax_options; |
---|
856 | |
---|
857 | re_syntax_options = syntax; |
---|
858 | return ret; |
---|
859 | } |
---|
860 | |
---|
861 | /* This table gives an error message for each of the error codes listed |
---|
862 | in regex.h. Obviously the order here has to be same as there. */ |
---|
863 | |
---|
864 | static const char *re_error_msg[] = |
---|
865 | { NULL, /* REG_NOERROR */ |
---|
866 | "No match", /* REG_NOMATCH */ |
---|
867 | "Invalid regular expression", /* REG_BADPAT */ |
---|
868 | "Invalid collation character", /* REG_ECOLLATE */ |
---|
869 | "Invalid character class name", /* REG_ECTYPE */ |
---|
870 | "Trailing backslash", /* REG_EESCAPE */ |
---|
871 | "Invalid back reference", /* REG_ESUBREG */ |
---|
872 | "Unmatched [ or [^", /* REG_EBRACK */ |
---|
873 | "Unmatched ( or \\(", /* REG_EPAREN */ |
---|
874 | "Unmatched \\{", /* REG_EBRACE */ |
---|
875 | "Invalid content of \\{\\}", /* REG_BADBR */ |
---|
876 | "Invalid range end", /* REG_ERANGE */ |
---|
877 | "Memory exhausted", /* REG_ESPACE */ |
---|
878 | "Invalid preceding regular expression", /* REG_BADRPT */ |
---|
879 | "Premature end of regular expression", /* REG_EEND */ |
---|
880 | "Regular expression too big", /* REG_ESIZE */ |
---|
881 | "Unmatched ) or \\)", /* REG_ERPAREN */ |
---|
882 | }; |
---|
883 | |
---|
884 | /* Avoiding alloca during matching, to placate r_alloc. */ |
---|
885 | |
---|
886 | /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the |
---|
887 | searching and matching functions should not call alloca. On some |
---|
888 | systems, alloca is implemented in terms of malloc, and if we're |
---|
889 | using the relocating allocator routines, then malloc could cause a |
---|
890 | relocation, which might (if the strings being searched are in the |
---|
891 | ralloc heap) shift the data out from underneath the regexp |
---|
892 | routines. |
---|
893 | |
---|
894 | Here's another reason to avoid allocation: Emacs |
---|
895 | processes input from X in a signal handler; processing X input may |
---|
896 | call malloc; if input arrives while a matching routine is calling |
---|
897 | malloc, then we're scrod. But Emacs can't just block input while |
---|
898 | calling matching routines; then we don't notice interrupts when |
---|
899 | they come in. So, Emacs blocks input around all regexp calls |
---|
900 | except the matching calls, which it leaves unprotected, in the |
---|
901 | faith that they will not malloc. */ |
---|
902 | |
---|
903 | /* Normally, this is fine. */ |
---|
904 | #define MATCH_MAY_ALLOCATE |
---|
905 | |
---|
906 | /* The match routines may not allocate if (1) they would do it with malloc |
---|
907 | and (2) it's not safe for htem to use malloc. */ |
---|
908 | #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && (defined (emacs) || defined (REL_ALLOC)) |
---|
909 | #undef MATCH_MAY_ALLOCATE |
---|
910 | #endif |
---|
911 | |
---|
912 | |
---|
913 | /* Failure stack declarations and macros; both re_compile_fastmap and |
---|
914 | re_match_2 use a failure stack. These have to be macros because of |
---|
915 | REGEX_ALLOCATE. */ |
---|
916 | |
---|
917 | |
---|
918 | /* Number of failure points for which to initially allocate space |
---|
919 | when matching. If this number is exceeded, we allocate more |
---|
920 | space, so it is not a hard limit. */ |
---|
921 | #ifndef INIT_FAILURE_ALLOC |
---|
922 | #define INIT_FAILURE_ALLOC 5 |
---|
923 | #endif |
---|
924 | |
---|
925 | /* Roughly the maximum number of failure points on the stack. Would be |
---|
926 | exactly that if always used MAX_FAILURE_SPACE each time we failed. |
---|
927 | This is a variable only so users of regex can assign to it; we never |
---|
928 | change it ourselves. */ |
---|
929 | int re_max_failures = 2000; |
---|
930 | |
---|
931 | typedef unsigned char *fail_stack_elt_t; |
---|
932 | |
---|
933 | typedef struct |
---|
934 | { |
---|
935 | fail_stack_elt_t *stack; |
---|
936 | unsigned size; |
---|
937 | unsigned avail; /* Offset of next open position. */ |
---|
938 | } fail_stack_type; |
---|
939 | |
---|
940 | #define FAIL_STACK_EMPTY() (fail_stack.avail == 0) |
---|
941 | #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) |
---|
942 | #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) |
---|
943 | #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail]) |
---|
944 | |
---|
945 | |
---|
946 | /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */ |
---|
947 | |
---|
948 | #ifdef MATCH_MAY_ALLOCATE |
---|
949 | #define INIT_FAIL_STACK() \ |
---|
950 | do { \ |
---|
951 | fail_stack.stack = (fail_stack_elt_t *) \ |
---|
952 | REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \ |
---|
953 | \ |
---|
954 | if (fail_stack.stack == NULL) \ |
---|
955 | return -2; \ |
---|
956 | \ |
---|
957 | fail_stack.size = INIT_FAILURE_ALLOC; \ |
---|
958 | fail_stack.avail = 0; \ |
---|
959 | } while (0) |
---|
960 | #else |
---|
961 | #define INIT_FAIL_STACK() \ |
---|
962 | do { \ |
---|
963 | fail_stack.avail = 0; \ |
---|
964 | } while (0) |
---|
965 | #endif |
---|
966 | |
---|
967 | |
---|
968 | /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. |
---|
969 | |
---|
970 | Return 1 if succeeds, and 0 if either ran out of memory |
---|
971 | allocating space for it or it was already too large. |
---|
972 | |
---|
973 | REGEX_REALLOCATE requires `destination' be declared. */ |
---|
974 | |
---|
975 | #define DOUBLE_FAIL_STACK(fail_stack) \ |
---|
976 | ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \ |
---|
977 | ? 0 \ |
---|
978 | : ((fail_stack).stack = (fail_stack_elt_t *) \ |
---|
979 | REGEX_REALLOCATE ((fail_stack).stack, \ |
---|
980 | (fail_stack).size * sizeof (fail_stack_elt_t), \ |
---|
981 | ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ |
---|
982 | \ |
---|
983 | (fail_stack).stack == NULL \ |
---|
984 | ? 0 \ |
---|
985 | : ((fail_stack).size <<= 1, \ |
---|
986 | 1))) |
---|
987 | |
---|
988 | |
---|
989 | /* Push PATTERN_OP on FAIL_STACK. |
---|
990 | |
---|
991 | Return 1 if was able to do so and 0 if ran out of memory allocating |
---|
992 | space to do so. */ |
---|
993 | #define PUSH_PATTERN_OP(pattern_op, fail_stack) \ |
---|
994 | ((FAIL_STACK_FULL () \ |
---|
995 | && !DOUBLE_FAIL_STACK (fail_stack)) \ |
---|
996 | ? 0 \ |
---|
997 | : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \ |
---|
998 | 1)) |
---|
999 | |
---|
1000 | /* This pushes an item onto the failure stack. Must be a four-byte |
---|
1001 | value. Assumes the variable `fail_stack'. Probably should only |
---|
1002 | be called from within `PUSH_FAILURE_POINT'. */ |
---|
1003 | #define PUSH_FAILURE_ITEM(item) \ |
---|
1004 | fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item |
---|
1005 | |
---|
1006 | /* The complement operation. Assumes `fail_stack' is nonempty. */ |
---|
1007 | #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail] |
---|
1008 | |
---|
1009 | /* Used to omit pushing failure point id's when we're not debugging. */ |
---|
1010 | #ifdef DEBUG |
---|
1011 | #define DEBUG_PUSH PUSH_FAILURE_ITEM |
---|
1012 | #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM () |
---|
1013 | #else |
---|
1014 | #define DEBUG_PUSH(item) |
---|
1015 | #define DEBUG_POP(item_addr) |
---|
1016 | #endif |
---|
1017 | |
---|
1018 | |
---|
1019 | /* Push the information about the state we will need |
---|
1020 | if we ever fail back to it. |
---|
1021 | |
---|
1022 | Requires variables fail_stack, regstart, regend, reg_info, and |
---|
1023 | num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be |
---|
1024 | declared. |
---|
1025 | |
---|
1026 | Does `return FAILURE_CODE' if runs out of memory. */ |
---|
1027 | |
---|
1028 | #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \ |
---|
1029 | do { \ |
---|
1030 | char *destination; \ |
---|
1031 | /* Must be int, so when we don't save any registers, the arithmetic \ |
---|
1032 | of 0 + -1 isn't done as unsigned. */ \ |
---|
1033 | int this_reg; \ |
---|
1034 | \ |
---|
1035 | DEBUG_STATEMENT (failure_id++); \ |
---|
1036 | DEBUG_STATEMENT (nfailure_points_pushed++); \ |
---|
1037 | DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ |
---|
1038 | DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ |
---|
1039 | DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ |
---|
1040 | \ |
---|
1041 | DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ |
---|
1042 | DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ |
---|
1043 | \ |
---|
1044 | /* Ensure we have enough space allocated for what we will push. */ \ |
---|
1045 | while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ |
---|
1046 | { \ |
---|
1047 | if (!DOUBLE_FAIL_STACK (fail_stack)) \ |
---|
1048 | return failure_code; \ |
---|
1049 | \ |
---|
1050 | DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ |
---|
1051 | (fail_stack).size); \ |
---|
1052 | DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ |
---|
1053 | } \ |
---|
1054 | \ |
---|
1055 | /* Push the info, starting with the registers. */ \ |
---|
1056 | DEBUG_PRINT1 ("\n"); \ |
---|
1057 | \ |
---|
1058 | for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ |
---|
1059 | this_reg++) \ |
---|
1060 | { \ |
---|
1061 | DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \ |
---|
1062 | DEBUG_STATEMENT (num_regs_pushed++); \ |
---|
1063 | \ |
---|
1064 | DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ |
---|
1065 | PUSH_FAILURE_ITEM (regstart[this_reg]); \ |
---|
1066 | \ |
---|
1067 | DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ |
---|
1068 | PUSH_FAILURE_ITEM (regend[this_reg]); \ |
---|
1069 | \ |
---|
1070 | DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \ |
---|
1071 | DEBUG_PRINT2 (" match_null=%d", \ |
---|
1072 | REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ |
---|
1073 | DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ |
---|
1074 | DEBUG_PRINT2 (" matched_something=%d", \ |
---|
1075 | MATCHED_SOMETHING (reg_info[this_reg])); \ |
---|
1076 | DEBUG_PRINT2 (" ever_matched=%d", \ |
---|
1077 | EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ |
---|
1078 | DEBUG_PRINT1 ("\n"); \ |
---|
1079 | PUSH_FAILURE_ITEM (reg_info[this_reg].word); \ |
---|
1080 | } \ |
---|
1081 | \ |
---|
1082 | DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\ |
---|
1083 | PUSH_FAILURE_ITEM (lowest_active_reg); \ |
---|
1084 | \ |
---|
1085 | DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\ |
---|
1086 | PUSH_FAILURE_ITEM (highest_active_reg); \ |
---|
1087 | \ |
---|
1088 | DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \ |
---|
1089 | DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ |
---|
1090 | PUSH_FAILURE_ITEM (pattern_place); \ |
---|
1091 | \ |
---|
1092 | DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \ |
---|
1093 | DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ |
---|
1094 | size2); \ |
---|
1095 | DEBUG_PRINT1 ("'\n"); \ |
---|
1096 | PUSH_FAILURE_ITEM (string_place); \ |
---|
1097 | \ |
---|
1098 | DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ |
---|
1099 | DEBUG_PUSH (failure_id); \ |
---|
1100 | } while (0) |
---|
1101 | |
---|
1102 | /* This is the number of items that are pushed and popped on the stack |
---|
1103 | for each register. */ |
---|
1104 | #define NUM_REG_ITEMS 3 |
---|
1105 | |
---|
1106 | /* Individual items aside from the registers. */ |
---|
1107 | #ifdef DEBUG |
---|
1108 | #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */ |
---|
1109 | #else |
---|
1110 | #define NUM_NONREG_ITEMS 4 |
---|
1111 | #endif |
---|
1112 | |
---|
1113 | /* We push at most this many items on the stack. */ |
---|
1114 | #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS) |
---|
1115 | |
---|
1116 | /* We actually push this many items. */ |
---|
1117 | #define NUM_FAILURE_ITEMS \ |
---|
1118 | ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \ |
---|
1119 | + NUM_NONREG_ITEMS) |
---|
1120 | |
---|
1121 | /* How many items can still be added to the stack without overflowing it. */ |
---|
1122 | #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) |
---|
1123 | |
---|
1124 | |
---|
1125 | /* Pops what PUSH_FAIL_STACK pushes. |
---|
1126 | |
---|
1127 | We restore into the parameters, all of which should be lvalues: |
---|
1128 | STR -- the saved data position. |
---|
1129 | PAT -- the saved pattern position. |
---|
1130 | LOW_REG, HIGH_REG -- the highest and lowest active registers. |
---|
1131 | REGSTART, REGEND -- arrays of string positions. |
---|
1132 | REG_INFO -- array of information about each subexpression. |
---|
1133 | |
---|
1134 | Also assumes the variables `fail_stack' and (if debugging), `bufp', |
---|
1135 | `pend', `string1', `size1', `string2', and `size2'. */ |
---|
1136 | |
---|
1137 | #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ |
---|
1138 | { \ |
---|
1139 | DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \ |
---|
1140 | int this_reg; \ |
---|
1141 | const unsigned char *string_temp; \ |
---|
1142 | \ |
---|
1143 | assert (!FAIL_STACK_EMPTY ()); \ |
---|
1144 | \ |
---|
1145 | /* Remove failure points and point to how many regs pushed. */ \ |
---|
1146 | DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ |
---|
1147 | DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ |
---|
1148 | DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ |
---|
1149 | \ |
---|
1150 | assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ |
---|
1151 | \ |
---|
1152 | DEBUG_POP (&failure_id); \ |
---|
1153 | DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ |
---|
1154 | \ |
---|
1155 | /* If the saved string location is NULL, it came from an \ |
---|
1156 | on_failure_keep_string_jump opcode, and we want to throw away the \ |
---|
1157 | saved NULL, thus retaining our current position in the string. */ \ |
---|
1158 | string_temp = POP_FAILURE_ITEM (); \ |
---|
1159 | if (string_temp != NULL) \ |
---|
1160 | str = (const char *) string_temp; \ |
---|
1161 | \ |
---|
1162 | DEBUG_PRINT2 (" Popping string 0x%x: `", str); \ |
---|
1163 | DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ |
---|
1164 | DEBUG_PRINT1 ("'\n"); \ |
---|
1165 | \ |
---|
1166 | pat = (unsigned char *) POP_FAILURE_ITEM (); \ |
---|
1167 | DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \ |
---|
1168 | DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ |
---|
1169 | \ |
---|
1170 | /* Restore register info. */ \ |
---|
1171 | high_reg = (unsigned) POP_FAILURE_ITEM (); \ |
---|
1172 | DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \ |
---|
1173 | \ |
---|
1174 | low_reg = (unsigned) POP_FAILURE_ITEM (); \ |
---|
1175 | DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \ |
---|
1176 | \ |
---|
1177 | for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ |
---|
1178 | { \ |
---|
1179 | DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \ |
---|
1180 | \ |
---|
1181 | reg_info[this_reg].word = POP_FAILURE_ITEM (); \ |
---|
1182 | DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \ |
---|
1183 | \ |
---|
1184 | regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \ |
---|
1185 | DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ |
---|
1186 | \ |
---|
1187 | regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \ |
---|
1188 | DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ |
---|
1189 | } \ |
---|
1190 | \ |
---|
1191 | DEBUG_STATEMENT (nfailure_points_popped++); \ |
---|
1192 | } /* POP_FAILURE_POINT */ |
---|
1193 | |
---|
1194 | |
---|
1195 | |
---|
1196 | /* Structure for per-register (a.k.a. per-group) information. |
---|
1197 | This must not be longer than one word, because we push this value |
---|
1198 | onto the failure stack. Other register information, such as the |
---|
1199 | starting and ending positions (which are addresses), and the list of |
---|
1200 | inner groups (which is a bits list) are maintained in separate |
---|
1201 | variables. |
---|
1202 | |
---|
1203 | We are making a (strictly speaking) nonportable assumption here: that |
---|
1204 | the compiler will pack our bit fields into something that fits into |
---|
1205 | the type of `word', i.e., is something that fits into one item on the |
---|
1206 | failure stack. */ |
---|
1207 | typedef union |
---|
1208 | { |
---|
1209 | fail_stack_elt_t word; |
---|
1210 | struct |
---|
1211 | { |
---|
1212 | /* This field is one if this group can match the empty string, |
---|
1213 | zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ |
---|
1214 | #define MATCH_NULL_UNSET_VALUE 3 |
---|
1215 | unsigned match_null_string_p : 2; |
---|
1216 | unsigned is_active : 1; |
---|
1217 | unsigned matched_something : 1; |
---|
1218 | unsigned ever_matched_something : 1; |
---|
1219 | } bits; |
---|
1220 | } register_info_type; |
---|
1221 | |
---|
1222 | #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p) |
---|
1223 | #define IS_ACTIVE(R) ((R).bits.is_active) |
---|
1224 | #define MATCHED_SOMETHING(R) ((R).bits.matched_something) |
---|
1225 | #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something) |
---|
1226 | |
---|
1227 | |
---|
1228 | /* Call this when have matched a real character; it sets `matched' flags |
---|
1229 | for the subexpressions which we are currently inside. Also records |
---|
1230 | that those subexprs have matched. */ |
---|
1231 | #define SET_REGS_MATCHED() \ |
---|
1232 | do \ |
---|
1233 | { \ |
---|
1234 | unsigned r; \ |
---|
1235 | for (r = lowest_active_reg; r <= highest_active_reg; r++) \ |
---|
1236 | { \ |
---|
1237 | MATCHED_SOMETHING (reg_info[r]) \ |
---|
1238 | = EVER_MATCHED_SOMETHING (reg_info[r]) \ |
---|
1239 | = 1; \ |
---|
1240 | } \ |
---|
1241 | } \ |
---|
1242 | while (0) |
---|
1243 | |
---|
1244 | |
---|
1245 | /* Registers are set to a sentinel when they haven't yet matched. */ |
---|
1246 | #define REG_UNSET_VALUE ((char *) -1) |
---|
1247 | #define REG_UNSET(e) ((e) == REG_UNSET_VALUE) |
---|
1248 | |
---|
1249 | |
---|
1250 | |
---|
1251 | /* How do we implement a missing MATCH_MAY_ALLOCATE? |
---|
1252 | We make the fail stack a global thing, and then grow it to |
---|
1253 | re_max_failures when we compile. */ |
---|
1254 | #ifndef MATCH_MAY_ALLOCATE |
---|
1255 | static fail_stack_type fail_stack; |
---|
1256 | |
---|
1257 | static const char ** regstart, ** regend; |
---|
1258 | static const char ** old_regstart, ** old_regend; |
---|
1259 | static const char **best_regstart, **best_regend; |
---|
1260 | static register_info_type *reg_info; |
---|
1261 | static const char **reg_dummy; |
---|
1262 | static register_info_type *reg_info_dummy; |
---|
1263 | #endif |
---|
1264 | |
---|
1265 | |
---|
1266 | /* Subroutine declarations and macros for regex_compile. */ |
---|
1267 | |
---|
1268 | static void store_op1 (), store_op2 (); |
---|
1269 | static void insert_op1 (), insert_op2 (); |
---|
1270 | static boolean at_begline_loc_p (), at_endline_loc_p (); |
---|
1271 | static boolean group_in_compile_stack (); |
---|
1272 | static reg_errcode_t compile_range (); |
---|
1273 | |
---|
1274 | /* Fetch the next character in the uncompiled pattern---translating it |
---|
1275 | if necessary. Also cast from a signed character in the constant |
---|
1276 | string passed to us by the user to an unsigned char that we can use |
---|
1277 | as an array index (in, e.g., `translate'). */ |
---|
1278 | #define PATFETCH(c) \ |
---|
1279 | do {if (p == pend) return REG_EEND; \ |
---|
1280 | c = (unsigned char) *p++; \ |
---|
1281 | if (translate) c = translate[c]; \ |
---|
1282 | } while (0) |
---|
1283 | |
---|
1284 | /* Fetch the next character in the uncompiled pattern, with no |
---|
1285 | translation. */ |
---|
1286 | #define PATFETCH_RAW(c) \ |
---|
1287 | do {if (p == pend) return REG_EEND; \ |
---|
1288 | c = (unsigned char) *p++; \ |
---|
1289 | } while (0) |
---|
1290 | |
---|
1291 | /* Go backwards one character in the pattern. */ |
---|
1292 | #define PATUNFETCH p-- |
---|
1293 | |
---|
1294 | |
---|
1295 | /* If `translate' is non-null, return translate[D], else just D. We |
---|
1296 | cast the subscript to translate because some data is declared as |
---|
1297 | `char *', to avoid warnings when a string constant is passed. But |
---|
1298 | when we use a character as a subscript we must make it unsigned. */ |
---|
1299 | #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d)) |
---|
1300 | |
---|
1301 | |
---|
1302 | /* Macros for outputting the compiled pattern into `buffer'. */ |
---|
1303 | |
---|
1304 | /* If the buffer isn't allocated when it comes in, use this. */ |
---|
1305 | #define INIT_BUF_SIZE 32 |
---|
1306 | |
---|
1307 | /* Make sure we have at least N more bytes of space in buffer. */ |
---|
1308 | #define GET_BUFFER_SPACE(n) \ |
---|
1309 | while (b - bufp->buffer + (n) > bufp->allocated) \ |
---|
1310 | EXTEND_BUFFER () |
---|
1311 | |
---|
1312 | /* Make sure we have one more byte of buffer space and then add C to it. */ |
---|
1313 | #define BUF_PUSH(c) \ |
---|
1314 | do { \ |
---|
1315 | GET_BUFFER_SPACE (1); \ |
---|
1316 | *b++ = (unsigned char) (c); \ |
---|
1317 | } while (0) |
---|
1318 | |
---|
1319 | |
---|
1320 | /* Ensure we have two more bytes of buffer space and then append C1 and C2. */ |
---|
1321 | #define BUF_PUSH_2(c1, c2) \ |
---|
1322 | do { \ |
---|
1323 | GET_BUFFER_SPACE (2); \ |
---|
1324 | *b++ = (unsigned char) (c1); \ |
---|
1325 | *b++ = (unsigned char) (c2); \ |
---|
1326 | } while (0) |
---|
1327 | |
---|
1328 | |
---|
1329 | /* As with BUF_PUSH_2, except for three bytes. */ |
---|
1330 | #define BUF_PUSH_3(c1, c2, c3) \ |
---|
1331 | do { \ |
---|
1332 | GET_BUFFER_SPACE (3); \ |
---|
1333 | *b++ = (unsigned char) (c1); \ |
---|
1334 | *b++ = (unsigned char) (c2); \ |
---|
1335 | *b++ = (unsigned char) (c3); \ |
---|
1336 | } while (0) |
---|
1337 | |
---|
1338 | |
---|
1339 | /* Store a jump with opcode OP at LOC to location TO. We store a |
---|
1340 | relative address offset by the three bytes the jump itself occupies. */ |
---|
1341 | #define STORE_JUMP(op, loc, to) \ |
---|
1342 | store_op1 (op, loc, (to) - (loc) - 3) |
---|
1343 | |
---|
1344 | /* Likewise, for a two-argument jump. */ |
---|
1345 | #define STORE_JUMP2(op, loc, to, arg) \ |
---|
1346 | store_op2 (op, loc, (to) - (loc) - 3, arg) |
---|
1347 | |
---|
1348 | /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ |
---|
1349 | #define INSERT_JUMP(op, loc, to) \ |
---|
1350 | insert_op1 (op, loc, (to) - (loc) - 3, b) |
---|
1351 | |
---|
1352 | /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ |
---|
1353 | #define INSERT_JUMP2(op, loc, to, arg) \ |
---|
1354 | insert_op2 (op, loc, (to) - (loc) - 3, arg, b) |
---|
1355 | |
---|
1356 | |
---|
1357 | /* This is not an arbitrary limit: the arguments which represent offsets |
---|
1358 | into the pattern are two bytes long. So if 2^16 bytes turns out to |
---|
1359 | be too small, many things would have to change. */ |
---|
1360 | #define MAX_BUF_SIZE (1L << 16) |
---|
1361 | |
---|
1362 | |
---|
1363 | /* Extend the buffer by twice its current size via realloc and |
---|
1364 | reset the pointers that pointed into the old block to point to the |
---|
1365 | correct places in the new one. If extending the buffer results in it |
---|
1366 | being larger than MAX_BUF_SIZE, then flag memory exhausted. */ |
---|
1367 | #define EXTEND_BUFFER() \ |
---|
1368 | do { \ |
---|
1369 | unsigned char *old_buffer = bufp->buffer; \ |
---|
1370 | if (bufp->allocated == MAX_BUF_SIZE) \ |
---|
1371 | return REG_ESIZE; \ |
---|
1372 | bufp->allocated <<= 1; \ |
---|
1373 | if (bufp->allocated > MAX_BUF_SIZE) \ |
---|
1374 | bufp->allocated = MAX_BUF_SIZE; \ |
---|
1375 | bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\ |
---|
1376 | if (bufp->buffer == NULL) \ |
---|
1377 | return REG_ESPACE; \ |
---|
1378 | /* If the buffer moved, move all the pointers into it. */ \ |
---|
1379 | if (old_buffer != bufp->buffer) \ |
---|
1380 | { \ |
---|
1381 | b = (b - old_buffer) + bufp->buffer; \ |
---|
1382 | begalt = (begalt - old_buffer) + bufp->buffer; \ |
---|
1383 | if (fixup_alt_jump) \ |
---|
1384 | fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ |
---|
1385 | if (laststart) \ |
---|
1386 | laststart = (laststart - old_buffer) + bufp->buffer; \ |
---|
1387 | if (pending_exact) \ |
---|
1388 | pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ |
---|
1389 | } \ |
---|
1390 | } while (0) |
---|
1391 | |
---|
1392 | |
---|
1393 | /* Since we have one byte reserved for the register number argument to |
---|
1394 | {start,stop}_memory, the maximum number of groups we can report |
---|
1395 | things about is what fits in that byte. */ |
---|
1396 | #define MAX_REGNUM 255 |
---|
1397 | |
---|
1398 | /* But patterns can have more than `MAX_REGNUM' registers. We just |
---|
1399 | ignore the excess. */ |
---|
1400 | typedef unsigned regnum_t; |
---|
1401 | |
---|
1402 | |
---|
1403 | /* Macros for the compile stack. */ |
---|
1404 | |
---|
1405 | /* Since offsets can go either forwards or backwards, this type needs to |
---|
1406 | be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ |
---|
1407 | typedef int pattern_offset_t; |
---|
1408 | |
---|
1409 | typedef struct |
---|
1410 | { |
---|
1411 | pattern_offset_t begalt_offset; |
---|
1412 | pattern_offset_t fixup_alt_jump; |
---|
1413 | pattern_offset_t inner_group_offset; |
---|
1414 | pattern_offset_t laststart_offset; |
---|
1415 | regnum_t regnum; |
---|
1416 | } compile_stack_elt_t; |
---|
1417 | |
---|
1418 | |
---|
1419 | typedef struct |
---|
1420 | { |
---|
1421 | compile_stack_elt_t *stack; |
---|
1422 | unsigned size; |
---|
1423 | unsigned avail; /* Offset of next open position. */ |
---|
1424 | } compile_stack_type; |
---|
1425 | |
---|
1426 | |
---|
1427 | #define INIT_COMPILE_STACK_SIZE 32 |
---|
1428 | |
---|
1429 | #define COMPILE_STACK_EMPTY (compile_stack.avail == 0) |
---|
1430 | #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) |
---|
1431 | |
---|
1432 | /* The next available element. */ |
---|
1433 | #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) |
---|
1434 | |
---|
1435 | |
---|
1436 | /* Set the bit for character C in a list. */ |
---|
1437 | #define SET_LIST_BIT(c) \ |
---|
1438 | (b[((unsigned char) (c)) / BYTEWIDTH] \ |
---|
1439 | |= 1 << (((unsigned char) c) % BYTEWIDTH)) |
---|
1440 | |
---|
1441 | |
---|
1442 | /* Get the next unsigned number in the uncompiled pattern. */ |
---|
1443 | #define GET_UNSIGNED_NUMBER(num) \ |
---|
1444 | { if (p != pend) \ |
---|
1445 | { \ |
---|
1446 | PATFETCH (c); \ |
---|
1447 | while (ISDIGIT (c)) \ |
---|
1448 | { \ |
---|
1449 | if (num < 0) \ |
---|
1450 | num = 0; \ |
---|
1451 | num = num * 10 + c - '0'; \ |
---|
1452 | if (p == pend) \ |
---|
1453 | break; \ |
---|
1454 | PATFETCH (c); \ |
---|
1455 | } \ |
---|
1456 | } \ |
---|
1457 | } |
---|
1458 | |
---|
1459 | #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ |
---|
1460 | |
---|
1461 | #define IS_CHAR_CLASS(string) \ |
---|
1462 | (STREQ (string, "alpha") || STREQ (string, "upper") \ |
---|
1463 | || STREQ (string, "lower") || STREQ (string, "digit") \ |
---|
1464 | || STREQ (string, "alnum") || STREQ (string, "xdigit") \ |
---|
1465 | || STREQ (string, "space") || STREQ (string, "print") \ |
---|
1466 | || STREQ (string, "punct") || STREQ (string, "graph") \ |
---|
1467 | || STREQ (string, "cntrl") || STREQ (string, "blank")) |
---|
1468 | |
---|
1469 | /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. |
---|
1470 | Returns one of error codes defined in `regex.h', or zero for success. |
---|
1471 | |
---|
1472 | Assumes the `allocated' (and perhaps `buffer') and `translate' |
---|
1473 | fields are set in BUFP on entry. |
---|
1474 | |
---|
1475 | If it succeeds, results are put in BUFP (if it returns an error, the |
---|
1476 | contents of BUFP are undefined): |
---|
1477 | `buffer' is the compiled pattern; |
---|
1478 | `syntax' is set to SYNTAX; |
---|
1479 | `used' is set to the length of the compiled pattern; |
---|
1480 | `fastmap_accurate' is zero; |
---|
1481 | `re_nsub' is the number of subexpressions in PATTERN; |
---|
1482 | `not_bol' and `not_eol' are zero; |
---|
1483 | |
---|
1484 | The `fastmap' and `newline_anchor' fields are neither |
---|
1485 | examined nor set. */ |
---|
1486 | |
---|
1487 | /* Return, freeing storage we allocated. */ |
---|
1488 | #define FREE_STACK_RETURN(value) \ |
---|
1489 | return (free (compile_stack.stack), value) |
---|
1490 | |
---|
1491 | static reg_errcode_t |
---|
1492 | regex_compile (pattern, size, syntax, bufp) |
---|
1493 | const char *pattern; |
---|
1494 | int size; |
---|
1495 | reg_syntax_t syntax; |
---|
1496 | struct re_pattern_buffer *bufp; |
---|
1497 | { |
---|
1498 | /* We fetch characters from PATTERN here. Even though PATTERN is |
---|
1499 | `char *' (i.e., signed), we declare these variables as unsigned, so |
---|
1500 | they can be reliably used as array indices. */ |
---|
1501 | register unsigned char c, c1; |
---|
1502 | |
---|
1503 | /* A random temporary spot in PATTERN. */ |
---|
1504 | const char *p1; |
---|
1505 | |
---|
1506 | /* Points to the end of the buffer, where we should append. */ |
---|
1507 | register unsigned char *b; |
---|
1508 | |
---|
1509 | /* Keeps track of unclosed groups. */ |
---|
1510 | compile_stack_type compile_stack; |
---|
1511 | |
---|
1512 | /* Points to the current (ending) position in the pattern. */ |
---|
1513 | const char *p = pattern; |
---|
1514 | const char *pend = pattern + size; |
---|
1515 | |
---|
1516 | /* How to translate the characters in the pattern. */ |
---|
1517 | char *translate = bufp->translate; |
---|
1518 | |
---|
1519 | /* Address of the count-byte of the most recently inserted `exactn' |
---|
1520 | command. This makes it possible to tell if a new exact-match |
---|
1521 | character can be added to that command or if the character requires |
---|
1522 | a new `exactn' command. */ |
---|
1523 | unsigned char *pending_exact = 0; |
---|
1524 | |
---|
1525 | /* Address of start of the most recently finished expression. |
---|
1526 | This tells, e.g., postfix * where to find the start of its |
---|
1527 | operand. Reset at the beginning of groups and alternatives. */ |
---|
1528 | unsigned char *laststart = 0; |
---|
1529 | |
---|
1530 | /* Address of beginning of regexp, or inside of last group. */ |
---|
1531 | unsigned char *begalt; |
---|
1532 | |
---|
1533 | /* Place in the uncompiled pattern (i.e., the {) to |
---|
1534 | which to go back if the interval is invalid. */ |
---|
1535 | const char *beg_interval; |
---|
1536 | |
---|
1537 | /* Address of the place where a forward jump should go to the end of |
---|
1538 | the containing expression. Each alternative of an `or' -- except the |
---|
1539 | last -- ends with a forward jump of this sort. */ |
---|
1540 | unsigned char *fixup_alt_jump = 0; |
---|
1541 | |
---|
1542 | /* Counts open-groups as they are encountered. Remembered for the |
---|
1543 | matching close-group on the compile stack, so the same register |
---|
1544 | number is put in the stop_memory as the start_memory. */ |
---|
1545 | regnum_t regnum = 0; |
---|
1546 | |
---|
1547 | #ifdef DEBUG |
---|
1548 | DEBUG_PRINT1 ("\nCompiling pattern: "); |
---|
1549 | if (debug) |
---|
1550 | { |
---|
1551 | unsigned debug_count; |
---|
1552 | |
---|
1553 | for (debug_count = 0; debug_count < size; debug_count++) |
---|
1554 | printchar (pattern[debug_count]); |
---|
1555 | putchar ('\n'); |
---|
1556 | } |
---|
1557 | #endif /* DEBUG */ |
---|
1558 | |
---|
1559 | /* Initialize the compile stack. */ |
---|
1560 | compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); |
---|
1561 | if (compile_stack.stack == NULL) |
---|
1562 | return REG_ESPACE; |
---|
1563 | |
---|
1564 | compile_stack.size = INIT_COMPILE_STACK_SIZE; |
---|
1565 | compile_stack.avail = 0; |
---|
1566 | |
---|
1567 | /* Initialize the pattern buffer. */ |
---|
1568 | bufp->syntax = syntax; |
---|
1569 | bufp->fastmap_accurate = 0; |
---|
1570 | bufp->not_bol = bufp->not_eol = 0; |
---|
1571 | |
---|
1572 | /* Set `used' to zero, so that if we return an error, the pattern |
---|
1573 | printer (for debugging) will think there's no pattern. We reset it |
---|
1574 | at the end. */ |
---|
1575 | bufp->used = 0; |
---|
1576 | |
---|
1577 | /* Always count groups, whether or not bufp->no_sub is set. */ |
---|
1578 | bufp->re_nsub = 0; |
---|
1579 | |
---|
1580 | #if !defined (emacs) && !defined (SYNTAX_TABLE) |
---|
1581 | /* Initialize the syntax table. */ |
---|
1582 | init_syntax_once (); |
---|
1583 | #endif |
---|
1584 | |
---|
1585 | if (bufp->allocated == 0) |
---|
1586 | { |
---|
1587 | if (bufp->buffer) |
---|
1588 | { /* If zero allocated, but buffer is non-null, try to realloc |
---|
1589 | enough space. This loses if buffer's address is bogus, but |
---|
1590 | that is the user's responsibility. */ |
---|
1591 | RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char); |
---|
1592 | } |
---|
1593 | else |
---|
1594 | { /* Caller did not allocate a buffer. Do it for them. */ |
---|
1595 | bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char); |
---|
1596 | } |
---|
1597 | if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE); |
---|
1598 | |
---|
1599 | bufp->allocated = INIT_BUF_SIZE; |
---|
1600 | } |
---|
1601 | |
---|
1602 | begalt = b = bufp->buffer; |
---|
1603 | |
---|
1604 | /* Loop through the uncompiled pattern until we're at the end. */ |
---|
1605 | while (p != pend) |
---|
1606 | { |
---|
1607 | PATFETCH (c); |
---|
1608 | |
---|
1609 | switch (c) |
---|
1610 | { |
---|
1611 | case '^': |
---|
1612 | { |
---|
1613 | if ( /* If at start of pattern, it's an operator. */ |
---|
1614 | p == pattern + 1 |
---|
1615 | /* If context independent, it's an operator. */ |
---|
1616 | || syntax & RE_CONTEXT_INDEP_ANCHORS |
---|
1617 | /* Otherwise, depends on what's come before. */ |
---|
1618 | || at_begline_loc_p (pattern, p, syntax)) |
---|
1619 | BUF_PUSH (begline); |
---|
1620 | else |
---|
1621 | goto normal_char; |
---|
1622 | } |
---|
1623 | break; |
---|
1624 | |
---|
1625 | |
---|
1626 | case '$': |
---|
1627 | { |
---|
1628 | if ( /* If at end of pattern, it's an operator. */ |
---|
1629 | p == pend |
---|
1630 | /* If context independent, it's an operator. */ |
---|
1631 | || syntax & RE_CONTEXT_INDEP_ANCHORS |
---|
1632 | /* Otherwise, depends on what's next. */ |
---|
1633 | || at_endline_loc_p (p, pend, syntax)) |
---|
1634 | BUF_PUSH (endline); |
---|
1635 | else |
---|
1636 | goto normal_char; |
---|
1637 | } |
---|
1638 | break; |
---|
1639 | |
---|
1640 | |
---|
1641 | case '+': |
---|
1642 | case '?': |
---|
1643 | if ((syntax & RE_BK_PLUS_QM) |
---|
1644 | || (syntax & RE_LIMITED_OPS)) |
---|
1645 | goto normal_char; |
---|
1646 | handle_plus: |
---|
1647 | case '*': |
---|
1648 | /* If there is no previous pattern... */ |
---|
1649 | if (!laststart) |
---|
1650 | { |
---|
1651 | if (syntax & RE_CONTEXT_INVALID_OPS) |
---|
1652 | FREE_STACK_RETURN (REG_BADRPT); |
---|
1653 | else if (!(syntax & RE_CONTEXT_INDEP_OPS)) |
---|
1654 | goto normal_char; |
---|
1655 | } |
---|
1656 | |
---|
1657 | { |
---|
1658 | /* Are we optimizing this jump? */ |
---|
1659 | boolean keep_string_p = false; |
---|
1660 | |
---|
1661 | /* 1 means zero (many) matches is allowed. */ |
---|
1662 | char zero_times_ok = 0, many_times_ok = 0; |
---|
1663 | |
---|
1664 | /* If there is a sequence of repetition chars, collapse it |
---|
1665 | down to just one (the right one). We can't combine |
---|
1666 | interval operators with these because of, e.g., `a{2}*', |
---|
1667 | which should only match an even number of `a's. */ |
---|
1668 | |
---|
1669 | for (;;) |
---|
1670 | { |
---|
1671 | zero_times_ok |= c != '+'; |
---|
1672 | many_times_ok |= c != '?'; |
---|
1673 | |
---|
1674 | if (p == pend) |
---|
1675 | break; |
---|
1676 | |
---|
1677 | PATFETCH (c); |
---|
1678 | |
---|
1679 | if (c == '*' |
---|
1680 | || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))) |
---|
1681 | ; |
---|
1682 | |
---|
1683 | else if (syntax & RE_BK_PLUS_QM && c == '\\') |
---|
1684 | { |
---|
1685 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); |
---|
1686 | |
---|
1687 | PATFETCH (c1); |
---|
1688 | if (!(c1 == '+' || c1 == '?')) |
---|
1689 | { |
---|
1690 | PATUNFETCH; |
---|
1691 | PATUNFETCH; |
---|
1692 | break; |
---|
1693 | } |
---|
1694 | |
---|
1695 | c = c1; |
---|
1696 | } |
---|
1697 | else |
---|
1698 | { |
---|
1699 | PATUNFETCH; |
---|
1700 | break; |
---|
1701 | } |
---|
1702 | |
---|
1703 | /* If we get here, we found another repeat character. */ |
---|
1704 | } |
---|
1705 | |
---|
1706 | /* Star, etc. applied to an empty pattern is equivalent |
---|
1707 | to an empty pattern. */ |
---|
1708 | if (!laststart) |
---|
1709 | break; |
---|
1710 | |
---|
1711 | /* Now we know whether or not zero matches is allowed |
---|
1712 | and also whether or not two or more matches is allowed. */ |
---|
1713 | if (many_times_ok) |
---|
1714 | { /* More than one repetition is allowed, so put in at the |
---|
1715 | end a backward relative jump from `b' to before the next |
---|
1716 | jump we're going to put in below (which jumps from |
---|
1717 | laststart to after this jump). |
---|
1718 | |
---|
1719 | But if we are at the `*' in the exact sequence `.*\n', |
---|
1720 | insert an unconditional jump backwards to the ., |
---|
1721 | instead of the beginning of the loop. This way we only |
---|
1722 | push a failure point once, instead of every time |
---|
1723 | through the loop. */ |
---|
1724 | assert (p - 1 > pattern); |
---|
1725 | |
---|
1726 | /* Allocate the space for the jump. */ |
---|
1727 | GET_BUFFER_SPACE (3); |
---|
1728 | |
---|
1729 | /* We know we are not at the first character of the pattern, |
---|
1730 | because laststart was nonzero. And we've already |
---|
1731 | incremented `p', by the way, to be the character after |
---|
1732 | the `*'. Do we have to do something analogous here |
---|
1733 | for null bytes, because of RE_DOT_NOT_NULL? */ |
---|
1734 | if (TRANSLATE (*(p - 2)) == TRANSLATE ('.') |
---|
1735 | && zero_times_ok |
---|
1736 | && p < pend && TRANSLATE (*p) == TRANSLATE ('\n') |
---|
1737 | && !(syntax & RE_DOT_NEWLINE)) |
---|
1738 | { /* We have .*\n. */ |
---|
1739 | STORE_JUMP (jump, b, laststart); |
---|
1740 | keep_string_p = true; |
---|
1741 | } |
---|
1742 | else |
---|
1743 | /* Anything else. */ |
---|
1744 | STORE_JUMP (maybe_pop_jump, b, laststart - 3); |
---|
1745 | |
---|
1746 | /* We've added more stuff to the buffer. */ |
---|
1747 | b += 3; |
---|
1748 | } |
---|
1749 | |
---|
1750 | /* On failure, jump from laststart to b + 3, which will be the |
---|
1751 | end of the buffer after this jump is inserted. */ |
---|
1752 | GET_BUFFER_SPACE (3); |
---|
1753 | INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump |
---|
1754 | : on_failure_jump, |
---|
1755 | laststart, b + 3); |
---|
1756 | pending_exact = 0; |
---|
1757 | b += 3; |
---|
1758 | |
---|
1759 | if (!zero_times_ok) |
---|
1760 | { |
---|
1761 | /* At least one repetition is required, so insert a |
---|
1762 | `dummy_failure_jump' before the initial |
---|
1763 | `on_failure_jump' instruction of the loop. This |
---|
1764 | effects a skip over that instruction the first time |
---|
1765 | we hit that loop. */ |
---|
1766 | GET_BUFFER_SPACE (3); |
---|
1767 | INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6); |
---|
1768 | b += 3; |
---|
1769 | } |
---|
1770 | } |
---|
1771 | break; |
---|
1772 | |
---|
1773 | |
---|
1774 | case '.': |
---|
1775 | laststart = b; |
---|
1776 | BUF_PUSH (anychar); |
---|
1777 | break; |
---|
1778 | |
---|
1779 | |
---|
1780 | case '[': |
---|
1781 | { |
---|
1782 | boolean had_char_class = false; |
---|
1783 | |
---|
1784 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
---|
1785 | |
---|
1786 | /* Ensure that we have enough space to push a charset: the |
---|
1787 | opcode, the length count, and the bitset; 34 bytes in all. */ |
---|
1788 | GET_BUFFER_SPACE (34); |
---|
1789 | |
---|
1790 | laststart = b; |
---|
1791 | |
---|
1792 | /* We test `*p == '^' twice, instead of using an if |
---|
1793 | statement, so we only need one BUF_PUSH. */ |
---|
1794 | BUF_PUSH (*p == '^' ? charset_not : charset); |
---|
1795 | if (*p == '^') |
---|
1796 | p++; |
---|
1797 | |
---|
1798 | /* Remember the first position in the bracket expression. */ |
---|
1799 | p1 = p; |
---|
1800 | |
---|
1801 | /* Push the number of bytes in the bitmap. */ |
---|
1802 | BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); |
---|
1803 | |
---|
1804 | /* Clear the whole map. */ |
---|
1805 | bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH); |
---|
1806 | |
---|
1807 | /* charset_not matches newline according to a syntax bit. */ |
---|
1808 | if ((re_opcode_t) b[-2] == charset_not |
---|
1809 | && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) |
---|
1810 | SET_LIST_BIT ('\n'); |
---|
1811 | |
---|
1812 | /* Read in characters and ranges, setting map bits. */ |
---|
1813 | for (;;) |
---|
1814 | { |
---|
1815 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
---|
1816 | |
---|
1817 | PATFETCH (c); |
---|
1818 | |
---|
1819 | /* \ might escape characters inside [...] and [^...]. */ |
---|
1820 | if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') |
---|
1821 | { |
---|
1822 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); |
---|
1823 | |
---|
1824 | PATFETCH (c1); |
---|
1825 | SET_LIST_BIT (c1); |
---|
1826 | continue; |
---|
1827 | } |
---|
1828 | |
---|
1829 | /* Could be the end of the bracket expression. If it's |
---|
1830 | not (i.e., when the bracket expression is `[]' so |
---|
1831 | far), the ']' character bit gets set way below. */ |
---|
1832 | if (c == ']' && p != p1 + 1) |
---|
1833 | break; |
---|
1834 | |
---|
1835 | /* Look ahead to see if it's a range when the last thing |
---|
1836 | was a character class. */ |
---|
1837 | if (had_char_class && c == '-' && *p != ']') |
---|
1838 | FREE_STACK_RETURN (REG_ERANGE); |
---|
1839 | |
---|
1840 | /* Look ahead to see if it's a range when the last thing |
---|
1841 | was a character: if this is a hyphen not at the |
---|
1842 | beginning or the end of a list, then it's the range |
---|
1843 | operator. */ |
---|
1844 | if (c == '-' |
---|
1845 | && !(p - 2 >= pattern && p[-2] == '[') |
---|
1846 | && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') |
---|
1847 | && *p != ']') |
---|
1848 | { |
---|
1849 | reg_errcode_t ret |
---|
1850 | = compile_range (&p, pend, translate, syntax, b); |
---|
1851 | if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); |
---|
1852 | } |
---|
1853 | |
---|
1854 | else if (p[0] == '-' && p[1] != ']') |
---|
1855 | { /* This handles ranges made up of characters only. */ |
---|
1856 | reg_errcode_t ret; |
---|
1857 | |
---|
1858 | /* Move past the `-'. */ |
---|
1859 | PATFETCH (c1); |
---|
1860 | |
---|
1861 | ret = compile_range (&p, pend, translate, syntax, b); |
---|
1862 | if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); |
---|
1863 | } |
---|
1864 | |
---|
1865 | /* See if we're at the beginning of a possible character |
---|
1866 | class. */ |
---|
1867 | |
---|
1868 | else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') |
---|
1869 | { /* Leave room for the null. */ |
---|
1870 | char str[CHAR_CLASS_MAX_LENGTH + 1]; |
---|
1871 | |
---|
1872 | PATFETCH (c); |
---|
1873 | c1 = 0; |
---|
1874 | |
---|
1875 | /* If pattern is `[[:'. */ |
---|
1876 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
---|
1877 | |
---|
1878 | for (;;) |
---|
1879 | { |
---|
1880 | PATFETCH (c); |
---|
1881 | if (c == ':' || c == ']' || p == pend |
---|
1882 | || c1 == CHAR_CLASS_MAX_LENGTH) |
---|
1883 | break; |
---|
1884 | str[c1++] = c; |
---|
1885 | } |
---|
1886 | str[c1] = '\0'; |
---|
1887 | |
---|
1888 | /* If isn't a word bracketed by `[:' and:`]': |
---|
1889 | undo the ending character, the letters, and leave |
---|
1890 | the leading `:' and `[' (but set bits for them). */ |
---|
1891 | if (c == ':' && *p == ']') |
---|
1892 | { |
---|
1893 | int ch; |
---|
1894 | boolean is_alnum = STREQ (str, "alnum"); |
---|
1895 | boolean is_alpha = STREQ (str, "alpha"); |
---|
1896 | boolean is_blank = STREQ (str, "blank"); |
---|
1897 | boolean is_cntrl = STREQ (str, "cntrl"); |
---|
1898 | boolean is_digit = STREQ (str, "digit"); |
---|
1899 | boolean is_graph = STREQ (str, "graph"); |
---|
1900 | boolean is_lower = STREQ (str, "lower"); |
---|
1901 | boolean is_print = STREQ (str, "print"); |
---|
1902 | boolean is_punct = STREQ (str, "punct"); |
---|
1903 | boolean is_space = STREQ (str, "space"); |
---|
1904 | boolean is_upper = STREQ (str, "upper"); |
---|
1905 | boolean is_xdigit = STREQ (str, "xdigit"); |
---|
1906 | |
---|
1907 | if (!IS_CHAR_CLASS (str)) |
---|
1908 | FREE_STACK_RETURN (REG_ECTYPE); |
---|
1909 | |
---|
1910 | /* Throw away the ] at the end of the character |
---|
1911 | class. */ |
---|
1912 | PATFETCH (c); |
---|
1913 | |
---|
1914 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
---|
1915 | |
---|
1916 | for (ch = 0; ch < 1 << BYTEWIDTH; ch++) |
---|
1917 | { |
---|
1918 | /* This was split into 3 if's to |
---|
1919 | avoid an arbitrary limit in some compiler. */ |
---|
1920 | if ( (is_alnum && ISALNUM (ch)) |
---|
1921 | || (is_alpha && ISALPHA (ch)) |
---|
1922 | || (is_blank && ISBLANK (ch)) |
---|
1923 | || (is_cntrl && ISCNTRL (ch))) |
---|
1924 | SET_LIST_BIT (ch); |
---|
1925 | if ( (is_digit && ISDIGIT (ch)) |
---|
1926 | || (is_graph && ISGRAPH (ch)) |
---|
1927 | || (is_lower && ISLOWER (ch)) |
---|
1928 | || (is_print && ISPRINT (ch))) |
---|
1929 | SET_LIST_BIT (ch); |
---|
1930 | if ( (is_punct && ISPUNCT (ch)) |
---|
1931 | || (is_space && ISSPACE (ch)) |
---|
1932 | || (is_upper && ISUPPER (ch)) |
---|
1933 | || (is_xdigit && ISXDIGIT (ch))) |
---|
1934 | SET_LIST_BIT (ch); |
---|
1935 | } |
---|
1936 | had_char_class = true; |
---|
1937 | } |
---|
1938 | else |
---|
1939 | { |
---|
1940 | c1++; |
---|
1941 | while (c1--) |
---|
1942 | PATUNFETCH; |
---|
1943 | SET_LIST_BIT ('['); |
---|
1944 | SET_LIST_BIT (':'); |
---|
1945 | had_char_class = false; |
---|
1946 | } |
---|
1947 | } |
---|
1948 | else |
---|
1949 | { |
---|
1950 | had_char_class = false; |
---|
1951 | SET_LIST_BIT (c); |
---|
1952 | } |
---|
1953 | } |
---|
1954 | |
---|
1955 | /* Discard any (non)matching list bytes that are all 0 at the |
---|
1956 | end of the map. Decrease the map-length byte too. */ |
---|
1957 | while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) |
---|
1958 | b[-1]--; |
---|
1959 | b += b[-1]; |
---|
1960 | } |
---|
1961 | break; |
---|
1962 | |
---|
1963 | |
---|
1964 | case '(': |
---|
1965 | if (syntax & RE_NO_BK_PARENS) |
---|
1966 | goto handle_open; |
---|
1967 | else |
---|
1968 | goto normal_char; |
---|
1969 | |
---|
1970 | |
---|
1971 | case ')': |
---|
1972 | if (syntax & RE_NO_BK_PARENS) |
---|
1973 | goto handle_close; |
---|
1974 | else |
---|
1975 | goto normal_char; |
---|
1976 | |
---|
1977 | |
---|
1978 | case '\n': |
---|
1979 | if (syntax & RE_NEWLINE_ALT) |
---|
1980 | goto handle_alt; |
---|
1981 | else |
---|
1982 | goto normal_char; |
---|
1983 | |
---|
1984 | |
---|
1985 | case '|': |
---|
1986 | if (syntax & RE_NO_BK_VBAR) |
---|
1987 | goto handle_alt; |
---|
1988 | else |
---|
1989 | goto normal_char; |
---|
1990 | |
---|
1991 | |
---|
1992 | case '{': |
---|
1993 | if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) |
---|
1994 | goto handle_interval; |
---|
1995 | else |
---|
1996 | goto normal_char; |
---|
1997 | |
---|
1998 | |
---|
1999 | case '\\': |
---|
2000 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); |
---|
2001 | |
---|
2002 | /* Do not translate the character after the \, so that we can |
---|
2003 | distinguish, e.g., \B from \b, even if we normally would |
---|
2004 | translate, e.g., B to b. */ |
---|
2005 | PATFETCH_RAW (c); |
---|
2006 | |
---|
2007 | switch (c) |
---|
2008 | { |
---|
2009 | case '(': |
---|
2010 | if (syntax & RE_NO_BK_PARENS) |
---|
2011 | goto normal_backslash; |
---|
2012 | |
---|
2013 | handle_open: |
---|
2014 | bufp->re_nsub++; |
---|
2015 | regnum++; |
---|
2016 | |
---|
2017 | if (COMPILE_STACK_FULL) |
---|
2018 | { |
---|
2019 | RETALLOC (compile_stack.stack, compile_stack.size << 1, |
---|
2020 | compile_stack_elt_t); |
---|
2021 | if (compile_stack.stack == NULL) return REG_ESPACE; |
---|
2022 | |
---|
2023 | compile_stack.size <<= 1; |
---|
2024 | } |
---|
2025 | |
---|
2026 | /* These are the values to restore when we hit end of this |
---|
2027 | group. They are all relative offsets, so that if the |
---|
2028 | whole pattern moves because of realloc, they will still |
---|
2029 | be valid. */ |
---|
2030 | COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; |
---|
2031 | COMPILE_STACK_TOP.fixup_alt_jump |
---|
2032 | = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; |
---|
2033 | COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer; |
---|
2034 | COMPILE_STACK_TOP.regnum = regnum; |
---|
2035 | |
---|
2036 | /* We will eventually replace the 0 with the number of |
---|
2037 | groups inner to this one. But do not push a |
---|
2038 | start_memory for groups beyond the last one we can |
---|
2039 | represent in the compiled pattern. */ |
---|
2040 | if (regnum <= MAX_REGNUM) |
---|
2041 | { |
---|
2042 | COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2; |
---|
2043 | BUF_PUSH_3 (start_memory, regnum, 0); |
---|
2044 | } |
---|
2045 | |
---|
2046 | compile_stack.avail++; |
---|
2047 | |
---|
2048 | fixup_alt_jump = 0; |
---|
2049 | laststart = 0; |
---|
2050 | begalt = b; |
---|
2051 | /* If we've reached MAX_REGNUM groups, then this open |
---|
2052 | won't actually generate any code, so we'll have to |
---|
2053 | clear pending_exact explicitly. */ |
---|
2054 | pending_exact = 0; |
---|
2055 | break; |
---|
2056 | |
---|
2057 | |
---|
2058 | case ')': |
---|
2059 | if (syntax & RE_NO_BK_PARENS) goto normal_backslash; |
---|
2060 | |
---|
2061 | if (COMPILE_STACK_EMPTY) |
---|
2062 | if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) |
---|
2063 | goto normal_backslash; |
---|
2064 | else |
---|
2065 | FREE_STACK_RETURN (REG_ERPAREN); |
---|
2066 | |
---|
2067 | handle_close: |
---|
2068 | if (fixup_alt_jump) |
---|
2069 | { /* Push a dummy failure point at the end of the |
---|
2070 | alternative for a possible future |
---|
2071 | `pop_failure_jump' to pop. See comments at |
---|
2072 | `push_dummy_failure' in `re_match_2'. */ |
---|
2073 | BUF_PUSH (push_dummy_failure); |
---|
2074 | |
---|
2075 | /* We allocated space for this jump when we assigned |
---|
2076 | to `fixup_alt_jump', in the `handle_alt' case below. */ |
---|
2077 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1); |
---|
2078 | } |
---|
2079 | |
---|
2080 | /* See similar code for backslashed left paren above. */ |
---|
2081 | if (COMPILE_STACK_EMPTY) |
---|
2082 | if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) |
---|
2083 | goto normal_char; |
---|
2084 | else |
---|
2085 | FREE_STACK_RETURN (REG_ERPAREN); |
---|
2086 | |
---|
2087 | /* Since we just checked for an empty stack above, this |
---|
2088 | ``can't happen''. */ |
---|
2089 | assert (compile_stack.avail != 0); |
---|
2090 | { |
---|
2091 | /* We don't just want to restore into `regnum', because |
---|
2092 | later groups should continue to be numbered higher, |
---|
2093 | as in `(ab)c(de)' -- the second group is #2. */ |
---|
2094 | regnum_t this_group_regnum; |
---|
2095 | |
---|
2096 | compile_stack.avail--; |
---|
2097 | begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; |
---|
2098 | fixup_alt_jump |
---|
2099 | = COMPILE_STACK_TOP.fixup_alt_jump |
---|
2100 | ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 |
---|
2101 | : 0; |
---|
2102 | laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; |
---|
2103 | this_group_regnum = COMPILE_STACK_TOP.regnum; |
---|
2104 | /* If we've reached MAX_REGNUM groups, then this open |
---|
2105 | won't actually generate any code, so we'll have to |
---|
2106 | clear pending_exact explicitly. */ |
---|
2107 | pending_exact = 0; |
---|
2108 | |
---|
2109 | /* We're at the end of the group, so now we know how many |
---|
2110 | groups were inside this one. */ |
---|
2111 | if (this_group_regnum <= MAX_REGNUM) |
---|
2112 | { |
---|
2113 | unsigned char *inner_group_loc |
---|
2114 | = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset; |
---|
2115 | |
---|
2116 | *inner_group_loc = regnum - this_group_regnum; |
---|
2117 | BUF_PUSH_3 (stop_memory, this_group_regnum, |
---|
2118 | regnum - this_group_regnum); |
---|
2119 | } |
---|
2120 | } |
---|
2121 | break; |
---|
2122 | |
---|
2123 | |
---|
2124 | case '|': /* `\|'. */ |
---|
2125 | if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) |
---|
2126 | goto normal_backslash; |
---|
2127 | handle_alt: |
---|
2128 | if (syntax & RE_LIMITED_OPS) |
---|
2129 | goto normal_char; |
---|
2130 | |
---|
2131 | /* Insert before the previous alternative a jump which |
---|
2132 | jumps to this alternative if the former fails. */ |
---|
2133 | GET_BUFFER_SPACE (3); |
---|
2134 | INSERT_JUMP (on_failure_jump, begalt, b + 6); |
---|
2135 | pending_exact = 0; |
---|
2136 | b += 3; |
---|
2137 | |
---|
2138 | /* The alternative before this one has a jump after it |
---|
2139 | which gets executed if it gets matched. Adjust that |
---|
2140 | jump so it will jump to this alternative's analogous |
---|
2141 | jump (put in below, which in turn will jump to the next |
---|
2142 | (if any) alternative's such jump, etc.). The last such |
---|
2143 | jump jumps to the correct final destination. A picture: |
---|
2144 | _____ _____ |
---|
2145 | | | | | |
---|
2146 | | v | v |
---|
2147 | a | b | c |
---|
2148 | |
---|
2149 | If we are at `b', then fixup_alt_jump right now points to a |
---|
2150 | three-byte space after `a'. We'll put in the jump, set |
---|
2151 | fixup_alt_jump to right after `b', and leave behind three |
---|
2152 | bytes which we'll fill in when we get to after `c'. */ |
---|
2153 | |
---|
2154 | if (fixup_alt_jump) |
---|
2155 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b); |
---|
2156 | |
---|
2157 | /* Mark and leave space for a jump after this alternative, |
---|
2158 | to be filled in later either by next alternative or |
---|
2159 | when know we're at the end of a series of alternatives. */ |
---|
2160 | fixup_alt_jump = b; |
---|
2161 | GET_BUFFER_SPACE (3); |
---|
2162 | b += 3; |
---|
2163 | |
---|
2164 | laststart = 0; |
---|
2165 | begalt = b; |
---|
2166 | break; |
---|
2167 | |
---|
2168 | |
---|
2169 | case '{': |
---|
2170 | /* If \{ is a literal. */ |
---|
2171 | if (!(syntax & RE_INTERVALS) |
---|
2172 | /* If we're at `\{' and it's not the open-interval |
---|
2173 | operator. */ |
---|
2174 | || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) |
---|
2175 | || (p - 2 == pattern && p == pend)) |
---|
2176 | goto normal_backslash; |
---|
2177 | |
---|
2178 | handle_interval: |
---|
2179 | { |
---|
2180 | /* If got here, then the syntax allows intervals. */ |
---|
2181 | |
---|
2182 | /* At least (most) this many matches must be made. */ |
---|
2183 | int lower_bound = -1, upper_bound = -1; |
---|
2184 | |
---|
2185 | beg_interval = p - 1; |
---|
2186 | |
---|
2187 | if (p == pend) |
---|
2188 | { |
---|
2189 | if (syntax & RE_NO_BK_BRACES) |
---|
2190 | goto unfetch_interval; |
---|
2191 | else |
---|
2192 | FREE_STACK_RETURN (REG_EBRACE); |
---|
2193 | } |
---|
2194 | |
---|
2195 | GET_UNSIGNED_NUMBER (lower_bound); |
---|
2196 | |
---|
2197 | if (c == ',') |
---|
2198 | { |
---|
2199 | GET_UNSIGNED_NUMBER (upper_bound); |
---|
2200 | if (upper_bound < 0) upper_bound = RE_DUP_MAX; |
---|
2201 | } |
---|
2202 | else |
---|
2203 | /* Interval such as `{1}' => match exactly once. */ |
---|
2204 | upper_bound = lower_bound; |
---|
2205 | |
---|
2206 | if (lower_bound < 0 || upper_bound > RE_DUP_MAX |
---|
2207 | || lower_bound > upper_bound) |
---|
2208 | { |
---|
2209 | if (syntax & RE_NO_BK_BRACES) |
---|
2210 | goto unfetch_interval; |
---|
2211 | else |
---|
2212 | FREE_STACK_RETURN (REG_BADBR); |
---|
2213 | } |
---|
2214 | |
---|
2215 | if (!(syntax & RE_NO_BK_BRACES)) |
---|
2216 | { |
---|
2217 | if (c != '\\') FREE_STACK_RETURN (REG_EBRACE); |
---|
2218 | |
---|
2219 | PATFETCH (c); |
---|
2220 | } |
---|
2221 | |
---|
2222 | if (c != '}') |
---|
2223 | { |
---|
2224 | if (syntax & RE_NO_BK_BRACES) |
---|
2225 | goto unfetch_interval; |
---|
2226 | else |
---|
2227 | FREE_STACK_RETURN (REG_BADBR); |
---|
2228 | } |
---|
2229 | |
---|
2230 | /* We just parsed a valid interval. */ |
---|
2231 | |
---|
2232 | /* If it's invalid to have no preceding re. */ |
---|
2233 | if (!laststart) |
---|
2234 | { |
---|
2235 | if (syntax & RE_CONTEXT_INVALID_OPS) |
---|
2236 | FREE_STACK_RETURN (REG_BADRPT); |
---|
2237 | else if (syntax & RE_CONTEXT_INDEP_OPS) |
---|
2238 | laststart = b; |
---|
2239 | else |
---|
2240 | goto unfetch_interval; |
---|
2241 | } |
---|
2242 | |
---|
2243 | /* If the upper bound is zero, don't want to succeed at |
---|
2244 | all; jump from `laststart' to `b + 3', which will be |
---|
2245 | the end of the buffer after we insert the jump. */ |
---|
2246 | if (upper_bound == 0) |
---|
2247 | { |
---|
2248 | GET_BUFFER_SPACE (3); |
---|
2249 | INSERT_JUMP (jump, laststart, b + 3); |
---|
2250 | b += 3; |
---|
2251 | } |
---|
2252 | |
---|
2253 | /* Otherwise, we have a nontrivial interval. When |
---|
2254 | we're all done, the pattern will look like: |
---|
2255 | set_number_at <jump count> <upper bound> |
---|
2256 | set_number_at <succeed_n count> <lower bound> |
---|
2257 | succeed_n <after jump addr> <succeed_n count> |
---|
2258 | <body of loop> |
---|
2259 | jump_n <succeed_n addr> <jump count> |
---|
2260 | (The upper bound and `jump_n' are omitted if |
---|
2261 | `upper_bound' is 1, though.) */ |
---|
2262 | else |
---|
2263 | { /* If the upper bound is > 1, we need to insert |
---|
2264 | more at the end of the loop. */ |
---|
2265 | unsigned nbytes = 10 + (upper_bound > 1) * 10; |
---|
2266 | |
---|
2267 | GET_BUFFER_SPACE (nbytes); |
---|
2268 | |
---|
2269 | /* Initialize lower bound of the `succeed_n', even |
---|
2270 | though it will be set during matching by its |
---|
2271 | attendant `set_number_at' (inserted next), |
---|
2272 | because `re_compile_fastmap' needs to know. |
---|
2273 | Jump to the `jump_n' we might insert below. */ |
---|
2274 | INSERT_JUMP2 (succeed_n, laststart, |
---|
2275 | b + 5 + (upper_bound > 1) * 5, |
---|
2276 | lower_bound); |
---|
2277 | b += 5; |
---|
2278 | |
---|
2279 | /* Code to initialize the lower bound. Insert |
---|
2280 | before the `succeed_n'. The `5' is the last two |
---|
2281 | bytes of this `set_number_at', plus 3 bytes of |
---|
2282 | the following `succeed_n'. */ |
---|
2283 | insert_op2 (set_number_at, laststart, 5, lower_bound, b); |
---|
2284 | b += 5; |
---|
2285 | |
---|
2286 | if (upper_bound > 1) |
---|
2287 | { /* More than one repetition is allowed, so |
---|
2288 | append a backward jump to the `succeed_n' |
---|
2289 | that starts this interval. |
---|
2290 | |
---|
2291 | When we've reached this during matching, |
---|
2292 | we'll have matched the interval once, so |
---|
2293 | jump back only `upper_bound - 1' times. */ |
---|
2294 | STORE_JUMP2 (jump_n, b, laststart + 5, |
---|
2295 | upper_bound - 1); |
---|
2296 | b += 5; |
---|
2297 | |
---|
2298 | /* The location we want to set is the second |
---|
2299 | parameter of the `jump_n'; that is `b-2' as |
---|
2300 | an absolute address. `laststart' will be |
---|
2301 | the `set_number_at' we're about to insert; |
---|
2302 | `laststart+3' the number to set, the source |
---|
2303 | for the relative address. But we are |
---|
2304 | inserting into the middle of the pattern -- |
---|
2305 | so everything is getting moved up by 5. |
---|
2306 | Conclusion: (b - 2) - (laststart + 3) + 5, |
---|
2307 | i.e., b - laststart. |
---|
2308 | |
---|
2309 | We insert this at the beginning of the loop |
---|
2310 | so that if we fail during matching, we'll |
---|
2311 | reinitialize the bounds. */ |
---|
2312 | insert_op2 (set_number_at, laststart, b - laststart, |
---|
2313 | upper_bound - 1, b); |
---|
2314 | b += 5; |
---|
2315 | } |
---|
2316 | } |
---|
2317 | pending_exact = 0; |
---|
2318 | beg_interval = NULL; |
---|
2319 | } |
---|
2320 | break; |
---|
2321 | |
---|
2322 | unfetch_interval: |
---|
2323 | /* If an invalid interval, match the characters as literals. */ |
---|
2324 | assert (beg_interval); |
---|
2325 | p = beg_interval; |
---|
2326 | beg_interval = NULL; |
---|
2327 | |
---|
2328 | /* normal_char and normal_backslash need `c'. */ |
---|
2329 | PATFETCH (c); |
---|
2330 | |
---|
2331 | if (!(syntax & RE_NO_BK_BRACES)) |
---|
2332 | { |
---|
2333 | if (p > pattern && p[-1] == '\\') |
---|
2334 | goto normal_backslash; |
---|
2335 | } |
---|
2336 | goto normal_char; |
---|
2337 | |
---|
2338 | #ifdef emacs |
---|
2339 | /* There is no way to specify the before_dot and after_dot |
---|
2340 | operators. rms says this is ok. --karl */ |
---|
2341 | case '=': |
---|
2342 | BUF_PUSH (at_dot); |
---|
2343 | break; |
---|
2344 | |
---|
2345 | case 's': |
---|
2346 | laststart = b; |
---|
2347 | PATFETCH (c); |
---|
2348 | BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); |
---|
2349 | break; |
---|
2350 | |
---|
2351 | case 'S': |
---|
2352 | laststart = b; |
---|
2353 | PATFETCH (c); |
---|
2354 | BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); |
---|
2355 | break; |
---|
2356 | #endif /* emacs */ |
---|
2357 | |
---|
2358 | |
---|
2359 | case 'w': |
---|
2360 | laststart = b; |
---|
2361 | BUF_PUSH (wordchar); |
---|
2362 | break; |
---|
2363 | |
---|
2364 | |
---|
2365 | case 'W': |
---|
2366 | laststart = b; |
---|
2367 | BUF_PUSH (notwordchar); |
---|
2368 | break; |
---|
2369 | |
---|
2370 | |
---|
2371 | case '<': |
---|
2372 | BUF_PUSH (wordbeg); |
---|
2373 | break; |
---|
2374 | |
---|
2375 | case '>': |
---|
2376 | BUF_PUSH (wordend); |
---|
2377 | break; |
---|
2378 | |
---|
2379 | case 'b': |
---|
2380 | BUF_PUSH (wordbound); |
---|
2381 | break; |
---|
2382 | |
---|
2383 | case 'B': |
---|
2384 | BUF_PUSH (notwordbound); |
---|
2385 | break; |
---|
2386 | |
---|
2387 | case '`': |
---|
2388 | BUF_PUSH (begbuf); |
---|
2389 | break; |
---|
2390 | |
---|
2391 | case '\'': |
---|
2392 | BUF_PUSH (endbuf); |
---|
2393 | break; |
---|
2394 | |
---|
2395 | case '1': case '2': case '3': case '4': case '5': |
---|
2396 | case '6': case '7': case '8': case '9': |
---|
2397 | if (syntax & RE_NO_BK_REFS) |
---|
2398 | goto normal_char; |
---|
2399 | |
---|
2400 | c1 = c - '0'; |
---|
2401 | |
---|
2402 | if (c1 > regnum) |
---|
2403 | FREE_STACK_RETURN (REG_ESUBREG); |
---|
2404 | |
---|
2405 | /* Can't back reference to a subexpression if inside of it. */ |
---|
2406 | if (group_in_compile_stack (compile_stack, c1)) |
---|
2407 | goto normal_char; |
---|
2408 | |
---|
2409 | laststart = b; |
---|
2410 | BUF_PUSH_2 (duplicate, c1); |
---|
2411 | break; |
---|
2412 | |
---|
2413 | |
---|
2414 | case '+': |
---|
2415 | case '?': |
---|
2416 | if (syntax & RE_BK_PLUS_QM) |
---|
2417 | goto handle_plus; |
---|
2418 | else |
---|
2419 | goto normal_backslash; |
---|
2420 | |
---|
2421 | default: |
---|
2422 | normal_backslash: |
---|
2423 | /* You might think it would be useful for \ to mean |
---|
2424 | not to translate; but if we don't translate it |
---|
2425 | it will never match anything. */ |
---|
2426 | c = TRANSLATE (c); |
---|
2427 | goto normal_char; |
---|
2428 | } |
---|
2429 | break; |
---|
2430 | |
---|
2431 | |
---|
2432 | default: |
---|
2433 | /* Expects the character in `c'. */ |
---|
2434 | normal_char: |
---|
2435 | /* If no exactn currently being built. */ |
---|
2436 | if (!pending_exact |
---|
2437 | |
---|
2438 | /* If last exactn not at current position. */ |
---|
2439 | || pending_exact + *pending_exact + 1 != b |
---|
2440 | |
---|
2441 | /* We have only one byte following the exactn for the count. */ |
---|
2442 | || *pending_exact == (1 << BYTEWIDTH) - 1 |
---|
2443 | |
---|
2444 | /* If followed by a repetition operator. */ |
---|
2445 | || *p == '*' || *p == '^' |
---|
2446 | || ((syntax & RE_BK_PLUS_QM) |
---|
2447 | ? *p == '\\' && (p[1] == '+' || p[1] == '?') |
---|
2448 | : (*p == '+' || *p == '?')) |
---|
2449 | || ((syntax & RE_INTERVALS) |
---|
2450 | && ((syntax & RE_NO_BK_BRACES) |
---|
2451 | ? *p == '{' |
---|
2452 | : (p[0] == '\\' && p[1] == '{')))) |
---|
2453 | { |
---|
2454 | /* Start building a new exactn. */ |
---|
2455 | |
---|
2456 | laststart = b; |
---|
2457 | |
---|
2458 | BUF_PUSH_2 (exactn, 0); |
---|
2459 | pending_exact = b - 1; |
---|
2460 | } |
---|
2461 | |
---|
2462 | BUF_PUSH (c); |
---|
2463 | (*pending_exact)++; |
---|
2464 | break; |
---|
2465 | } /* switch (c) */ |
---|
2466 | } /* while p != pend */ |
---|
2467 | |
---|
2468 | |
---|
2469 | /* Through the pattern now. */ |
---|
2470 | |
---|
2471 | if (fixup_alt_jump) |
---|
2472 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b); |
---|
2473 | |
---|
2474 | if (!COMPILE_STACK_EMPTY) |
---|
2475 | FREE_STACK_RETURN (REG_EPAREN); |
---|
2476 | |
---|
2477 | free (compile_stack.stack); |
---|
2478 | |
---|
2479 | /* We have succeeded; set the length of the buffer. */ |
---|
2480 | bufp->used = b - bufp->buffer; |
---|
2481 | |
---|
2482 | #ifdef DEBUG |
---|
2483 | if (debug) |
---|
2484 | { |
---|
2485 | DEBUG_PRINT1 ("\nCompiled pattern: \n"); |
---|
2486 | print_compiled_pattern (bufp); |
---|
2487 | } |
---|
2488 | #endif /* DEBUG */ |
---|
2489 | |
---|
2490 | #ifndef MATCH_MAY_ALLOCATE |
---|
2491 | /* Initialize the failure stack to the largest possible stack. This |
---|
2492 | isn't necessary unless we're trying to avoid calling alloca in |
---|
2493 | the search and match routines. */ |
---|
2494 | { |
---|
2495 | int num_regs = bufp->re_nsub + 1; |
---|
2496 | |
---|
2497 | /* Since DOUBLE_FAIL_STACK refuses to double only if the current size |
---|
2498 | is strictly greater than re_max_failures, the largest possible stack |
---|
2499 | is 2 * re_max_failures failure points. */ |
---|
2500 | if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS)) |
---|
2501 | { |
---|
2502 | fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS); |
---|
2503 | |
---|
2504 | #ifdef emacs |
---|
2505 | if (! fail_stack.stack) |
---|
2506 | fail_stack.stack |
---|
2507 | = (fail_stack_elt_t *) xmalloc (fail_stack.size |
---|
2508 | * sizeof (fail_stack_elt_t)); |
---|
2509 | else |
---|
2510 | fail_stack.stack |
---|
2511 | = (fail_stack_elt_t *) xrealloc (fail_stack.stack, |
---|
2512 | (fail_stack.size |
---|
2513 | * sizeof (fail_stack_elt_t))); |
---|
2514 | #else /* not emacs */ |
---|
2515 | if (! fail_stack.stack) |
---|
2516 | fail_stack.stack |
---|
2517 | = (fail_stack_elt_t *) malloc (fail_stack.size |
---|
2518 | * sizeof (fail_stack_elt_t)); |
---|
2519 | else |
---|
2520 | fail_stack.stack |
---|
2521 | = (fail_stack_elt_t *) realloc (fail_stack.stack, |
---|
2522 | (fail_stack.size |
---|
2523 | * sizeof (fail_stack_elt_t))); |
---|
2524 | #endif /* not emacs */ |
---|
2525 | } |
---|
2526 | |
---|
2527 | /* Initialize some other variables the matcher uses. */ |
---|
2528 | RETALLOC_IF (regstart, num_regs, const char *); |
---|
2529 | RETALLOC_IF (regend, num_regs, const char *); |
---|
2530 | RETALLOC_IF (old_regstart, num_regs, const char *); |
---|
2531 | RETALLOC_IF (old_regend, num_regs, const char *); |
---|
2532 | RETALLOC_IF (best_regstart, num_regs, const char *); |
---|
2533 | RETALLOC_IF (best_regend, num_regs, const char *); |
---|
2534 | RETALLOC_IF (reg_info, num_regs, register_info_type); |
---|
2535 | RETALLOC_IF (reg_dummy, num_regs, const char *); |
---|
2536 | RETALLOC_IF (reg_info_dummy, num_regs, register_info_type); |
---|
2537 | } |
---|
2538 | #endif |
---|
2539 | |
---|
2540 | return REG_NOERROR; |
---|
2541 | } /* regex_compile */ |
---|
2542 | |
---|
2543 | /* Subroutines for `regex_compile'. */ |
---|
2544 | |
---|
2545 | /* Store OP at LOC followed by two-byte integer parameter ARG. */ |
---|
2546 | |
---|
2547 | static void |
---|
2548 | store_op1 (op, loc, arg) |
---|
2549 | re_opcode_t op; |
---|
2550 | unsigned char *loc; |
---|
2551 | int arg; |
---|
2552 | { |
---|
2553 | *loc = (unsigned char) op; |
---|
2554 | STORE_NUMBER (loc + 1, arg); |
---|
2555 | } |
---|
2556 | |
---|
2557 | |
---|
2558 | /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ |
---|
2559 | |
---|
2560 | static void |
---|
2561 | store_op2 (op, loc, arg1, arg2) |
---|
2562 | re_opcode_t op; |
---|
2563 | unsigned char *loc; |
---|
2564 | int arg1, arg2; |
---|
2565 | { |
---|
2566 | *loc = (unsigned char) op; |
---|
2567 | STORE_NUMBER (loc + 1, arg1); |
---|
2568 | STORE_NUMBER (loc + 3, arg2); |
---|
2569 | } |
---|
2570 | |
---|
2571 | |
---|
2572 | /* Copy the bytes from LOC to END to open up three bytes of space at LOC |
---|
2573 | for OP followed by two-byte integer parameter ARG. */ |
---|
2574 | |
---|
2575 | static void |
---|
2576 | insert_op1 (op, loc, arg, end) |
---|
2577 | re_opcode_t op; |
---|
2578 | unsigned char *loc; |
---|
2579 | int arg; |
---|
2580 | unsigned char *end; |
---|
2581 | { |
---|
2582 | register unsigned char *pfrom = end; |
---|
2583 | register unsigned char *pto = end + 3; |
---|
2584 | |
---|
2585 | while (pfrom != loc) |
---|
2586 | *--pto = *--pfrom; |
---|
2587 | |
---|
2588 | store_op1 (op, loc, arg); |
---|
2589 | } |
---|
2590 | |
---|
2591 | |
---|
2592 | /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ |
---|
2593 | |
---|
2594 | static void |
---|
2595 | insert_op2 (op, loc, arg1, arg2, end) |
---|
2596 | re_opcode_t op; |
---|
2597 | unsigned char *loc; |
---|
2598 | int arg1, arg2; |
---|
2599 | unsigned char *end; |
---|
2600 | { |
---|
2601 | register unsigned char *pfrom = end; |
---|
2602 | register unsigned char *pto = end + 5; |
---|
2603 | |
---|
2604 | while (pfrom != loc) |
---|
2605 | *--pto = *--pfrom; |
---|
2606 | |
---|
2607 | store_op2 (op, loc, arg1, arg2); |
---|
2608 | } |
---|
2609 | |
---|
2610 | |
---|
2611 | /* P points to just after a ^ in PATTERN. Return true if that ^ comes |
---|
2612 | after an alternative or a begin-subexpression. We assume there is at |
---|
2613 | least one character before the ^. */ |
---|
2614 | |
---|
2615 | static boolean |
---|
2616 | at_begline_loc_p (pattern, p, syntax) |
---|
2617 | const char *pattern, *p; |
---|
2618 | reg_syntax_t syntax; |
---|
2619 | { |
---|
2620 | const char *prev = p - 2; |
---|
2621 | boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; |
---|
2622 | |
---|
2623 | return |
---|
2624 | /* After a subexpression? */ |
---|
2625 | (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) |
---|
2626 | /* After an alternative? */ |
---|
2627 | || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); |
---|
2628 | } |
---|
2629 | |
---|
2630 | |
---|
2631 | /* The dual of at_begline_loc_p. This one is for $. We assume there is |
---|
2632 | at least one character after the $, i.e., `P < PEND'. */ |
---|
2633 | |
---|
2634 | static boolean |
---|
2635 | at_endline_loc_p (p, pend, syntax) |
---|
2636 | const char *p, *pend; |
---|
2637 | int syntax; |
---|
2638 | { |
---|
2639 | const char *next = p; |
---|
2640 | boolean next_backslash = *next == '\\'; |
---|
2641 | const char *next_next = p + 1 < pend ? p + 1 : NULL; |
---|
2642 | |
---|
2643 | return |
---|
2644 | /* Before a subexpression? */ |
---|
2645 | (syntax & RE_NO_BK_PARENS ? *next == ')' |
---|
2646 | : next_backslash && next_next && *next_next == ')') |
---|
2647 | /* Before an alternative? */ |
---|
2648 | || (syntax & RE_NO_BK_VBAR ? *next == '|' |
---|
2649 | : next_backslash && next_next && *next_next == '|'); |
---|
2650 | } |
---|
2651 | |
---|
2652 | |
---|
2653 | /* Returns true if REGNUM is in one of COMPILE_STACK's elements and |
---|
2654 | false if it's not. */ |
---|
2655 | |
---|
2656 | static boolean |
---|
2657 | group_in_compile_stack (compile_stack, regnum) |
---|
2658 | compile_stack_type compile_stack; |
---|
2659 | regnum_t regnum; |
---|
2660 | { |
---|
2661 | int this_element; |
---|
2662 | |
---|
2663 | for (this_element = compile_stack.avail - 1; |
---|
2664 | this_element >= 0; |
---|
2665 | this_element--) |
---|
2666 | if (compile_stack.stack[this_element].regnum == regnum) |
---|
2667 | return true; |
---|
2668 | |
---|
2669 | return false; |
---|
2670 | } |
---|
2671 | |
---|
2672 | |
---|
2673 | /* Read the ending character of a range (in a bracket expression) from the |
---|
2674 | uncompiled pattern *P_PTR (which ends at PEND). We assume the |
---|
2675 | starting character is in `P[-2]'. (`P[-1]' is the character `-'.) |
---|
2676 | Then we set the translation of all bits between the starting and |
---|
2677 | ending characters (inclusive) in the compiled pattern B. |
---|
2678 | |
---|
2679 | Return an error code. |
---|
2680 | |
---|
2681 | We use these short variable names so we can use the same macros as |
---|
2682 | `regex_compile' itself. */ |
---|
2683 | |
---|
2684 | static reg_errcode_t |
---|
2685 | compile_range (p_ptr, pend, translate, syntax, b) |
---|
2686 | const char **p_ptr, *pend; |
---|
2687 | char *translate; |
---|
2688 | reg_syntax_t syntax; |
---|
2689 | unsigned char *b; |
---|
2690 | { |
---|
2691 | unsigned this_char; |
---|
2692 | |
---|
2693 | const char *p = *p_ptr; |
---|
2694 | int range_start, range_end; |
---|
2695 | |
---|
2696 | if (p == pend) |
---|
2697 | return REG_ERANGE; |
---|
2698 | |
---|
2699 | /* Even though the pattern is a signed `char *', we need to fetch |
---|
2700 | with unsigned char *'s; if the high bit of the pattern character |
---|
2701 | is set, the range endpoints will be negative if we fetch using a |
---|
2702 | signed char *. |
---|
2703 | |
---|
2704 | We also want to fetch the endpoints without translating them; the |
---|
2705 | appropriate translation is done in the bit-setting loop below. */ |
---|
2706 | /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */ |
---|
2707 | range_start = ((const unsigned char *) p)[-2]; |
---|
2708 | range_end = ((const unsigned char *) p)[0]; |
---|
2709 | |
---|
2710 | /* Have to increment the pointer into the pattern string, so the |
---|
2711 | caller isn't still at the ending character. */ |
---|
2712 | (*p_ptr)++; |
---|
2713 | |
---|
2714 | /* If the start is after the end, the range is empty. */ |
---|
2715 | if (range_start > range_end) |
---|
2716 | return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; |
---|
2717 | |
---|
2718 | /* Here we see why `this_char' has to be larger than an `unsigned |
---|
2719 | char' -- the range is inclusive, so if `range_end' == 0xff |
---|
2720 | (assuming 8-bit characters), we would otherwise go into an infinite |
---|
2721 | loop, since all characters <= 0xff. */ |
---|
2722 | for (this_char = range_start; this_char <= range_end; this_char++) |
---|
2723 | { |
---|
2724 | SET_LIST_BIT (TRANSLATE (this_char)); |
---|
2725 | } |
---|
2726 | |
---|
2727 | return REG_NOERROR; |
---|
2728 | } |
---|
2729 | |
---|
2730 | /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in |
---|
2731 | BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible |
---|
2732 | characters can start a string that matches the pattern. This fastmap |
---|
2733 | is used by re_search to skip quickly over impossible starting points. |
---|
2734 | |
---|
2735 | The caller must supply the address of a (1 << BYTEWIDTH)-byte data |
---|
2736 | area as BUFP->fastmap. |
---|
2737 | |
---|
2738 | We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in |
---|
2739 | the pattern buffer. |
---|
2740 | |
---|
2741 | Returns 0 if we succeed, -2 if an internal error. */ |
---|
2742 | |
---|
2743 | int |
---|
2744 | re_compile_fastmap (bufp) |
---|
2745 | struct re_pattern_buffer *bufp; |
---|
2746 | { |
---|
2747 | int j, k; |
---|
2748 | #ifdef MATCH_MAY_ALLOCATE |
---|
2749 | fail_stack_type fail_stack; |
---|
2750 | #endif |
---|
2751 | #ifndef REGEX_MALLOC |
---|
2752 | char *destination; |
---|
2753 | #endif |
---|
2754 | /* We don't push any register information onto the failure stack. */ |
---|
2755 | unsigned num_regs = 0; |
---|
2756 | |
---|
2757 | register char *fastmap = bufp->fastmap; |
---|
2758 | unsigned char *pattern = bufp->buffer; |
---|
2759 | unsigned long size = bufp->used; |
---|
2760 | unsigned char *p = pattern; |
---|
2761 | register unsigned char *pend = pattern + size; |
---|
2762 | |
---|
2763 | /* Assume that each path through the pattern can be null until |
---|
2764 | proven otherwise. We set this false at the bottom of switch |
---|
2765 | statement, to which we get only if a particular path doesn't |
---|
2766 | match the empty string. */ |
---|
2767 | boolean path_can_be_null = true; |
---|
2768 | |
---|
2769 | /* We aren't doing a `succeed_n' to begin with. */ |
---|
2770 | boolean succeed_n_p = false; |
---|
2771 | |
---|
2772 | assert (fastmap != NULL && p != NULL); |
---|
2773 | |
---|
2774 | INIT_FAIL_STACK (); |
---|
2775 | bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */ |
---|
2776 | bufp->fastmap_accurate = 1; /* It will be when we're done. */ |
---|
2777 | bufp->can_be_null = 0; |
---|
2778 | |
---|
2779 | while (p != pend || !FAIL_STACK_EMPTY ()) |
---|
2780 | { |
---|
2781 | if (p == pend) |
---|
2782 | { |
---|
2783 | bufp->can_be_null |= path_can_be_null; |
---|
2784 | |
---|
2785 | /* Reset for next path. */ |
---|
2786 | path_can_be_null = true; |
---|
2787 | |
---|
2788 | p = fail_stack.stack[--fail_stack.avail]; |
---|
2789 | } |
---|
2790 | |
---|
2791 | /* We should never be about to go beyond the end of the pattern. */ |
---|
2792 | assert (p < pend); |
---|
2793 | |
---|
2794 | #ifdef SWITCH_ENUM_BUG |
---|
2795 | switch ((int) ((re_opcode_t) *p++)) |
---|
2796 | #else |
---|
2797 | switch ((re_opcode_t) *p++) |
---|
2798 | #endif |
---|
2799 | { |
---|
2800 | |
---|
2801 | /* I guess the idea here is to simply not bother with a fastmap |
---|
2802 | if a backreference is used, since it's too hard to figure out |
---|
2803 | the fastmap for the corresponding group. Setting |
---|
2804 | `can_be_null' stops `re_search_2' from using the fastmap, so |
---|
2805 | that is all we do. */ |
---|
2806 | case duplicate: |
---|
2807 | bufp->can_be_null = 1; |
---|
2808 | return 0; |
---|
2809 | |
---|
2810 | |
---|
2811 | /* Following are the cases which match a character. These end |
---|
2812 | with `break'. */ |
---|
2813 | |
---|
2814 | case exactn: |
---|
2815 | fastmap[p[1]] = 1; |
---|
2816 | break; |
---|
2817 | |
---|
2818 | |
---|
2819 | case charset: |
---|
2820 | for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) |
---|
2821 | if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) |
---|
2822 | fastmap[j] = 1; |
---|
2823 | break; |
---|
2824 | |
---|
2825 | |
---|
2826 | case charset_not: |
---|
2827 | /* Chars beyond end of map must be allowed. */ |
---|
2828 | for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) |
---|
2829 | fastmap[j] = 1; |
---|
2830 | |
---|
2831 | for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) |
---|
2832 | if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) |
---|
2833 | fastmap[j] = 1; |
---|
2834 | break; |
---|
2835 | |
---|
2836 | |
---|
2837 | case wordchar: |
---|
2838 | for (j = 0; j < (1 << BYTEWIDTH); j++) |
---|
2839 | if (SYNTAX (j) == Sword) |
---|
2840 | fastmap[j] = 1; |
---|
2841 | break; |
---|
2842 | |
---|
2843 | |
---|
2844 | case notwordchar: |
---|
2845 | for (j = 0; j < (1 << BYTEWIDTH); j++) |
---|
2846 | if (SYNTAX (j) != Sword) |
---|
2847 | fastmap[j] = 1; |
---|
2848 | break; |
---|
2849 | |
---|
2850 | |
---|
2851 | case anychar: |
---|
2852 | { |
---|
2853 | int fastmap_newline = fastmap['\n']; |
---|
2854 | |
---|
2855 | /* `.' matches anything ... */ |
---|
2856 | for (j = 0; j < (1 << BYTEWIDTH); j++) |
---|
2857 | fastmap[j] = 1; |
---|
2858 | |
---|
2859 | /* ... except perhaps newline. */ |
---|
2860 | if (!(bufp->syntax & RE_DOT_NEWLINE)) |
---|
2861 | fastmap['\n'] = fastmap_newline; |
---|
2862 | |
---|
2863 | /* Return if we have already set `can_be_null'; if we have, |
---|
2864 | then the fastmap is irrelevant. Something's wrong here. */ |
---|
2865 | else if (bufp->can_be_null) |
---|
2866 | return 0; |
---|
2867 | |
---|
2868 | /* Otherwise, have to check alternative paths. */ |
---|
2869 | break; |
---|
2870 | } |
---|
2871 | |
---|
2872 | #ifdef emacs |
---|
2873 | case syntaxspec: |
---|
2874 | k = *p++; |
---|
2875 | for (j = 0; j < (1 << BYTEWIDTH); j++) |
---|
2876 | if (SYNTAX (j) == (enum syntaxcode) k) |
---|
2877 | fastmap[j] = 1; |
---|
2878 | break; |
---|
2879 | |
---|
2880 | |
---|
2881 | case notsyntaxspec: |
---|
2882 | k = *p++; |
---|
2883 | for (j = 0; j < (1 << BYTEWIDTH); j++) |
---|
2884 | if (SYNTAX (j) != (enum syntaxcode) k) |
---|
2885 | fastmap[j] = 1; |
---|
2886 | break; |
---|
2887 | |
---|
2888 | |
---|
2889 | /* All cases after this match the empty string. These end with |
---|
2890 | `continue'. */ |
---|
2891 | |
---|
2892 | |
---|
2893 | case before_dot: |
---|
2894 | case at_dot: |
---|
2895 | case after_dot: |
---|
2896 | continue; |
---|
2897 | #endif /* not emacs */ |
---|
2898 | |
---|
2899 | |
---|
2900 | case no_op: |
---|
2901 | case begline: |
---|
2902 | case endline: |
---|
2903 | case begbuf: |
---|
2904 | case endbuf: |
---|
2905 | case wordbound: |
---|
2906 | case notwordbound: |
---|
2907 | case wordbeg: |
---|
2908 | case wordend: |
---|
2909 | case push_dummy_failure: |
---|
2910 | continue; |
---|
2911 | |
---|
2912 | |
---|
2913 | case jump_n: |
---|
2914 | case pop_failure_jump: |
---|
2915 | case maybe_pop_jump: |
---|
2916 | case jump: |
---|
2917 | case jump_past_alt: |
---|
2918 | case dummy_failure_jump: |
---|
2919 | EXTRACT_NUMBER_AND_INCR (j, p); |
---|
2920 | p += j; |
---|
2921 | if (j > 0) |
---|
2922 | continue; |
---|
2923 | |
---|
2924 | /* Jump backward implies we just went through the body of a |
---|
2925 | loop and matched nothing. Opcode jumped to should be |
---|
2926 | `on_failure_jump' or `succeed_n'. Just treat it like an |
---|
2927 | ordinary jump. For a * loop, it has pushed its failure |
---|
2928 | point already; if so, discard that as redundant. */ |
---|
2929 | if ((re_opcode_t) *p != on_failure_jump |
---|
2930 | && (re_opcode_t) *p != succeed_n) |
---|
2931 | continue; |
---|
2932 | |
---|
2933 | p++; |
---|
2934 | EXTRACT_NUMBER_AND_INCR (j, p); |
---|
2935 | p += j; |
---|
2936 | |
---|
2937 | /* If what's on the stack is where we are now, pop it. */ |
---|
2938 | if (!FAIL_STACK_EMPTY () |
---|
2939 | && fail_stack.stack[fail_stack.avail - 1] == p) |
---|
2940 | fail_stack.avail--; |
---|
2941 | |
---|
2942 | continue; |
---|
2943 | |
---|
2944 | |
---|
2945 | case on_failure_jump: |
---|
2946 | case on_failure_keep_string_jump: |
---|
2947 | handle_on_failure_jump: |
---|
2948 | EXTRACT_NUMBER_AND_INCR (j, p); |
---|
2949 | |
---|
2950 | /* For some patterns, e.g., `(a?)?', `p+j' here points to the |
---|
2951 | end of the pattern. We don't want to push such a point, |
---|
2952 | since when we restore it above, entering the switch will |
---|
2953 | increment `p' past the end of the pattern. We don't need |
---|
2954 | to push such a point since we obviously won't find any more |
---|
2955 | fastmap entries beyond `pend'. Such a pattern can match |
---|
2956 | the null string, though. */ |
---|
2957 | if (p + j < pend) |
---|
2958 | { |
---|
2959 | if (!PUSH_PATTERN_OP (p + j, fail_stack)) |
---|
2960 | return -2; |
---|
2961 | } |
---|
2962 | else |
---|
2963 | bufp->can_be_null = 1; |
---|
2964 | |
---|
2965 | if (succeed_n_p) |
---|
2966 | { |
---|
2967 | EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ |
---|
2968 | succeed_n_p = false; |
---|
2969 | } |
---|
2970 | |
---|
2971 | continue; |
---|
2972 | |
---|
2973 | |
---|
2974 | case succeed_n: |
---|
2975 | /* Get to the number of times to succeed. */ |
---|
2976 | p += 2; |
---|
2977 | |
---|
2978 | /* Increment p past the n for when k != 0. */ |
---|
2979 | EXTRACT_NUMBER_AND_INCR (k, p); |
---|
2980 | if (k == 0) |
---|
2981 | { |
---|
2982 | p -= 4; |
---|
2983 | succeed_n_p = true; /* Spaghetti code alert. */ |
---|
2984 | goto handle_on_failure_jump; |
---|
2985 | } |
---|
2986 | continue; |
---|
2987 | |
---|
2988 | |
---|
2989 | case set_number_at: |
---|
2990 | p += 4; |
---|
2991 | continue; |
---|
2992 | |
---|
2993 | |
---|
2994 | case start_memory: |
---|
2995 | case stop_memory: |
---|
2996 | p += 2; |
---|
2997 | continue; |
---|
2998 | |
---|
2999 | |
---|
3000 | default: |
---|
3001 | abort (); /* We have listed all the cases. */ |
---|
3002 | } /* switch *p++ */ |
---|
3003 | |
---|
3004 | /* Getting here means we have found the possible starting |
---|
3005 | characters for one path of the pattern -- and that the empty |
---|
3006 | string does not match. We need not follow this path further. |
---|
3007 | Instead, look at the next alternative (remembered on the |
---|
3008 | stack), or quit if no more. The test at the top of the loop |
---|
3009 | does these things. */ |
---|
3010 | path_can_be_null = false; |
---|
3011 | p = pend; |
---|
3012 | } /* while p */ |
---|
3013 | |
---|
3014 | /* Set `can_be_null' for the last path (also the first path, if the |
---|
3015 | pattern is empty). */ |
---|
3016 | bufp->can_be_null |= path_can_be_null; |
---|
3017 | return 0; |
---|
3018 | } /* re_compile_fastmap */ |
---|
3019 | |
---|
3020 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and |
---|
3021 | ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use |
---|
3022 | this memory for recording register information. STARTS and ENDS |
---|
3023 | must be allocated using the malloc library routine, and must each |
---|
3024 | be at least NUM_REGS * sizeof (regoff_t) bytes long. |
---|
3025 | |
---|
3026 | If NUM_REGS == 0, then subsequent matches should allocate their own |
---|
3027 | register data. |
---|
3028 | |
---|
3029 | Unless this function is called, the first search or match using |
---|
3030 | PATTERN_BUFFER will allocate its own register data, without |
---|
3031 | freeing the old data. */ |
---|
3032 | |
---|
3033 | void |
---|
3034 | re_set_registers (bufp, regs, num_regs, starts, ends) |
---|
3035 | struct re_pattern_buffer *bufp; |
---|
3036 | struct re_registers *regs; |
---|
3037 | unsigned num_regs; |
---|
3038 | regoff_t *starts, *ends; |
---|
3039 | { |
---|
3040 | if (num_regs) |
---|
3041 | { |
---|
3042 | bufp->regs_allocated = REGS_REALLOCATE; |
---|
3043 | regs->num_regs = num_regs; |
---|
3044 | regs->start = starts; |
---|
3045 | regs->end = ends; |
---|
3046 | } |
---|
3047 | else |
---|
3048 | { |
---|
3049 | bufp->regs_allocated = REGS_UNALLOCATED; |
---|
3050 | regs->num_regs = 0; |
---|
3051 | regs->start = regs->end = (regoff_t *) 0; |
---|
3052 | } |
---|
3053 | } |
---|
3054 | |
---|
3055 | /* Searching routines. */ |
---|
3056 | |
---|
3057 | /* Like re_search_2, below, but only one string is specified, and |
---|
3058 | doesn't let you say where to stop matching. */ |
---|
3059 | |
---|
3060 | int |
---|
3061 | re_search (bufp, string, size, startpos, range, regs) |
---|
3062 | struct re_pattern_buffer *bufp; |
---|
3063 | const char *string; |
---|
3064 | int size, startpos, range; |
---|
3065 | struct re_registers *regs; |
---|
3066 | { |
---|
3067 | return re_search_2 (bufp, NULL, 0, string, size, startpos, range, |
---|
3068 | regs, size); |
---|
3069 | } |
---|
3070 | |
---|
3071 | |
---|
3072 | /* Using the compiled pattern in BUFP->buffer, first tries to match the |
---|
3073 | virtual concatenation of STRING1 and STRING2, starting first at index |
---|
3074 | STARTPOS, then at STARTPOS + 1, and so on. |
---|
3075 | |
---|
3076 | STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. |
---|
3077 | |
---|
3078 | RANGE is how far to scan while trying to match. RANGE = 0 means try |
---|
3079 | only at STARTPOS; in general, the last start tried is STARTPOS + |
---|
3080 | RANGE. |
---|
3081 | |
---|
3082 | In REGS, return the indices of the virtual concatenation of STRING1 |
---|
3083 | and STRING2 that matched the entire BUFP->buffer and its contained |
---|
3084 | subexpressions. |
---|
3085 | |
---|
3086 | Do not consider matching one past the index STOP in the virtual |
---|
3087 | concatenation of STRING1 and STRING2. |
---|
3088 | |
---|
3089 | We return either the position in the strings at which the match was |
---|
3090 | found, -1 if no match, or -2 if error (such as failure |
---|
3091 | stack overflow). */ |
---|
3092 | |
---|
3093 | int |
---|
3094 | re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop) |
---|
3095 | struct re_pattern_buffer *bufp; |
---|
3096 | const char *string1, *string2; |
---|
3097 | int size1, size2; |
---|
3098 | int startpos; |
---|
3099 | int range; |
---|
3100 | struct re_registers *regs; |
---|
3101 | int stop; |
---|
3102 | { |
---|
3103 | int val; |
---|
3104 | register char *fastmap = bufp->fastmap; |
---|
3105 | register char *translate = bufp->translate; |
---|
3106 | int total_size = size1 + size2; |
---|
3107 | int endpos = startpos + range; |
---|
3108 | |
---|
3109 | /* Check for out-of-range STARTPOS. */ |
---|
3110 | if (startpos < 0 || startpos > total_size) |
---|
3111 | return -1; |
---|
3112 | |
---|
3113 | /* Fix up RANGE if it might eventually take us outside |
---|
3114 | the virtual concatenation of STRING1 and STRING2. */ |
---|
3115 | if (endpos < -1) |
---|
3116 | range = -1 - startpos; |
---|
3117 | else if (endpos > total_size) |
---|
3118 | range = total_size - startpos; |
---|
3119 | |
---|
3120 | /* If the search isn't to be a backwards one, don't waste time in a |
---|
3121 | search for a pattern that must be anchored. */ |
---|
3122 | if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) |
---|
3123 | { |
---|
3124 | if (startpos > 0) |
---|
3125 | return -1; |
---|
3126 | else |
---|
3127 | range = 1; |
---|
3128 | } |
---|
3129 | |
---|
3130 | /* Update the fastmap now if not correct already. */ |
---|
3131 | if (fastmap && !bufp->fastmap_accurate) |
---|
3132 | if (re_compile_fastmap (bufp) == -2) |
---|
3133 | return -2; |
---|
3134 | |
---|
3135 | /* Loop through the string, looking for a place to start matching. */ |
---|
3136 | for (;;) |
---|
3137 | { |
---|
3138 | /* If a fastmap is supplied, skip quickly over characters that |
---|
3139 | cannot be the start of a match. If the pattern can match the |
---|
3140 | null string, however, we don't need to skip characters; we want |
---|
3141 | the first null string. */ |
---|
3142 | if (fastmap && startpos < total_size && !bufp->can_be_null) |
---|
3143 | { |
---|
3144 | if (range > 0) /* Searching forwards. */ |
---|
3145 | { |
---|
3146 | register const char *d; |
---|
3147 | register int lim = 0; |
---|
3148 | int irange = range; |
---|
3149 | |
---|
3150 | if (startpos < size1 && startpos + range >= size1) |
---|
3151 | lim = range - (size1 - startpos); |
---|
3152 | |
---|
3153 | d = (startpos >= size1 ? string2 - size1 : string1) + startpos; |
---|
3154 | |
---|
3155 | /* Written out as an if-else to avoid testing `translate' |
---|
3156 | inside the loop. */ |
---|
3157 | if (translate) |
---|
3158 | while (range > lim |
---|
3159 | && !fastmap[(unsigned char) |
---|
3160 | translate[(unsigned char) *d++]]) |
---|
3161 | range--; |
---|
3162 | else |
---|
3163 | while (range > lim && !fastmap[(unsigned char) *d++]) |
---|
3164 | range--; |
---|
3165 | |
---|
3166 | startpos += irange - range; |
---|
3167 | } |
---|
3168 | else /* Searching backwards. */ |
---|
3169 | { |
---|
3170 | register char c = (size1 == 0 || startpos >= size1 |
---|
3171 | ? string2[startpos - size1] |
---|
3172 | : string1[startpos]); |
---|
3173 | |
---|
3174 | if (!fastmap[(unsigned char) TRANSLATE (c)]) |
---|
3175 | goto advance; |
---|
3176 | } |
---|
3177 | } |
---|
3178 | |
---|
3179 | /* If can't match the null string, and that's all we have left, fail. */ |
---|
3180 | if (range >= 0 && startpos == total_size && fastmap |
---|
3181 | && !bufp->can_be_null) |
---|
3182 | return -1; |
---|
3183 | |
---|
3184 | val = re_match_2_internal (bufp, string1, size1, string2, size2, |
---|
3185 | startpos, regs, stop); |
---|
3186 | #ifndef REGEX_MALLOC |
---|
3187 | #ifdef C_ALLOCA |
---|
3188 | alloca (0); |
---|
3189 | #endif |
---|
3190 | #endif |
---|
3191 | |
---|
3192 | if (val >= 0) |
---|
3193 | return startpos; |
---|
3194 | |
---|
3195 | if (val == -2) |
---|
3196 | return -2; |
---|
3197 | |
---|
3198 | advance: |
---|
3199 | if (!range) |
---|
3200 | break; |
---|
3201 | else if (range > 0) |
---|
3202 | { |
---|
3203 | range--; |
---|
3204 | startpos++; |
---|
3205 | } |
---|
3206 | else |
---|
3207 | { |
---|
3208 | range++; |
---|
3209 | startpos--; |
---|
3210 | } |
---|
3211 | } |
---|
3212 | return -1; |
---|
3213 | } /* re_search_2 */ |
---|
3214 | |
---|
3215 | /* Declarations and macros for re_match_2. */ |
---|
3216 | |
---|
3217 | static int bcmp_translate (); |
---|
3218 | static boolean alt_match_null_string_p (), |
---|
3219 | common_op_match_null_string_p (), |
---|
3220 | group_match_null_string_p (); |
---|
3221 | |
---|
3222 | /* This converts PTR, a pointer into one of the search strings `string1' |
---|
3223 | and `string2' into an offset from the beginning of that string. */ |
---|
3224 | #define POINTER_TO_OFFSET(ptr) \ |
---|
3225 | (FIRST_STRING_P (ptr) \ |
---|
3226 | ? ((regoff_t) ((ptr) - string1)) \ |
---|
3227 | : ((regoff_t) ((ptr) - string2 + size1))) |
---|
3228 | |
---|
3229 | /* Macros for dealing with the split strings in re_match_2. */ |
---|
3230 | |
---|
3231 | #define MATCHING_IN_FIRST_STRING (dend == end_match_1) |
---|
3232 | |
---|
3233 | /* Call before fetching a character with *d. This switches over to |
---|
3234 | string2 if necessary. */ |
---|
3235 | #define PREFETCH() \ |
---|
3236 | while (d == dend) \ |
---|
3237 | { \ |
---|
3238 | /* End of string2 => fail. */ \ |
---|
3239 | if (dend == end_match_2) \ |
---|
3240 | goto fail; \ |
---|
3241 | /* End of string1 => advance to string2. */ \ |
---|
3242 | d = string2; \ |
---|
3243 | dend = end_match_2; \ |
---|
3244 | } |
---|
3245 | |
---|
3246 | |
---|
3247 | /* Test if at very beginning or at very end of the virtual concatenation |
---|
3248 | of `string1' and `string2'. If only one string, it's `string2'. */ |
---|
3249 | #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) |
---|
3250 | #define AT_STRINGS_END(d) ((d) == end2) |
---|
3251 | |
---|
3252 | |
---|
3253 | /* Test if D points to a character which is word-constituent. We have |
---|
3254 | two special cases to check for: if past the end of string1, look at |
---|
3255 | the first character in string2; and if before the beginning of |
---|
3256 | string2, look at the last character in string1. */ |
---|
3257 | #define WORDCHAR_P(d) \ |
---|
3258 | (SYNTAX ((d) == end1 ? *string2 \ |
---|
3259 | : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \ |
---|
3260 | == Sword) |
---|
3261 | |
---|
3262 | /* Test if the character before D and the one at D differ with respect |
---|
3263 | to being word-constituent. */ |
---|
3264 | #define AT_WORD_BOUNDARY(d) \ |
---|
3265 | (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \ |
---|
3266 | || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) |
---|
3267 | |
---|
3268 | |
---|
3269 | /* Free everything we malloc. */ |
---|
3270 | #ifdef MATCH_MAY_ALLOCATE |
---|
3271 | #ifdef REGEX_MALLOC |
---|
3272 | #define FREE_VAR(var) if (var) free (var); var = NULL |
---|
3273 | #define FREE_VARIABLES() \ |
---|
3274 | do { \ |
---|
3275 | FREE_VAR (fail_stack.stack); \ |
---|
3276 | FREE_VAR (regstart); \ |
---|
3277 | FREE_VAR (regend); \ |
---|
3278 | FREE_VAR (old_regstart); \ |
---|
3279 | FREE_VAR (old_regend); \ |
---|
3280 | FREE_VAR (best_regstart); \ |
---|
3281 | FREE_VAR (best_regend); \ |
---|
3282 | FREE_VAR (reg_info); \ |
---|
3283 | FREE_VAR (reg_dummy); \ |
---|
3284 | FREE_VAR (reg_info_dummy); \ |
---|
3285 | } while (0) |
---|
3286 | #else /* not REGEX_MALLOC */ |
---|
3287 | /* This used to do alloca (0), but now we do that in the caller. */ |
---|
3288 | #define FREE_VARIABLES() /* Nothing */ |
---|
3289 | #endif /* not REGEX_MALLOC */ |
---|
3290 | #else |
---|
3291 | #define FREE_VARIABLES() /* Do nothing! */ |
---|
3292 | #endif /* not MATCH_MAY_ALLOCATE */ |
---|
3293 | |
---|
3294 | /* These values must meet several constraints. They must not be valid |
---|
3295 | register values; since we have a limit of 255 registers (because |
---|
3296 | we use only one byte in the pattern for the register number), we can |
---|
3297 | use numbers larger than 255. They must differ by 1, because of |
---|
3298 | NUM_FAILURE_ITEMS above. And the value for the lowest register must |
---|
3299 | be larger than the value for the highest register, so we do not try |
---|
3300 | to actually save any registers when none are active. */ |
---|
3301 | #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) |
---|
3302 | #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) |
---|
3303 | |
---|
3304 | /* Matching routines. */ |
---|
3305 | |
---|
3306 | #ifndef emacs /* Emacs never uses this. */ |
---|
3307 | /* re_match is like re_match_2 except it takes only a single string. */ |
---|
3308 | |
---|
3309 | int |
---|
3310 | re_match (bufp, string, size, pos, regs) |
---|
3311 | struct re_pattern_buffer *bufp; |
---|
3312 | const char *string; |
---|
3313 | int size, pos; |
---|
3314 | struct re_registers *regs; |
---|
3315 | { |
---|
3316 | int result = re_match_2_internal (bufp, NULL, 0, string, size, |
---|
3317 | pos, regs, size); |
---|
3318 | alloca (0); |
---|
3319 | return result; |
---|
3320 | } |
---|
3321 | #endif /* not emacs */ |
---|
3322 | |
---|
3323 | |
---|
3324 | /* re_match_2 matches the compiled pattern in BUFP against the |
---|
3325 | the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 |
---|
3326 | and SIZE2, respectively). We start matching at POS, and stop |
---|
3327 | matching at STOP. |
---|
3328 | |
---|
3329 | If REGS is non-null and the `no_sub' field of BUFP is nonzero, we |
---|
3330 | store offsets for the substring each group matched in REGS. See the |
---|
3331 | documentation for exactly how many groups we fill. |
---|
3332 | |
---|
3333 | We return -1 if no match, -2 if an internal error (such as the |
---|
3334 | failure stack overflowing). Otherwise, we return the length of the |
---|
3335 | matched substring. */ |
---|
3336 | |
---|
3337 | int |
---|
3338 | re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) |
---|
3339 | struct re_pattern_buffer *bufp; |
---|
3340 | const char *string1, *string2; |
---|
3341 | int size1, size2; |
---|
3342 | int pos; |
---|
3343 | struct re_registers *regs; |
---|
3344 | int stop; |
---|
3345 | { |
---|
3346 | int result = re_match_2_internal (bufp, string1, size1, string2, size2, |
---|
3347 | pos, regs, stop); |
---|
3348 | alloca (0); |
---|
3349 | return result; |
---|
3350 | } |
---|
3351 | |
---|
3352 | /* This is a separate function so that we can force an alloca cleanup |
---|
3353 | afterwards. */ |
---|
3354 | static int |
---|
3355 | re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop) |
---|
3356 | struct re_pattern_buffer *bufp; |
---|
3357 | const char *string1, *string2; |
---|
3358 | int size1, size2; |
---|
3359 | int pos; |
---|
3360 | struct re_registers *regs; |
---|
3361 | int stop; |
---|
3362 | { |
---|
3363 | /* General temporaries. */ |
---|
3364 | int mcnt; |
---|
3365 | unsigned char *p1; |
---|
3366 | |
---|
3367 | /* Just past the end of the corresponding string. */ |
---|
3368 | const char *end1, *end2; |
---|
3369 | |
---|
3370 | /* Pointers into string1 and string2, just past the last characters in |
---|
3371 | each to consider matching. */ |
---|
3372 | const char *end_match_1, *end_match_2; |
---|
3373 | |
---|
3374 | /* Where we are in the data, and the end of the current string. */ |
---|
3375 | const char *d, *dend; |
---|
3376 | |
---|
3377 | /* Where we are in the pattern, and the end of the pattern. */ |
---|
3378 | unsigned char *p = bufp->buffer; |
---|
3379 | register unsigned char *pend = p + bufp->used; |
---|
3380 | |
---|
3381 | /* Mark the opcode just after a start_memory, so we can test for an |
---|
3382 | empty subpattern when we get to the stop_memory. */ |
---|
3383 | unsigned char *just_past_start_mem = 0; |
---|
3384 | |
---|
3385 | /* We use this to map every character in the string. */ |
---|
3386 | char *translate = bufp->translate; |
---|
3387 | |
---|
3388 | /* Failure point stack. Each place that can handle a failure further |
---|
3389 | down the line pushes a failure point on this stack. It consists of |
---|
3390 | restart, regend, and reg_info for all registers corresponding to |
---|
3391 | the subexpressions we're currently inside, plus the number of such |
---|
3392 | registers, and, finally, two char *'s. The first char * is where |
---|
3393 | to resume scanning the pattern; the second one is where to resume |
---|
3394 | scanning the strings. If the latter is zero, the failure point is |
---|
3395 | a ``dummy''; if a failure happens and the failure point is a dummy, |
---|
3396 | it gets discarded and the next next one is tried. */ |
---|
3397 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ |
---|
3398 | fail_stack_type fail_stack; |
---|
3399 | #endif |
---|
3400 | #ifdef DEBUG |
---|
3401 | static unsigned failure_id = 0; |
---|
3402 | unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; |
---|
3403 | #endif |
---|
3404 | |
---|
3405 | /* We fill all the registers internally, independent of what we |
---|
3406 | return, for use in backreferences. The number here includes |
---|
3407 | an element for register zero. */ |
---|
3408 | unsigned num_regs = bufp->re_nsub + 1; |
---|
3409 | |
---|
3410 | /* The currently active registers. */ |
---|
3411 | unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
---|
3412 | unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG; |
---|
3413 | |
---|
3414 | /* Information on the contents of registers. These are pointers into |
---|
3415 | the input strings; they record just what was matched (on this |
---|
3416 | attempt) by a subexpression part of the pattern, that is, the |
---|
3417 | regnum-th regstart pointer points to where in the pattern we began |
---|
3418 | matching and the regnum-th regend points to right after where we |
---|
3419 | stopped matching the regnum-th subexpression. (The zeroth register |
---|
3420 | keeps track of what the whole pattern matches.) */ |
---|
3421 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
---|
3422 | const char **regstart, **regend; |
---|
3423 | #endif |
---|
3424 | |
---|
3425 | /* If a group that's operated upon by a repetition operator fails to |
---|
3426 | match anything, then the register for its start will need to be |
---|
3427 | restored because it will have been set to wherever in the string we |
---|
3428 | are when we last see its open-group operator. Similarly for a |
---|
3429 | register's end. */ |
---|
3430 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
---|
3431 | const char **old_regstart, **old_regend; |
---|
3432 | #endif |
---|
3433 | |
---|
3434 | /* The is_active field of reg_info helps us keep track of which (possibly |
---|
3435 | nested) subexpressions we are currently in. The matched_something |
---|
3436 | field of reg_info[reg_num] helps us tell whether or not we have |
---|
3437 | matched any of the pattern so far this time through the reg_num-th |
---|
3438 | subexpression. These two fields get reset each time through any |
---|
3439 | loop their register is in. */ |
---|
3440 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ |
---|
3441 | register_info_type *reg_info; |
---|
3442 | #endif |
---|
3443 | |
---|
3444 | /* The following record the register info as found in the above |
---|
3445 | variables when we find a match better than any we've seen before. |
---|
3446 | This happens as we backtrack through the failure points, which in |
---|
3447 | turn happens only if we have not yet matched the entire string. */ |
---|
3448 | unsigned best_regs_set = false; |
---|
3449 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
---|
3450 | const char **best_regstart, **best_regend; |
---|
3451 | #endif |
---|
3452 | |
---|
3453 | /* Logically, this is `best_regend[0]'. But we don't want to have to |
---|
3454 | allocate space for that if we're not allocating space for anything |
---|
3455 | else (see below). Also, we never need info about register 0 for |
---|
3456 | any of the other register vectors, and it seems rather a kludge to |
---|
3457 | treat `best_regend' differently than the rest. So we keep track of |
---|
3458 | the end of the best match so far in a separate variable. We |
---|
3459 | initialize this to NULL so that when we backtrack the first time |
---|
3460 | and need to test it, it's not garbage. */ |
---|
3461 | const char *match_end = NULL; |
---|
3462 | |
---|
3463 | /* Used when we pop values we don't care about. */ |
---|
3464 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
---|
3465 | const char **reg_dummy; |
---|
3466 | register_info_type *reg_info_dummy; |
---|
3467 | #endif |
---|
3468 | |
---|
3469 | #ifdef DEBUG |
---|
3470 | /* Counts the total number of registers pushed. */ |
---|
3471 | unsigned num_regs_pushed = 0; |
---|
3472 | #endif |
---|
3473 | |
---|
3474 | DEBUG_PRINT1 ("\n\nEntering re_match_2.\n"); |
---|
3475 | |
---|
3476 | INIT_FAIL_STACK (); |
---|
3477 | |
---|
3478 | #ifdef MATCH_MAY_ALLOCATE |
---|
3479 | /* Do not bother to initialize all the register variables if there are |
---|
3480 | no groups in the pattern, as it takes a fair amount of time. If |
---|
3481 | there are groups, we include space for register 0 (the whole |
---|
3482 | pattern), even though we never use it, since it simplifies the |
---|
3483 | array indexing. We should fix this. */ |
---|
3484 | if (bufp->re_nsub) |
---|
3485 | { |
---|
3486 | regstart = REGEX_TALLOC (num_regs, const char *); |
---|
3487 | regend = REGEX_TALLOC (num_regs, const char *); |
---|
3488 | old_regstart = REGEX_TALLOC (num_regs, const char *); |
---|
3489 | old_regend = REGEX_TALLOC (num_regs, const char *); |
---|
3490 | best_regstart = REGEX_TALLOC (num_regs, const char *); |
---|
3491 | best_regend = REGEX_TALLOC (num_regs, const char *); |
---|
3492 | reg_info = REGEX_TALLOC (num_regs, register_info_type); |
---|
3493 | reg_dummy = REGEX_TALLOC (num_regs, const char *); |
---|
3494 | reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type); |
---|
3495 | |
---|
3496 | if (!(regstart && regend && old_regstart && old_regend && reg_info |
---|
3497 | && best_regstart && best_regend && reg_dummy && reg_info_dummy)) |
---|
3498 | { |
---|
3499 | FREE_VARIABLES (); |
---|
3500 | return -2; |
---|
3501 | } |
---|
3502 | } |
---|
3503 | #if defined (REGEX_MALLOC) |
---|
3504 | else |
---|
3505 | { |
---|
3506 | /* We must initialize all our variables to NULL, so that |
---|
3507 | `FREE_VARIABLES' doesn't try to free them. */ |
---|
3508 | regstart = regend = old_regstart = old_regend = best_regstart |
---|
3509 | = best_regend = reg_dummy = NULL; |
---|
3510 | reg_info = reg_info_dummy = (register_info_type *) NULL; |
---|
3511 | } |
---|
3512 | #endif /* REGEX_MALLOC */ |
---|
3513 | #endif /* MATCH_MAY_ALLOCATE */ |
---|
3514 | |
---|
3515 | /* The starting position is bogus. */ |
---|
3516 | if (pos < 0 || pos > size1 + size2) |
---|
3517 | { |
---|
3518 | FREE_VARIABLES (); |
---|
3519 | return -1; |
---|
3520 | } |
---|
3521 | |
---|
3522 | /* Initialize subexpression text positions to -1 to mark ones that no |
---|
3523 | start_memory/stop_memory has been seen for. Also initialize the |
---|
3524 | register information struct. */ |
---|
3525 | for (mcnt = 1; mcnt < num_regs; mcnt++) |
---|
3526 | { |
---|
3527 | regstart[mcnt] = regend[mcnt] |
---|
3528 | = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; |
---|
3529 | |
---|
3530 | REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; |
---|
3531 | IS_ACTIVE (reg_info[mcnt]) = 0; |
---|
3532 | MATCHED_SOMETHING (reg_info[mcnt]) = 0; |
---|
3533 | EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; |
---|
3534 | } |
---|
3535 | |
---|
3536 | /* We move `string1' into `string2' if the latter's empty -- but not if |
---|
3537 | `string1' is null. */ |
---|
3538 | if (size2 == 0 && string1 != NULL) |
---|
3539 | { |
---|
3540 | string2 = string1; |
---|
3541 | size2 = size1; |
---|
3542 | string1 = 0; |
---|
3543 | size1 = 0; |
---|
3544 | } |
---|
3545 | end1 = string1 + size1; |
---|
3546 | end2 = string2 + size2; |
---|
3547 | |
---|
3548 | /* Compute where to stop matching, within the two strings. */ |
---|
3549 | if (stop <= size1) |
---|
3550 | { |
---|
3551 | end_match_1 = string1 + stop; |
---|
3552 | end_match_2 = string2; |
---|
3553 | } |
---|
3554 | else |
---|
3555 | { |
---|
3556 | end_match_1 = end1; |
---|
3557 | end_match_2 = string2 + stop - size1; |
---|
3558 | } |
---|
3559 | |
---|
3560 | /* `p' scans through the pattern as `d' scans through the data. |
---|
3561 | `dend' is the end of the input string that `d' points within. `d' |
---|
3562 | is advanced into the following input string whenever necessary, but |
---|
3563 | this happens before fetching; therefore, at the beginning of the |
---|
3564 | loop, `d' can be pointing at the end of a string, but it cannot |
---|
3565 | equal `string2'. */ |
---|
3566 | if (size1 > 0 && pos <= size1) |
---|
3567 | { |
---|
3568 | d = string1 + pos; |
---|
3569 | dend = end_match_1; |
---|
3570 | } |
---|
3571 | else |
---|
3572 | { |
---|
3573 | d = string2 + pos - size1; |
---|
3574 | dend = end_match_2; |
---|
3575 | } |
---|
3576 | |
---|
3577 | DEBUG_PRINT1 ("The compiled pattern is: "); |
---|
3578 | DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); |
---|
3579 | DEBUG_PRINT1 ("The string to match is: `"); |
---|
3580 | DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); |
---|
3581 | DEBUG_PRINT1 ("'\n"); |
---|
3582 | |
---|
3583 | /* This loops over pattern commands. It exits by returning from the |
---|
3584 | function if the match is complete, or it drops through if the match |
---|
3585 | fails at this starting point in the input data. */ |
---|
3586 | for (;;) |
---|
3587 | { |
---|
3588 | DEBUG_PRINT2 ("\n0x%x: ", p); |
---|
3589 | |
---|
3590 | if (p == pend) |
---|
3591 | { /* End of pattern means we might have succeeded. */ |
---|
3592 | DEBUG_PRINT1 ("end of pattern ... "); |
---|
3593 | |
---|
3594 | /* If we haven't matched the entire string, and we want the |
---|
3595 | longest match, try backtracking. */ |
---|
3596 | if (d != end_match_2) |
---|
3597 | { |
---|
3598 | /* 1 if this match ends in the same string (string1 or string2) |
---|
3599 | as the best previous match. */ |
---|
3600 | boolean same_str_p = (FIRST_STRING_P (match_end) |
---|
3601 | == MATCHING_IN_FIRST_STRING); |
---|
3602 | /* 1 if this match is the best seen so far. */ |
---|
3603 | boolean best_match_p; |
---|
3604 | |
---|
3605 | /* AIX compiler got confused when this was combined |
---|
3606 | with the previous declaration. */ |
---|
3607 | if (same_str_p) |
---|
3608 | best_match_p = d > match_end; |
---|
3609 | else |
---|
3610 | best_match_p = !MATCHING_IN_FIRST_STRING; |
---|
3611 | |
---|
3612 | DEBUG_PRINT1 ("backtracking.\n"); |
---|
3613 | |
---|
3614 | if (!FAIL_STACK_EMPTY ()) |
---|
3615 | { /* More failure points to try. */ |
---|
3616 | |
---|
3617 | /* If exceeds best match so far, save it. */ |
---|
3618 | if (!best_regs_set || best_match_p) |
---|
3619 | { |
---|
3620 | best_regs_set = true; |
---|
3621 | match_end = d; |
---|
3622 | |
---|
3623 | DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); |
---|
3624 | |
---|
3625 | for (mcnt = 1; mcnt < num_regs; mcnt++) |
---|
3626 | { |
---|
3627 | best_regstart[mcnt] = regstart[mcnt]; |
---|
3628 | best_regend[mcnt] = regend[mcnt]; |
---|
3629 | } |
---|
3630 | } |
---|
3631 | goto fail; |
---|
3632 | } |
---|
3633 | |
---|
3634 | /* If no failure points, don't restore garbage. And if |
---|
3635 | last match is real best match, don't restore second |
---|
3636 | best one. */ |
---|
3637 | else if (best_regs_set && !best_match_p) |
---|
3638 | { |
---|
3639 | restore_best_regs: |
---|
3640 | /* Restore best match. It may happen that `dend == |
---|
3641 | end_match_1' while the restored d is in string2. |
---|
3642 | For example, the pattern `x.*y.*z' against the |
---|
3643 | strings `x-' and `y-z-', if the two strings are |
---|
3644 | not consecutive in memory. */ |
---|
3645 | DEBUG_PRINT1 ("Restoring best registers.\n"); |
---|
3646 | |
---|
3647 | d = match_end; |
---|
3648 | dend = ((d >= string1 && d <= end1) |
---|
3649 | ? end_match_1 : end_match_2); |
---|
3650 | |
---|
3651 | for (mcnt = 1; mcnt < num_regs; mcnt++) |
---|
3652 | { |
---|
3653 | regstart[mcnt] = best_regstart[mcnt]; |
---|
3654 | regend[mcnt] = best_regend[mcnt]; |
---|
3655 | } |
---|
3656 | } |
---|
3657 | } /* d != end_match_2 */ |
---|
3658 | |
---|
3659 | DEBUG_PRINT1 ("Accepting match.\n"); |
---|
3660 | |
---|
3661 | /* If caller wants register contents data back, do it. */ |
---|
3662 | if (regs && !bufp->no_sub) |
---|
3663 | { |
---|
3664 | /* Have the register data arrays been allocated? */ |
---|
3665 | if (bufp->regs_allocated == REGS_UNALLOCATED) |
---|
3666 | { /* No. So allocate them with malloc. We need one |
---|
3667 | extra element beyond `num_regs' for the `-1' marker |
---|
3668 | GNU code uses. */ |
---|
3669 | regs->num_regs = MAX (RE_NREGS, num_regs + 1); |
---|
3670 | regs->start = TALLOC (regs->num_regs, regoff_t); |
---|
3671 | regs->end = TALLOC (regs->num_regs, regoff_t); |
---|
3672 | if (regs->start == NULL || regs->end == NULL) |
---|
3673 | return -2; |
---|
3674 | bufp->regs_allocated = REGS_REALLOCATE; |
---|
3675 | } |
---|
3676 | else if (bufp->regs_allocated == REGS_REALLOCATE) |
---|
3677 | { /* Yes. If we need more elements than were already |
---|
3678 | allocated, reallocate them. If we need fewer, just |
---|
3679 | leave it alone. */ |
---|
3680 | if (regs->num_regs < num_regs + 1) |
---|
3681 | { |
---|
3682 | regs->num_regs = num_regs + 1; |
---|
3683 | RETALLOC (regs->start, regs->num_regs, regoff_t); |
---|
3684 | RETALLOC (regs->end, regs->num_regs, regoff_t); |
---|
3685 | if (regs->start == NULL || regs->end == NULL) |
---|
3686 | return -2; |
---|
3687 | } |
---|
3688 | } |
---|
3689 | else |
---|
3690 | { |
---|
3691 | /* These braces fend off a "empty body in an else-statement" |
---|
3692 | warning under GCC when assert expands to nothing. */ |
---|
3693 | assert (bufp->regs_allocated == REGS_FIXED); |
---|
3694 | } |
---|
3695 | |
---|
3696 | /* Convert the pointer data in `regstart' and `regend' to |
---|
3697 | indices. Register zero has to be set differently, |
---|
3698 | since we haven't kept track of any info for it. */ |
---|
3699 | if (regs->num_regs > 0) |
---|
3700 | { |
---|
3701 | regs->start[0] = pos; |
---|
3702 | regs->end[0] = (MATCHING_IN_FIRST_STRING |
---|
3703 | ? ((regoff_t) (d - string1)) |
---|
3704 | : ((regoff_t) (d - string2 + size1))); |
---|
3705 | } |
---|
3706 | |
---|
3707 | /* Go through the first `min (num_regs, regs->num_regs)' |
---|
3708 | registers, since that is all we initialized. */ |
---|
3709 | for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++) |
---|
3710 | { |
---|
3711 | if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt])) |
---|
3712 | regs->start[mcnt] = regs->end[mcnt] = -1; |
---|
3713 | else |
---|
3714 | { |
---|
3715 | regs->start[mcnt] |
---|
3716 | = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]); |
---|
3717 | regs->end[mcnt] |
---|
3718 | = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]); |
---|
3719 | } |
---|
3720 | } |
---|
3721 | |
---|
3722 | /* If the regs structure we return has more elements than |
---|
3723 | were in the pattern, set the extra elements to -1. If |
---|
3724 | we (re)allocated the registers, this is the case, |
---|
3725 | because we always allocate enough to have at least one |
---|
3726 | -1 at the end. */ |
---|
3727 | for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++) |
---|
3728 | regs->start[mcnt] = regs->end[mcnt] = -1; |
---|
3729 | } /* regs && !bufp->no_sub */ |
---|
3730 | |
---|
3731 | FREE_VARIABLES (); |
---|
3732 | DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", |
---|
3733 | nfailure_points_pushed, nfailure_points_popped, |
---|
3734 | nfailure_points_pushed - nfailure_points_popped); |
---|
3735 | DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); |
---|
3736 | |
---|
3737 | mcnt = d - pos - (MATCHING_IN_FIRST_STRING |
---|
3738 | ? string1 |
---|
3739 | : string2 - size1); |
---|
3740 | |
---|
3741 | DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); |
---|
3742 | |
---|
3743 | return mcnt; |
---|
3744 | } |
---|
3745 | |
---|
3746 | /* Otherwise match next pattern command. */ |
---|
3747 | #ifdef SWITCH_ENUM_BUG |
---|
3748 | switch ((int) ((re_opcode_t) *p++)) |
---|
3749 | #else |
---|
3750 | switch ((re_opcode_t) *p++) |
---|
3751 | #endif |
---|
3752 | { |
---|
3753 | /* Ignore these. Used to ignore the n of succeed_n's which |
---|
3754 | currently have n == 0. */ |
---|
3755 | case no_op: |
---|
3756 | DEBUG_PRINT1 ("EXECUTING no_op.\n"); |
---|
3757 | break; |
---|
3758 | |
---|
3759 | |
---|
3760 | /* Match the next n pattern characters exactly. The following |
---|
3761 | byte in the pattern defines n, and the n bytes after that |
---|
3762 | are the characters to match. */ |
---|
3763 | case exactn: |
---|
3764 | mcnt = *p++; |
---|
3765 | DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); |
---|
3766 | |
---|
3767 | /* This is written out as an if-else so we don't waste time |
---|
3768 | testing `translate' inside the loop. */ |
---|
3769 | if (translate) |
---|
3770 | { |
---|
3771 | do |
---|
3772 | { |
---|
3773 | PREFETCH (); |
---|
3774 | if (translate[(unsigned char) *d++] != (char) *p++) |
---|
3775 | goto fail; |
---|
3776 | } |
---|
3777 | while (--mcnt); |
---|
3778 | } |
---|
3779 | else |
---|
3780 | { |
---|
3781 | do |
---|
3782 | { |
---|
3783 | PREFETCH (); |
---|
3784 | if (*d++ != (char) *p++) goto fail; |
---|
3785 | } |
---|
3786 | while (--mcnt); |
---|
3787 | } |
---|
3788 | SET_REGS_MATCHED (); |
---|
3789 | break; |
---|
3790 | |
---|
3791 | |
---|
3792 | /* Match any character except possibly a newline or a null. */ |
---|
3793 | case anychar: |
---|
3794 | DEBUG_PRINT1 ("EXECUTING anychar.\n"); |
---|
3795 | |
---|
3796 | PREFETCH (); |
---|
3797 | |
---|
3798 | if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n') |
---|
3799 | || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000')) |
---|
3800 | goto fail; |
---|
3801 | |
---|
3802 | SET_REGS_MATCHED (); |
---|
3803 | DEBUG_PRINT2 (" Matched `%d'.\n", *d); |
---|
3804 | d++; |
---|
3805 | break; |
---|
3806 | |
---|
3807 | |
---|
3808 | case charset: |
---|
3809 | case charset_not: |
---|
3810 | { |
---|
3811 | register unsigned char c; |
---|
3812 | boolean not = (re_opcode_t) *(p - 1) == charset_not; |
---|
3813 | |
---|
3814 | DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : ""); |
---|
3815 | |
---|
3816 | PREFETCH (); |
---|
3817 | c = TRANSLATE (*d); /* The character to match. */ |
---|
3818 | |
---|
3819 | /* Cast to `unsigned' instead of `unsigned char' in case the |
---|
3820 | bit list is a full 32 bytes long. */ |
---|
3821 | if (c < (unsigned) (*p * BYTEWIDTH) |
---|
3822 | && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) |
---|
3823 | not = !not; |
---|
3824 | |
---|
3825 | p += 1 + *p; |
---|
3826 | |
---|
3827 | if (!not) goto fail; |
---|
3828 | |
---|
3829 | SET_REGS_MATCHED (); |
---|
3830 | d++; |
---|
3831 | break; |
---|
3832 | } |
---|
3833 | |
---|
3834 | |
---|
3835 | /* The beginning of a group is represented by start_memory. |
---|
3836 | The arguments are the register number in the next byte, and the |
---|
3837 | number of groups inner to this one in the next. The text |
---|
3838 | matched within the group is recorded (in the internal |
---|
3839 | registers data structure) under the register number. */ |
---|
3840 | case start_memory: |
---|
3841 | DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]); |
---|
3842 | |
---|
3843 | /* Find out if this group can match the empty string. */ |
---|
3844 | p1 = p; /* To send to group_match_null_string_p. */ |
---|
3845 | |
---|
3846 | if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) |
---|
3847 | REG_MATCH_NULL_STRING_P (reg_info[*p]) |
---|
3848 | = group_match_null_string_p (&p1, pend, reg_info); |
---|
3849 | |
---|
3850 | /* Save the position in the string where we were the last time |
---|
3851 | we were at this open-group operator in case the group is |
---|
3852 | operated upon by a repetition operator, e.g., with `(a*)*b' |
---|
3853 | against `ab'; then we want to ignore where we are now in |
---|
3854 | the string in case this attempt to match fails. */ |
---|
3855 | old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) |
---|
3856 | ? REG_UNSET (regstart[*p]) ? d : regstart[*p] |
---|
3857 | : regstart[*p]; |
---|
3858 | DEBUG_PRINT2 (" old_regstart: %d\n", |
---|
3859 | POINTER_TO_OFFSET (old_regstart[*p])); |
---|
3860 | |
---|
3861 | regstart[*p] = d; |
---|
3862 | DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); |
---|
3863 | |
---|
3864 | IS_ACTIVE (reg_info[*p]) = 1; |
---|
3865 | MATCHED_SOMETHING (reg_info[*p]) = 0; |
---|
3866 | |
---|
3867 | /* This is the new highest active register. */ |
---|
3868 | highest_active_reg = *p; |
---|
3869 | |
---|
3870 | /* If nothing was active before, this is the new lowest active |
---|
3871 | register. */ |
---|
3872 | if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) |
---|
3873 | lowest_active_reg = *p; |
---|
3874 | |
---|
3875 | /* Move past the register number and inner group count. */ |
---|
3876 | p += 2; |
---|
3877 | just_past_start_mem = p; |
---|
3878 | break; |
---|
3879 | |
---|
3880 | |
---|
3881 | /* The stop_memory opcode represents the end of a group. Its |
---|
3882 | arguments are the same as start_memory's: the register |
---|
3883 | number, and the number of inner groups. */ |
---|
3884 | case stop_memory: |
---|
3885 | DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]); |
---|
3886 | |
---|
3887 | /* We need to save the string position the last time we were at |
---|
3888 | this close-group operator in case the group is operated |
---|
3889 | upon by a repetition operator, e.g., with `((a*)*(b*)*)*' |
---|
3890 | against `aba'; then we want to ignore where we are now in |
---|
3891 | the string in case this attempt to match fails. */ |
---|
3892 | old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) |
---|
3893 | ? REG_UNSET (regend[*p]) ? d : regend[*p] |
---|
3894 | : regend[*p]; |
---|
3895 | DEBUG_PRINT2 (" old_regend: %d\n", |
---|
3896 | POINTER_TO_OFFSET (old_regend[*p])); |
---|
3897 | |
---|
3898 | regend[*p] = d; |
---|
3899 | DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); |
---|
3900 | |
---|
3901 | /* This register isn't active anymore. */ |
---|
3902 | IS_ACTIVE (reg_info[*p]) = 0; |
---|
3903 | |
---|
3904 | /* If this was the only register active, nothing is active |
---|
3905 | anymore. */ |
---|
3906 | if (lowest_active_reg == highest_active_reg) |
---|
3907 | { |
---|
3908 | lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
---|
3909 | highest_active_reg = NO_HIGHEST_ACTIVE_REG; |
---|
3910 | } |
---|
3911 | else |
---|
3912 | { /* We must scan for the new highest active register, since |
---|
3913 | it isn't necessarily one less than now: consider |
---|
3914 | (a(b)c(d(e)f)g). When group 3 ends, after the f), the |
---|
3915 | new highest active register is 1. */ |
---|
3916 | unsigned char r = *p - 1; |
---|
3917 | while (r > 0 && !IS_ACTIVE (reg_info[r])) |
---|
3918 | r--; |
---|
3919 | |
---|
3920 | /* If we end up at register zero, that means that we saved |
---|
3921 | the registers as the result of an `on_failure_jump', not |
---|
3922 | a `start_memory', and we jumped to past the innermost |
---|
3923 | `stop_memory'. For example, in ((.)*) we save |
---|
3924 | registers 1 and 2 as a result of the *, but when we pop |
---|
3925 | back to the second ), we are at the stop_memory 1. |
---|
3926 | Thus, nothing is active. */ |
---|
3927 | if (r == 0) |
---|
3928 | { |
---|
3929 | lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
---|
3930 | highest_active_reg = NO_HIGHEST_ACTIVE_REG; |
---|
3931 | } |
---|
3932 | else |
---|
3933 | highest_active_reg = r; |
---|
3934 | } |
---|
3935 | |
---|
3936 | /* If just failed to match something this time around with a |
---|
3937 | group that's operated on by a repetition operator, try to |
---|
3938 | force exit from the ``loop'', and restore the register |
---|
3939 | information for this group that we had before trying this |
---|
3940 | last match. */ |
---|
3941 | if ((!MATCHED_SOMETHING (reg_info[*p]) |
---|
3942 | || just_past_start_mem == p - 1) |
---|
3943 | && (p + 2) < pend) |
---|
3944 | { |
---|
3945 | boolean is_a_jump_n = false; |
---|
3946 | |
---|
3947 | p1 = p + 2; |
---|
3948 | mcnt = 0; |
---|
3949 | switch ((re_opcode_t) *p1++) |
---|
3950 | { |
---|
3951 | case jump_n: |
---|
3952 | is_a_jump_n = true; |
---|
3953 | case pop_failure_jump: |
---|
3954 | case maybe_pop_jump: |
---|
3955 | case jump: |
---|
3956 | case dummy_failure_jump: |
---|
3957 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
---|
3958 | if (is_a_jump_n) |
---|
3959 | p1 += 2; |
---|
3960 | break; |
---|
3961 | |
---|
3962 | default: |
---|
3963 | /* do nothing */ ; |
---|
3964 | } |
---|
3965 | p1 += mcnt; |
---|
3966 | |
---|
3967 | /* If the next operation is a jump backwards in the pattern |
---|
3968 | to an on_failure_jump right before the start_memory |
---|
3969 | corresponding to this stop_memory, exit from the loop |
---|
3970 | by forcing a failure after pushing on the stack the |
---|
3971 | on_failure_jump's jump in the pattern, and d. */ |
---|
3972 | if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump |
---|
3973 | && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) |
---|
3974 | { |
---|
3975 | /* If this group ever matched anything, then restore |
---|
3976 | what its registers were before trying this last |
---|
3977 | failed match, e.g., with `(a*)*b' against `ab' for |
---|
3978 | regstart[1], and, e.g., with `((a*)*(b*)*)*' |
---|
3979 | against `aba' for regend[3]. |
---|
3980 | |
---|
3981 | Also restore the registers for inner groups for, |
---|
3982 | e.g., `((a*)(b*))*' against `aba' (register 3 would |
---|
3983 | otherwise get trashed). */ |
---|
3984 | |
---|
3985 | if (EVER_MATCHED_SOMETHING (reg_info[*p])) |
---|
3986 | { |
---|
3987 | unsigned r; |
---|
3988 | |
---|
3989 | EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; |
---|
3990 | |
---|
3991 | /* Restore this and inner groups' (if any) registers. */ |
---|
3992 | for (r = *p; r < *p + *(p + 1); r++) |
---|
3993 | { |
---|
3994 | regstart[r] = old_regstart[r]; |
---|
3995 | |
---|
3996 | /* xx why this test? */ |
---|
3997 | if ((int) old_regend[r] >= (int) regstart[r]) |
---|
3998 | regend[r] = old_regend[r]; |
---|
3999 | } |
---|
4000 | } |
---|
4001 | p1++; |
---|
4002 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
---|
4003 | PUSH_FAILURE_POINT (p1 + mcnt, d, -2); |
---|
4004 | |
---|
4005 | goto fail; |
---|
4006 | } |
---|
4007 | } |
---|
4008 | |
---|
4009 | /* Move past the register number and the inner group count. */ |
---|
4010 | p += 2; |
---|
4011 | break; |
---|
4012 | |
---|
4013 | |
---|
4014 | /* \<digit> has been turned into a `duplicate' command which is |
---|
4015 | followed by the numeric value of <digit> as the register number. */ |
---|
4016 | case duplicate: |
---|
4017 | { |
---|
4018 | register const char *d2, *dend2; |
---|
4019 | int regno = *p++; /* Get which register to match against. */ |
---|
4020 | DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); |
---|
4021 | |
---|
4022 | /* Can't back reference a group which we've never matched. */ |
---|
4023 | if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) |
---|
4024 | goto fail; |
---|
4025 | |
---|
4026 | /* Where in input to try to start matching. */ |
---|
4027 | d2 = regstart[regno]; |
---|
4028 | |
---|
4029 | /* Where to stop matching; if both the place to start and |
---|
4030 | the place to stop matching are in the same string, then |
---|
4031 | set to the place to stop, otherwise, for now have to use |
---|
4032 | the end of the first string. */ |
---|
4033 | |
---|
4034 | dend2 = ((FIRST_STRING_P (regstart[regno]) |
---|
4035 | == FIRST_STRING_P (regend[regno])) |
---|
4036 | ? regend[regno] : end_match_1); |
---|
4037 | for (;;) |
---|
4038 | { |
---|
4039 | /* If necessary, advance to next segment in register |
---|
4040 | contents. */ |
---|
4041 | while (d2 == dend2) |
---|
4042 | { |
---|
4043 | if (dend2 == end_match_2) break; |
---|
4044 | if (dend2 == regend[regno]) break; |
---|
4045 | |
---|
4046 | /* End of string1 => advance to string2. */ |
---|
4047 | d2 = string2; |
---|
4048 | dend2 = regend[regno]; |
---|
4049 | } |
---|
4050 | /* At end of register contents => success */ |
---|
4051 | if (d2 == dend2) break; |
---|
4052 | |
---|
4053 | /* If necessary, advance to next segment in data. */ |
---|
4054 | PREFETCH (); |
---|
4055 | |
---|
4056 | /* How many characters left in this segment to match. */ |
---|
4057 | mcnt = dend - d; |
---|
4058 | |
---|
4059 | /* Want how many consecutive characters we can match in |
---|
4060 | one shot, so, if necessary, adjust the count. */ |
---|
4061 | if (mcnt > dend2 - d2) |
---|
4062 | mcnt = dend2 - d2; |
---|
4063 | |
---|
4064 | /* Compare that many; failure if mismatch, else move |
---|
4065 | past them. */ |
---|
4066 | if (translate |
---|
4067 | ? bcmp_translate (d, d2, mcnt, translate) |
---|
4068 | : bcmp (d, d2, mcnt)) |
---|
4069 | goto fail; |
---|
4070 | d += mcnt, d2 += mcnt; |
---|
4071 | } |
---|
4072 | } |
---|
4073 | break; |
---|
4074 | |
---|
4075 | |
---|
4076 | /* begline matches the empty string at the beginning of the string |
---|
4077 | (unless `not_bol' is set in `bufp'), and, if |
---|
4078 | `newline_anchor' is set, after newlines. */ |
---|
4079 | case begline: |
---|
4080 | DEBUG_PRINT1 ("EXECUTING begline.\n"); |
---|
4081 | |
---|
4082 | if (AT_STRINGS_BEG (d)) |
---|
4083 | { |
---|
4084 | if (!bufp->not_bol) break; |
---|
4085 | } |
---|
4086 | else if (d[-1] == '\n' && bufp->newline_anchor) |
---|
4087 | { |
---|
4088 | break; |
---|
4089 | } |
---|
4090 | /* In all other cases, we fail. */ |
---|
4091 | goto fail; |
---|
4092 | |
---|
4093 | |
---|
4094 | /* endline is the dual of begline. */ |
---|
4095 | case endline: |
---|
4096 | DEBUG_PRINT1 ("EXECUTING endline.\n"); |
---|
4097 | |
---|
4098 | if (AT_STRINGS_END (d)) |
---|
4099 | { |
---|
4100 | if (!bufp->not_eol) break; |
---|
4101 | } |
---|
4102 | |
---|
4103 | /* We have to ``prefetch'' the next character. */ |
---|
4104 | else if ((d == end1 ? *string2 : *d) == '\n' |
---|
4105 | && bufp->newline_anchor) |
---|
4106 | { |
---|
4107 | break; |
---|
4108 | } |
---|
4109 | goto fail; |
---|
4110 | |
---|
4111 | |
---|
4112 | /* Match at the very beginning of the data. */ |
---|
4113 | case begbuf: |
---|
4114 | DEBUG_PRINT1 ("EXECUTING begbuf.\n"); |
---|
4115 | if (AT_STRINGS_BEG (d)) |
---|
4116 | break; |
---|
4117 | goto fail; |
---|
4118 | |
---|
4119 | |
---|
4120 | /* Match at the very end of the data. */ |
---|
4121 | case endbuf: |
---|
4122 | DEBUG_PRINT1 ("EXECUTING endbuf.\n"); |
---|
4123 | if (AT_STRINGS_END (d)) |
---|
4124 | break; |
---|
4125 | goto fail; |
---|
4126 | |
---|
4127 | |
---|
4128 | /* on_failure_keep_string_jump is used to optimize `.*\n'. It |
---|
4129 | pushes NULL as the value for the string on the stack. Then |
---|
4130 | `pop_failure_point' will keep the current value for the |
---|
4131 | string, instead of restoring it. To see why, consider |
---|
4132 | matching `foo\nbar' against `.*\n'. The .* matches the foo; |
---|
4133 | then the . fails against the \n. But the next thing we want |
---|
4134 | to do is match the \n against the \n; if we restored the |
---|
4135 | string value, we would be back at the foo. |
---|
4136 | |
---|
4137 | Because this is used only in specific cases, we don't need to |
---|
4138 | check all the things that `on_failure_jump' does, to make |
---|
4139 | sure the right things get saved on the stack. Hence we don't |
---|
4140 | share its code. The only reason to push anything on the |
---|
4141 | stack at all is that otherwise we would have to change |
---|
4142 | `anychar's code to do something besides goto fail in this |
---|
4143 | case; that seems worse than this. */ |
---|
4144 | case on_failure_keep_string_jump: |
---|
4145 | DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); |
---|
4146 | |
---|
4147 | EXTRACT_NUMBER_AND_INCR (mcnt, p); |
---|
4148 | DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); |
---|
4149 | |
---|
4150 | PUSH_FAILURE_POINT (p + mcnt, NULL, -2); |
---|
4151 | break; |
---|
4152 | |
---|
4153 | |
---|
4154 | /* Uses of on_failure_jump: |
---|
4155 | |
---|
4156 | Each alternative starts with an on_failure_jump that points |
---|
4157 | to the beginning of the next alternative. Each alternative |
---|
4158 | except the last ends with a jump that in effect jumps past |
---|
4159 | the rest of the alternatives. (They really jump to the |
---|
4160 | ending jump of the following alternative, because tensioning |
---|
4161 | these jumps is a hassle.) |
---|
4162 | |
---|
4163 | Repeats start with an on_failure_jump that points past both |
---|
4164 | the repetition text and either the following jump or |
---|
4165 | pop_failure_jump back to this on_failure_jump. */ |
---|
4166 | case on_failure_jump: |
---|
4167 | on_failure: |
---|
4168 | DEBUG_PRINT1 ("EXECUTING on_failure_jump"); |
---|
4169 | |
---|
4170 | EXTRACT_NUMBER_AND_INCR (mcnt, p); |
---|
4171 | DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); |
---|
4172 | |
---|
4173 | /* If this on_failure_jump comes right before a group (i.e., |
---|
4174 | the original * applied to a group), save the information |
---|
4175 | for that group and all inner ones, so that if we fail back |
---|
4176 | to this point, the group's information will be correct. |
---|
4177 | For example, in \(a*\)*\1, we need the preceding group, |
---|
4178 | and in \(\(a*\)b*\)\2, we need the inner group. */ |
---|
4179 | |
---|
4180 | /* We can't use `p' to check ahead because we push |
---|
4181 | a failure point to `p + mcnt' after we do this. */ |
---|
4182 | p1 = p; |
---|
4183 | |
---|
4184 | /* We need to skip no_op's before we look for the |
---|
4185 | start_memory in case this on_failure_jump is happening as |
---|
4186 | the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 |
---|
4187 | against aba. */ |
---|
4188 | while (p1 < pend && (re_opcode_t) *p1 == no_op) |
---|
4189 | p1++; |
---|
4190 | |
---|
4191 | if (p1 < pend && (re_opcode_t) *p1 == start_memory) |
---|
4192 | { |
---|
4193 | /* We have a new highest active register now. This will |
---|
4194 | get reset at the start_memory we are about to get to, |
---|
4195 | but we will have saved all the registers relevant to |
---|
4196 | this repetition op, as described above. */ |
---|
4197 | highest_active_reg = *(p1 + 1) + *(p1 + 2); |
---|
4198 | if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) |
---|
4199 | lowest_active_reg = *(p1 + 1); |
---|
4200 | } |
---|
4201 | |
---|
4202 | DEBUG_PRINT1 (":\n"); |
---|
4203 | PUSH_FAILURE_POINT (p + mcnt, d, -2); |
---|
4204 | break; |
---|
4205 | |
---|
4206 | |
---|
4207 | /* A smart repeat ends with `maybe_pop_jump'. |
---|
4208 | We change it to either `pop_failure_jump' or `jump'. */ |
---|
4209 | case maybe_pop_jump: |
---|
4210 | EXTRACT_NUMBER_AND_INCR (mcnt, p); |
---|
4211 | DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); |
---|
4212 | { |
---|
4213 | register unsigned char *p2 = p; |
---|
4214 | |
---|
4215 | /* Compare the beginning of the repeat with what in the |
---|
4216 | pattern follows its end. If we can establish that there |
---|
4217 | is nothing that they would both match, i.e., that we |
---|
4218 | would have to backtrack because of (as in, e.g., `a*a') |
---|
4219 | then we can change to pop_failure_jump, because we'll |
---|
4220 | never have to backtrack. |
---|
4221 | |
---|
4222 | This is not true in the case of alternatives: in |
---|
4223 | `(a|ab)*' we do need to backtrack to the `ab' alternative |
---|
4224 | (e.g., if the string was `ab'). But instead of trying to |
---|
4225 | detect that here, the alternative has put on a dummy |
---|
4226 | failure point which is what we will end up popping. */ |
---|
4227 | |
---|
4228 | /* Skip over open/close-group commands. |
---|
4229 | If what follows this loop is a ...+ construct, |
---|
4230 | look at what begins its body, since we will have to |
---|
4231 | match at least one of that. */ |
---|
4232 | while (1) |
---|
4233 | { |
---|
4234 | if (p2 + 2 < pend |
---|
4235 | && ((re_opcode_t) *p2 == stop_memory |
---|
4236 | || (re_opcode_t) *p2 == start_memory)) |
---|
4237 | p2 += 3; |
---|
4238 | else if (p2 + 6 < pend |
---|
4239 | && (re_opcode_t) *p2 == dummy_failure_jump) |
---|
4240 | p2 += 6; |
---|
4241 | else |
---|
4242 | break; |
---|
4243 | } |
---|
4244 | |
---|
4245 | p1 = p + mcnt; |
---|
4246 | /* p1[0] ... p1[2] are the `on_failure_jump' corresponding |
---|
4247 | to the `maybe_finalize_jump' of this case. Examine what |
---|
4248 | follows. */ |
---|
4249 | |
---|
4250 | /* If we're at the end of the pattern, we can change. */ |
---|
4251 | if (p2 == pend) |
---|
4252 | { |
---|
4253 | /* Consider what happens when matching ":\(.*\)" |
---|
4254 | against ":/". I don't really understand this code |
---|
4255 | yet. */ |
---|
4256 | p[-3] = (unsigned char) pop_failure_jump; |
---|
4257 | DEBUG_PRINT1 |
---|
4258 | (" End of pattern: change to `pop_failure_jump'.\n"); |
---|
4259 | } |
---|
4260 | |
---|
4261 | else if ((re_opcode_t) *p2 == exactn |
---|
4262 | || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) |
---|
4263 | { |
---|
4264 | register unsigned char c |
---|
4265 | = *p2 == (unsigned char) endline ? '\n' : p2[2]; |
---|
4266 | |
---|
4267 | if ((re_opcode_t) p1[3] == exactn && p1[5] != c) |
---|
4268 | { |
---|
4269 | p[-3] = (unsigned char) pop_failure_jump; |
---|
4270 | DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", |
---|
4271 | c, p1[5]); |
---|
4272 | } |
---|
4273 | |
---|
4274 | else if ((re_opcode_t) p1[3] == charset |
---|
4275 | || (re_opcode_t) p1[3] == charset_not) |
---|
4276 | { |
---|
4277 | int not = (re_opcode_t) p1[3] == charset_not; |
---|
4278 | |
---|
4279 | if (c < (unsigned char) (p1[4] * BYTEWIDTH) |
---|
4280 | && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) |
---|
4281 | not = !not; |
---|
4282 | |
---|
4283 | /* `not' is equal to 1 if c would match, which means |
---|
4284 | that we can't change to pop_failure_jump. */ |
---|
4285 | if (!not) |
---|
4286 | { |
---|
4287 | p[-3] = (unsigned char) pop_failure_jump; |
---|
4288 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
---|
4289 | } |
---|
4290 | } |
---|
4291 | } |
---|
4292 | else if ((re_opcode_t) *p2 == charset) |
---|
4293 | { |
---|
4294 | #ifdef DEBUG |
---|
4295 | register unsigned char c |
---|
4296 | = *p2 == (unsigned char) endline ? '\n' : p2[2]; |
---|
4297 | #endif |
---|
4298 | |
---|
4299 | if ((re_opcode_t) p1[3] == exactn |
---|
4300 | && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4] |
---|
4301 | && (p2[1 + p1[4] / BYTEWIDTH] |
---|
4302 | & (1 << (p1[4] % BYTEWIDTH))))) |
---|
4303 | { |
---|
4304 | p[-3] = (unsigned char) pop_failure_jump; |
---|
4305 | DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", |
---|
4306 | c, p1[5]); |
---|
4307 | } |
---|
4308 | |
---|
4309 | else if ((re_opcode_t) p1[3] == charset_not) |
---|
4310 | { |
---|
4311 | int idx; |
---|
4312 | /* We win if the charset_not inside the loop |
---|
4313 | lists every character listed in the charset after. */ |
---|
4314 | for (idx = 0; idx < (int) p2[1]; idx++) |
---|
4315 | if (! (p2[2 + idx] == 0 |
---|
4316 | || (idx < (int) p1[4] |
---|
4317 | && ((p2[2 + idx] & ~ p1[5 + idx]) == 0)))) |
---|
4318 | break; |
---|
4319 | |
---|
4320 | if (idx == p2[1]) |
---|
4321 | { |
---|
4322 | p[-3] = (unsigned char) pop_failure_jump; |
---|
4323 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
---|
4324 | } |
---|
4325 | } |
---|
4326 | else if ((re_opcode_t) p1[3] == charset) |
---|
4327 | { |
---|
4328 | int idx; |
---|
4329 | /* We win if the charset inside the loop |
---|
4330 | has no overlap with the one after the loop. */ |
---|
4331 | for (idx = 0; |
---|
4332 | idx < (int) p2[1] && idx < (int) p1[4]; |
---|
4333 | idx++) |
---|
4334 | if ((p2[2 + idx] & p1[5 + idx]) != 0) |
---|
4335 | break; |
---|
4336 | |
---|
4337 | if (idx == p2[1] || idx == p1[4]) |
---|
4338 | { |
---|
4339 | p[-3] = (unsigned char) pop_failure_jump; |
---|
4340 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
---|
4341 | } |
---|
4342 | } |
---|
4343 | } |
---|
4344 | } |
---|
4345 | p -= 2; /* Point at relative address again. */ |
---|
4346 | if ((re_opcode_t) p[-1] != pop_failure_jump) |
---|
4347 | { |
---|
4348 | p[-1] = (unsigned char) jump; |
---|
4349 | DEBUG_PRINT1 (" Match => jump.\n"); |
---|
4350 | goto unconditional_jump; |
---|
4351 | } |
---|
4352 | /* Note fall through. */ |
---|
4353 | |
---|
4354 | |
---|
4355 | /* The end of a simple repeat has a pop_failure_jump back to |
---|
4356 | its matching on_failure_jump, where the latter will push a |
---|
4357 | failure point. The pop_failure_jump takes off failure |
---|
4358 | points put on by this pop_failure_jump's matching |
---|
4359 | on_failure_jump; we got through the pattern to here from the |
---|
4360 | matching on_failure_jump, so didn't fail. */ |
---|
4361 | case pop_failure_jump: |
---|
4362 | { |
---|
4363 | /* We need to pass separate storage for the lowest and |
---|
4364 | highest registers, even though we don't care about the |
---|
4365 | actual values. Otherwise, we will restore only one |
---|
4366 | register from the stack, since lowest will == highest in |
---|
4367 | `pop_failure_point'. */ |
---|
4368 | unsigned dummy_low_reg, dummy_high_reg; |
---|
4369 | unsigned char *pdummy; |
---|
4370 | const char *sdummy; |
---|
4371 | |
---|
4372 | DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); |
---|
4373 | POP_FAILURE_POINT (sdummy, pdummy, |
---|
4374 | dummy_low_reg, dummy_high_reg, |
---|
4375 | reg_dummy, reg_dummy, reg_info_dummy); |
---|
4376 | } |
---|
4377 | /* Note fall through. */ |
---|
4378 | |
---|
4379 | |
---|
4380 | /* Unconditionally jump (without popping any failure points). */ |
---|
4381 | case jump: |
---|
4382 | unconditional_jump: |
---|
4383 | EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ |
---|
4384 | DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); |
---|
4385 | p += mcnt; /* Do the jump. */ |
---|
4386 | DEBUG_PRINT2 ("(to 0x%x).\n", p); |
---|
4387 | break; |
---|
4388 | |
---|
4389 | |
---|
4390 | /* We need this opcode so we can detect where alternatives end |
---|
4391 | in `group_match_null_string_p' et al. */ |
---|
4392 | case jump_past_alt: |
---|
4393 | DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); |
---|
4394 | goto unconditional_jump; |
---|
4395 | |
---|
4396 | |
---|
4397 | /* Normally, the on_failure_jump pushes a failure point, which |
---|
4398 | then gets popped at pop_failure_jump. We will end up at |
---|
4399 | pop_failure_jump, also, and with a pattern of, say, `a+', we |
---|
4400 | are skipping over the on_failure_jump, so we have to push |
---|
4401 | something meaningless for pop_failure_jump to pop. */ |
---|
4402 | case dummy_failure_jump: |
---|
4403 | DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); |
---|
4404 | /* It doesn't matter what we push for the string here. What |
---|
4405 | the code at `fail' tests is the value for the pattern. */ |
---|
4406 | PUSH_FAILURE_POINT (0, 0, -2); |
---|
4407 | goto unconditional_jump; |
---|
4408 | |
---|
4409 | |
---|
4410 | /* At the end of an alternative, we need to push a dummy failure |
---|
4411 | point in case we are followed by a `pop_failure_jump', because |
---|
4412 | we don't want the failure point for the alternative to be |
---|
4413 | popped. For example, matching `(a|ab)*' against `aab' |
---|
4414 | requires that we match the `ab' alternative. */ |
---|
4415 | case push_dummy_failure: |
---|
4416 | DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); |
---|
4417 | /* See comments just above at `dummy_failure_jump' about the |
---|
4418 | two zeroes. */ |
---|
4419 | PUSH_FAILURE_POINT (0, 0, -2); |
---|
4420 | break; |
---|
4421 | |
---|
4422 | /* Have to succeed matching what follows at least n times. |
---|
4423 | After that, handle like `on_failure_jump'. */ |
---|
4424 | case succeed_n: |
---|
4425 | EXTRACT_NUMBER (mcnt, p + 2); |
---|
4426 | DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); |
---|
4427 | |
---|
4428 | assert (mcnt >= 0); |
---|
4429 | /* Originally, this is how many times we HAVE to succeed. */ |
---|
4430 | if (mcnt > 0) |
---|
4431 | { |
---|
4432 | mcnt--; |
---|
4433 | p += 2; |
---|
4434 | STORE_NUMBER_AND_INCR (p, mcnt); |
---|
4435 | DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt); |
---|
4436 | } |
---|
4437 | else if (mcnt == 0) |
---|
4438 | { |
---|
4439 | DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2); |
---|
4440 | p[2] = (unsigned char) no_op; |
---|
4441 | p[3] = (unsigned char) no_op; |
---|
4442 | goto on_failure; |
---|
4443 | } |
---|
4444 | break; |
---|
4445 | |
---|
4446 | case jump_n: |
---|
4447 | EXTRACT_NUMBER (mcnt, p + 2); |
---|
4448 | DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); |
---|
4449 | |
---|
4450 | /* Originally, this is how many times we CAN jump. */ |
---|
4451 | if (mcnt) |
---|
4452 | { |
---|
4453 | mcnt--; |
---|
4454 | STORE_NUMBER (p + 2, mcnt); |
---|
4455 | goto unconditional_jump; |
---|
4456 | } |
---|
4457 | /* If don't have to jump any more, skip over the rest of command. */ |
---|
4458 | else |
---|
4459 | p += 4; |
---|
4460 | break; |
---|
4461 | |
---|
4462 | case set_number_at: |
---|
4463 | { |
---|
4464 | DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); |
---|
4465 | |
---|
4466 | EXTRACT_NUMBER_AND_INCR (mcnt, p); |
---|
4467 | p1 = p + mcnt; |
---|
4468 | EXTRACT_NUMBER_AND_INCR (mcnt, p); |
---|
4469 | DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt); |
---|
4470 | STORE_NUMBER (p1, mcnt); |
---|
4471 | break; |
---|
4472 | } |
---|
4473 | |
---|
4474 | case wordbound: |
---|
4475 | DEBUG_PRINT1 ("EXECUTING wordbound.\n"); |
---|
4476 | if (AT_WORD_BOUNDARY (d)) |
---|
4477 | break; |
---|
4478 | goto fail; |
---|
4479 | |
---|
4480 | case notwordbound: |
---|
4481 | DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); |
---|
4482 | if (AT_WORD_BOUNDARY (d)) |
---|
4483 | goto fail; |
---|
4484 | break; |
---|
4485 | |
---|
4486 | case wordbeg: |
---|
4487 | DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); |
---|
4488 | if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1))) |
---|
4489 | break; |
---|
4490 | goto fail; |
---|
4491 | |
---|
4492 | case wordend: |
---|
4493 | DEBUG_PRINT1 ("EXECUTING wordend.\n"); |
---|
4494 | if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1) |
---|
4495 | && (!WORDCHAR_P (d) || AT_STRINGS_END (d))) |
---|
4496 | break; |
---|
4497 | goto fail; |
---|
4498 | |
---|
4499 | #ifdef emacs |
---|
4500 | case before_dot: |
---|
4501 | DEBUG_PRINT1 ("EXECUTING before_dot.\n"); |
---|
4502 | if (PTR_CHAR_POS ((unsigned char *) d) >= point) |
---|
4503 | goto fail; |
---|
4504 | break; |
---|
4505 | |
---|
4506 | case at_dot: |
---|
4507 | DEBUG_PRINT1 ("EXECUTING at_dot.\n"); |
---|
4508 | if (PTR_CHAR_POS ((unsigned char *) d) != point) |
---|
4509 | goto fail; |
---|
4510 | break; |
---|
4511 | |
---|
4512 | case after_dot: |
---|
4513 | DEBUG_PRINT1 ("EXECUTING after_dot.\n"); |
---|
4514 | if (PTR_CHAR_POS ((unsigned char *) d) <= point) |
---|
4515 | goto fail; |
---|
4516 | break; |
---|
4517 | #if 0 /* not emacs19 */ |
---|
4518 | case at_dot: |
---|
4519 | DEBUG_PRINT1 ("EXECUTING at_dot.\n"); |
---|
4520 | if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point) |
---|
4521 | goto fail; |
---|
4522 | break; |
---|
4523 | #endif /* not emacs19 */ |
---|
4524 | |
---|
4525 | case syntaxspec: |
---|
4526 | DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); |
---|
4527 | mcnt = *p++; |
---|
4528 | goto matchsyntax; |
---|
4529 | |
---|
4530 | case wordchar: |
---|
4531 | DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); |
---|
4532 | mcnt = (int) Sword; |
---|
4533 | matchsyntax: |
---|
4534 | PREFETCH (); |
---|
4535 | /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ |
---|
4536 | d++; |
---|
4537 | if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt) |
---|
4538 | goto fail; |
---|
4539 | SET_REGS_MATCHED (); |
---|
4540 | break; |
---|
4541 | |
---|
4542 | case notsyntaxspec: |
---|
4543 | DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); |
---|
4544 | mcnt = *p++; |
---|
4545 | goto matchnotsyntax; |
---|
4546 | |
---|
4547 | case notwordchar: |
---|
4548 | DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); |
---|
4549 | mcnt = (int) Sword; |
---|
4550 | matchnotsyntax: |
---|
4551 | PREFETCH (); |
---|
4552 | /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ |
---|
4553 | d++; |
---|
4554 | if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt) |
---|
4555 | goto fail; |
---|
4556 | SET_REGS_MATCHED (); |
---|
4557 | break; |
---|
4558 | |
---|
4559 | #else /* not emacs */ |
---|
4560 | case wordchar: |
---|
4561 | DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); |
---|
4562 | PREFETCH (); |
---|
4563 | if (!WORDCHAR_P (d)) |
---|
4564 | goto fail; |
---|
4565 | SET_REGS_MATCHED (); |
---|
4566 | d++; |
---|
4567 | break; |
---|
4568 | |
---|
4569 | case notwordchar: |
---|
4570 | DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); |
---|
4571 | PREFETCH (); |
---|
4572 | if (WORDCHAR_P (d)) |
---|
4573 | goto fail; |
---|
4574 | SET_REGS_MATCHED (); |
---|
4575 | d++; |
---|
4576 | break; |
---|
4577 | #endif /* not emacs */ |
---|
4578 | |
---|
4579 | default: |
---|
4580 | abort (); |
---|
4581 | } |
---|
4582 | continue; /* Successfully executed one pattern command; keep going. */ |
---|
4583 | |
---|
4584 | |
---|
4585 | /* We goto here if a matching operation fails. */ |
---|
4586 | fail: |
---|
4587 | if (!FAIL_STACK_EMPTY ()) |
---|
4588 | { /* A restart point is known. Restore to that state. */ |
---|
4589 | DEBUG_PRINT1 ("\nFAIL:\n"); |
---|
4590 | POP_FAILURE_POINT (d, p, |
---|
4591 | lowest_active_reg, highest_active_reg, |
---|
4592 | regstart, regend, reg_info); |
---|
4593 | |
---|
4594 | /* If this failure point is a dummy, try the next one. */ |
---|
4595 | if (!p) |
---|
4596 | goto fail; |
---|
4597 | |
---|
4598 | /* If we failed to the end of the pattern, don't examine *p. */ |
---|
4599 | assert (p <= pend); |
---|
4600 | if (p < pend) |
---|
4601 | { |
---|
4602 | boolean is_a_jump_n = false; |
---|
4603 | |
---|
4604 | /* If failed to a backwards jump that's part of a repetition |
---|
4605 | loop, need to pop this failure point and use the next one. */ |
---|
4606 | switch ((re_opcode_t) *p) |
---|
4607 | { |
---|
4608 | case jump_n: |
---|
4609 | is_a_jump_n = true; |
---|
4610 | case maybe_pop_jump: |
---|
4611 | case pop_failure_jump: |
---|
4612 | case jump: |
---|
4613 | p1 = p + 1; |
---|
4614 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
---|
4615 | p1 += mcnt; |
---|
4616 | |
---|
4617 | if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) |
---|
4618 | || (!is_a_jump_n |
---|
4619 | && (re_opcode_t) *p1 == on_failure_jump)) |
---|
4620 | goto fail; |
---|
4621 | break; |
---|
4622 | default: |
---|
4623 | /* do nothing */ ; |
---|
4624 | } |
---|
4625 | } |
---|
4626 | |
---|
4627 | if (d >= string1 && d <= end1) |
---|
4628 | dend = end_match_1; |
---|
4629 | } |
---|
4630 | else |
---|
4631 | break; /* Matching at this starting point really fails. */ |
---|
4632 | } /* for (;;) */ |
---|
4633 | |
---|
4634 | if (best_regs_set) |
---|
4635 | goto restore_best_regs; |
---|
4636 | |
---|
4637 | FREE_VARIABLES (); |
---|
4638 | |
---|
4639 | return -1; /* Failure to match. */ |
---|
4640 | } /* re_match_2 */ |
---|
4641 | |
---|
4642 | /* Subroutine definitions for re_match_2. */ |
---|
4643 | |
---|
4644 | |
---|
4645 | /* We are passed P pointing to a register number after a start_memory. |
---|
4646 | |
---|
4647 | Return true if the pattern up to the corresponding stop_memory can |
---|
4648 | match the empty string, and false otherwise. |
---|
4649 | |
---|
4650 | If we find the matching stop_memory, sets P to point to one past its number. |
---|
4651 | Otherwise, sets P to an undefined byte less than or equal to END. |
---|
4652 | |
---|
4653 | We don't handle duplicates properly (yet). */ |
---|
4654 | |
---|
4655 | static boolean |
---|
4656 | group_match_null_string_p (p, end, reg_info) |
---|
4657 | unsigned char **p, *end; |
---|
4658 | register_info_type *reg_info; |
---|
4659 | { |
---|
4660 | int mcnt; |
---|
4661 | /* Point to after the args to the start_memory. */ |
---|
4662 | unsigned char *p1 = *p + 2; |
---|
4663 | |
---|
4664 | while (p1 < end) |
---|
4665 | { |
---|
4666 | /* Skip over opcodes that can match nothing, and return true or |
---|
4667 | false, as appropriate, when we get to one that can't, or to the |
---|
4668 | matching stop_memory. */ |
---|
4669 | |
---|
4670 | switch ((re_opcode_t) *p1) |
---|
4671 | { |
---|
4672 | /* Could be either a loop or a series of alternatives. */ |
---|
4673 | case on_failure_jump: |
---|
4674 | p1++; |
---|
4675 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
---|
4676 | |
---|
4677 | /* If the next operation is not a jump backwards in the |
---|
4678 | pattern. */ |
---|
4679 | |
---|
4680 | if (mcnt >= 0) |
---|
4681 | { |
---|
4682 | /* Go through the on_failure_jumps of the alternatives, |
---|
4683 | seeing if any of the alternatives cannot match nothing. |
---|
4684 | The last alternative starts with only a jump, |
---|
4685 | whereas the rest start with on_failure_jump and end |
---|
4686 | with a jump, e.g., here is the pattern for `a|b|c': |
---|
4687 | |
---|
4688 | /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 |
---|
4689 | /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 |
---|
4690 | /exactn/1/c |
---|
4691 | |
---|
4692 | So, we have to first go through the first (n-1) |
---|
4693 | alternatives and then deal with the last one separately. */ |
---|
4694 | |
---|
4695 | |
---|
4696 | /* Deal with the first (n-1) alternatives, which start |
---|
4697 | with an on_failure_jump (see above) that jumps to right |
---|
4698 | past a jump_past_alt. */ |
---|
4699 | |
---|
4700 | while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) |
---|
4701 | { |
---|
4702 | /* `mcnt' holds how many bytes long the alternative |
---|
4703 | is, including the ending `jump_past_alt' and |
---|
4704 | its number. */ |
---|
4705 | |
---|
4706 | if (!alt_match_null_string_p (p1, p1 + mcnt - 3, |
---|
4707 | reg_info)) |
---|
4708 | return false; |
---|
4709 | |
---|
4710 | /* Move to right after this alternative, including the |
---|
4711 | jump_past_alt. */ |
---|
4712 | p1 += mcnt; |
---|
4713 | |
---|
4714 | /* Break if it's the beginning of an n-th alternative |
---|
4715 | that doesn't begin with an on_failure_jump. */ |
---|
4716 | if ((re_opcode_t) *p1 != on_failure_jump) |
---|
4717 | break; |
---|
4718 | |
---|
4719 | /* Still have to check that it's not an n-th |
---|
4720 | alternative that starts with an on_failure_jump. */ |
---|
4721 | p1++; |
---|
4722 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
---|
4723 | if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) |
---|
4724 | { |
---|
4725 | /* Get to the beginning of the n-th alternative. */ |
---|
4726 | p1 -= 3; |
---|
4727 | break; |
---|
4728 | } |
---|
4729 | } |
---|
4730 | |
---|
4731 | /* Deal with the last alternative: go back and get number |
---|
4732 | of the `jump_past_alt' just before it. `mcnt' contains |
---|
4733 | the length of the alternative. */ |
---|
4734 | EXTRACT_NUMBER (mcnt, p1 - 2); |
---|
4735 | |
---|
4736 | if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info)) |
---|
4737 | return false; |
---|
4738 | |
---|
4739 | p1 += mcnt; /* Get past the n-th alternative. */ |
---|
4740 | } /* if mcnt > 0 */ |
---|
4741 | break; |
---|
4742 | |
---|
4743 | |
---|
4744 | case stop_memory: |
---|
4745 | assert (p1[1] == **p); |
---|
4746 | *p = p1 + 2; |
---|
4747 | return true; |
---|
4748 | |
---|
4749 | |
---|
4750 | default: |
---|
4751 | if (!common_op_match_null_string_p (&p1, end, reg_info)) |
---|
4752 | return false; |
---|
4753 | } |
---|
4754 | } /* while p1 < end */ |
---|
4755 | |
---|
4756 | return false; |
---|
4757 | } /* group_match_null_string_p */ |
---|
4758 | |
---|
4759 | |
---|
4760 | /* Similar to group_match_null_string_p, but doesn't deal with alternatives: |
---|
4761 | It expects P to be the first byte of a single alternative and END one |
---|
4762 | byte past the last. The alternative can contain groups. */ |
---|
4763 | |
---|
4764 | static boolean |
---|
4765 | alt_match_null_string_p (p, end, reg_info) |
---|
4766 | unsigned char *p, *end; |
---|
4767 | register_info_type *reg_info; |
---|
4768 | { |
---|
4769 | int mcnt; |
---|
4770 | unsigned char *p1 = p; |
---|
4771 | |
---|
4772 | while (p1 < end) |
---|
4773 | { |
---|
4774 | /* Skip over opcodes that can match nothing, and break when we get |
---|
4775 | to one that can't. */ |
---|
4776 | |
---|
4777 | switch ((re_opcode_t) *p1) |
---|
4778 | { |
---|
4779 | /* It's a loop. */ |
---|
4780 | case on_failure_jump: |
---|
4781 | p1++; |
---|
4782 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
---|
4783 | p1 += mcnt; |
---|
4784 | break; |
---|
4785 | |
---|
4786 | default: |
---|
4787 | if (!common_op_match_null_string_p (&p1, end, reg_info)) |
---|
4788 | return false; |
---|
4789 | } |
---|
4790 | } /* while p1 < end */ |
---|
4791 | |
---|
4792 | return true; |
---|
4793 | } /* alt_match_null_string_p */ |
---|
4794 | |
---|
4795 | |
---|
4796 | /* Deals with the ops common to group_match_null_string_p and |
---|
4797 | alt_match_null_string_p. |
---|
4798 | |
---|
4799 | Sets P to one after the op and its arguments, if any. */ |
---|
4800 | |
---|
4801 | static boolean |
---|
4802 | common_op_match_null_string_p (p, end, reg_info) |
---|
4803 | unsigned char **p, *end; |
---|
4804 | register_info_type *reg_info; |
---|
4805 | { |
---|
4806 | int mcnt; |
---|
4807 | boolean ret; |
---|
4808 | int reg_no; |
---|
4809 | unsigned char *p1 = *p; |
---|
4810 | |
---|
4811 | switch ((re_opcode_t) *p1++) |
---|
4812 | { |
---|
4813 | case no_op: |
---|
4814 | case begline: |
---|
4815 | case endline: |
---|
4816 | case begbuf: |
---|
4817 | case endbuf: |
---|
4818 | case wordbeg: |
---|
4819 | case wordend: |
---|
4820 | case wordbound: |
---|
4821 | case notwordbound: |
---|
4822 | #ifdef emacs |
---|
4823 | case before_dot: |
---|
4824 | case at_dot: |
---|
4825 | case after_dot: |
---|
4826 | #endif |
---|
4827 | break; |
---|
4828 | |
---|
4829 | case start_memory: |
---|
4830 | reg_no = *p1; |
---|
4831 | assert (reg_no > 0 && reg_no <= MAX_REGNUM); |
---|
4832 | ret = group_match_null_string_p (&p1, end, reg_info); |
---|
4833 | |
---|
4834 | /* Have to set this here in case we're checking a group which |
---|
4835 | contains a group and a back reference to it. */ |
---|
4836 | |
---|
4837 | if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) |
---|
4838 | REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; |
---|
4839 | |
---|
4840 | if (!ret) |
---|
4841 | return false; |
---|
4842 | break; |
---|
4843 | |
---|
4844 | /* If this is an optimized succeed_n for zero times, make the jump. */ |
---|
4845 | case jump: |
---|
4846 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
---|
4847 | if (mcnt >= 0) |
---|
4848 | p1 += mcnt; |
---|
4849 | else |
---|
4850 | return false; |
---|
4851 | break; |
---|
4852 | |
---|
4853 | case succeed_n: |
---|
4854 | /* Get to the number of times to succeed. */ |
---|
4855 | p1 += 2; |
---|
4856 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
---|
4857 | |
---|
4858 | if (mcnt == 0) |
---|
4859 | { |
---|
4860 | p1 -= 4; |
---|
4861 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
---|
4862 | p1 += mcnt; |
---|
4863 | } |
---|
4864 | else |
---|
4865 | return false; |
---|
4866 | break; |
---|
4867 | |
---|
4868 | case duplicate: |
---|
4869 | if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) |
---|
4870 | return false; |
---|
4871 | break; |
---|
4872 | |
---|
4873 | case set_number_at: |
---|
4874 | p1 += 4; |
---|
4875 | |
---|
4876 | default: |
---|
4877 | /* All other opcodes mean we cannot match the empty string. */ |
---|
4878 | return false; |
---|
4879 | } |
---|
4880 | |
---|
4881 | *p = p1; |
---|
4882 | return true; |
---|
4883 | } /* common_op_match_null_string_p */ |
---|
4884 | |
---|
4885 | |
---|
4886 | /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN |
---|
4887 | bytes; nonzero otherwise. */ |
---|
4888 | |
---|
4889 | static int |
---|
4890 | bcmp_translate (s1, s2, len, translate) |
---|
4891 | unsigned char *s1, *s2; |
---|
4892 | register int len; |
---|
4893 | char *translate; |
---|
4894 | { |
---|
4895 | register unsigned char *p1 = s1, *p2 = s2; |
---|
4896 | while (len) |
---|
4897 | { |
---|
4898 | if (translate[*p1++] != translate[*p2++]) return 1; |
---|
4899 | len--; |
---|
4900 | } |
---|
4901 | return 0; |
---|
4902 | } |
---|
4903 | |
---|
4904 | /* Entry points for GNU code. */ |
---|
4905 | |
---|
4906 | /* re_compile_pattern is the GNU regular expression compiler: it |
---|
4907 | compiles PATTERN (of length SIZE) and puts the result in BUFP. |
---|
4908 | Returns 0 if the pattern was valid, otherwise an error string. |
---|
4909 | |
---|
4910 | Assumes the `allocated' (and perhaps `buffer') and `translate' fields |
---|
4911 | are set in BUFP on entry. |
---|
4912 | |
---|
4913 | We call regex_compile to do the actual compilation. */ |
---|
4914 | |
---|
4915 | const char * |
---|
4916 | re_compile_pattern (pattern, length, bufp) |
---|
4917 | const char *pattern; |
---|
4918 | int length; |
---|
4919 | struct re_pattern_buffer *bufp; |
---|
4920 | { |
---|
4921 | reg_errcode_t ret; |
---|
4922 | |
---|
4923 | /* GNU code is written to assume at least RE_NREGS registers will be set |
---|
4924 | (and at least one extra will be -1). */ |
---|
4925 | bufp->regs_allocated = REGS_UNALLOCATED; |
---|
4926 | |
---|
4927 | /* And GNU code determines whether or not to get register information |
---|
4928 | by passing null for the REGS argument to re_match, etc., not by |
---|
4929 | setting no_sub. */ |
---|
4930 | bufp->no_sub = 0; |
---|
4931 | |
---|
4932 | /* Match anchors at newline. */ |
---|
4933 | bufp->newline_anchor = 1; |
---|
4934 | |
---|
4935 | ret = regex_compile (pattern, length, re_syntax_options, bufp); |
---|
4936 | |
---|
4937 | return re_error_msg[(int) ret]; |
---|
4938 | } |
---|
4939 | |
---|
4940 | /* Entry points compatible with 4.2 BSD regex library. We don't define |
---|
4941 | them if this is an Emacs or POSIX compilation. */ |
---|
4942 | |
---|
4943 | #if !defined (emacs) && !defined (_POSIX_SOURCE) |
---|
4944 | |
---|
4945 | /* BSD has one and only one pattern buffer. */ |
---|
4946 | static struct re_pattern_buffer re_comp_buf; |
---|
4947 | |
---|
4948 | char * |
---|
4949 | re_comp (s) |
---|
4950 | const char *s; |
---|
4951 | { |
---|
4952 | reg_errcode_t ret; |
---|
4953 | |
---|
4954 | if (!s) |
---|
4955 | { |
---|
4956 | if (!re_comp_buf.buffer) |
---|
4957 | return "No previous regular expression"; |
---|
4958 | return 0; |
---|
4959 | } |
---|
4960 | |
---|
4961 | if (!re_comp_buf.buffer) |
---|
4962 | { |
---|
4963 | re_comp_buf.buffer = (unsigned char *) malloc (200); |
---|
4964 | if (re_comp_buf.buffer == NULL) |
---|
4965 | return "Memory exhausted"; |
---|
4966 | re_comp_buf.allocated = 200; |
---|
4967 | |
---|
4968 | re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); |
---|
4969 | if (re_comp_buf.fastmap == NULL) |
---|
4970 | return "Memory exhausted"; |
---|
4971 | } |
---|
4972 | |
---|
4973 | /* Since `re_exec' always passes NULL for the `regs' argument, we |
---|
4974 | don't need to initialize the pattern buffer fields which affect it. */ |
---|
4975 | |
---|
4976 | /* Match anchors at newlines. */ |
---|
4977 | re_comp_buf.newline_anchor = 1; |
---|
4978 | |
---|
4979 | ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); |
---|
4980 | |
---|
4981 | /* Yes, we're discarding `const' here. */ |
---|
4982 | return (char *) re_error_msg[(int) ret]; |
---|
4983 | } |
---|
4984 | |
---|
4985 | |
---|
4986 | int |
---|
4987 | re_exec (s) |
---|
4988 | const char *s; |
---|
4989 | { |
---|
4990 | const int len = strlen (s); |
---|
4991 | return |
---|
4992 | 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0); |
---|
4993 | } |
---|
4994 | #endif /* not emacs and not _POSIX_SOURCE */ |
---|
4995 | |
---|
4996 | /* POSIX.2 functions. Don't define these for Emacs. */ |
---|
4997 | |
---|
4998 | #ifndef emacs |
---|
4999 | |
---|
5000 | /* regcomp takes a regular expression as a string and compiles it. |
---|
5001 | |
---|
5002 | PREG is a regex_t *. We do not expect any fields to be initialized, |
---|
5003 | since POSIX says we shouldn't. Thus, we set |
---|
5004 | |
---|
5005 | `buffer' to the compiled pattern; |
---|
5006 | `used' to the length of the compiled pattern; |
---|
5007 | `syntax' to RE_SYNTAX_POSIX_EXTENDED if the |
---|
5008 | REG_EXTENDED bit in CFLAGS is set; otherwise, to |
---|
5009 | RE_SYNTAX_POSIX_BASIC; |
---|
5010 | `newline_anchor' to REG_NEWLINE being set in CFLAGS; |
---|
5011 | `fastmap' and `fastmap_accurate' to zero; |
---|
5012 | `re_nsub' to the number of subexpressions in PATTERN. |
---|
5013 | |
---|
5014 | PATTERN is the address of the pattern string. |
---|
5015 | |
---|
5016 | CFLAGS is a series of bits which affect compilation. |
---|
5017 | |
---|
5018 | If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we |
---|
5019 | use POSIX basic syntax. |
---|
5020 | |
---|
5021 | If REG_NEWLINE is set, then . and [^...] don't match newline. |
---|
5022 | Also, regexec will try a match beginning after every newline. |
---|
5023 | |
---|
5024 | If REG_ICASE is set, then we considers upper- and lowercase |
---|
5025 | versions of letters to be equivalent when matching. |
---|
5026 | |
---|
5027 | If REG_NOSUB is set, then when PREG is passed to regexec, that |
---|
5028 | routine will report only success or failure, and nothing about the |
---|
5029 | registers. |
---|
5030 | |
---|
5031 | It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for |
---|
5032 | the return codes and their meanings.) */ |
---|
5033 | |
---|
5034 | int |
---|
5035 | regcomp (preg, pattern, cflags) |
---|
5036 | regex_t *preg; |
---|
5037 | const char *pattern; |
---|
5038 | int cflags; |
---|
5039 | { |
---|
5040 | reg_errcode_t ret; |
---|
5041 | unsigned syntax |
---|
5042 | = (cflags & REG_EXTENDED) ? |
---|
5043 | RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; |
---|
5044 | |
---|
5045 | /* regex_compile will allocate the space for the compiled pattern. */ |
---|
5046 | preg->buffer = 0; |
---|
5047 | preg->allocated = 0; |
---|
5048 | preg->used = 0; |
---|
5049 | |
---|
5050 | /* Don't bother to use a fastmap when searching. This simplifies the |
---|
5051 | REG_NEWLINE case: if we used a fastmap, we'd have to put all the |
---|
5052 | characters after newlines into the fastmap. This way, we just try |
---|
5053 | every character. */ |
---|
5054 | preg->fastmap = 0; |
---|
5055 | |
---|
5056 | if (cflags & REG_ICASE) |
---|
5057 | { |
---|
5058 | unsigned i; |
---|
5059 | |
---|
5060 | preg->translate = (char *) malloc (CHAR_SET_SIZE); |
---|
5061 | if (preg->translate == NULL) |
---|
5062 | return (int) REG_ESPACE; |
---|
5063 | |
---|
5064 | /* Map uppercase characters to corresponding lowercase ones. */ |
---|
5065 | for (i = 0; i < CHAR_SET_SIZE; i++) |
---|
5066 | preg->translate[i] = ISUPPER (i) ? tolower (i) : i; |
---|
5067 | } |
---|
5068 | else |
---|
5069 | preg->translate = NULL; |
---|
5070 | |
---|
5071 | /* If REG_NEWLINE is set, newlines are treated differently. */ |
---|
5072 | if (cflags & REG_NEWLINE) |
---|
5073 | { /* REG_NEWLINE implies neither . nor [^...] match newline. */ |
---|
5074 | syntax &= ~RE_DOT_NEWLINE; |
---|
5075 | syntax |= RE_HAT_LISTS_NOT_NEWLINE; |
---|
5076 | /* It also changes the matching behavior. */ |
---|
5077 | preg->newline_anchor = 1; |
---|
5078 | } |
---|
5079 | else |
---|
5080 | preg->newline_anchor = 0; |
---|
5081 | |
---|
5082 | preg->no_sub = !!(cflags & REG_NOSUB); |
---|
5083 | |
---|
5084 | /* POSIX says a null character in the pattern terminates it, so we |
---|
5085 | can use strlen here in compiling the pattern. */ |
---|
5086 | ret = regex_compile (pattern, strlen (pattern), syntax, preg); |
---|
5087 | |
---|
5088 | /* POSIX doesn't distinguish between an unmatched open-group and an |
---|
5089 | unmatched close-group: both are REG_EPAREN. */ |
---|
5090 | if (ret == REG_ERPAREN) ret = REG_EPAREN; |
---|
5091 | |
---|
5092 | return (int) ret; |
---|
5093 | } |
---|
5094 | |
---|
5095 | |
---|
5096 | /* regexec searches for a given pattern, specified by PREG, in the |
---|
5097 | string STRING. |
---|
5098 | |
---|
5099 | If NMATCH is zero or REG_NOSUB was set in the cflags argument to |
---|
5100 | `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at |
---|
5101 | least NMATCH elements, and we set them to the offsets of the |
---|
5102 | corresponding matched substrings. |
---|
5103 | |
---|
5104 | EFLAGS specifies `execution flags' which affect matching: if |
---|
5105 | REG_NOTBOL is set, then ^ does not match at the beginning of the |
---|
5106 | string; if REG_NOTEOL is set, then $ does not match at the end. |
---|
5107 | |
---|
5108 | We return 0 if we find a match and REG_NOMATCH if not. */ |
---|
5109 | |
---|
5110 | int |
---|
5111 | regexec (preg, string, nmatch, pmatch, eflags) |
---|
5112 | const regex_t *preg; |
---|
5113 | const char *string; |
---|
5114 | size_t nmatch; |
---|
5115 | regmatch_t pmatch[]; |
---|
5116 | int eflags; |
---|
5117 | { |
---|
5118 | int ret; |
---|
5119 | struct re_registers regs; |
---|
5120 | regex_t private_preg; |
---|
5121 | int len = strlen (string); |
---|
5122 | boolean want_reg_info = !preg->no_sub && nmatch > 0; |
---|
5123 | |
---|
5124 | private_preg = *preg; |
---|
5125 | |
---|
5126 | private_preg.not_bol = !!(eflags & REG_NOTBOL); |
---|
5127 | private_preg.not_eol = !!(eflags & REG_NOTEOL); |
---|
5128 | |
---|
5129 | /* The user has told us exactly how many registers to return |
---|
5130 | information about, via `nmatch'. We have to pass that on to the |
---|
5131 | matching routines. */ |
---|
5132 | private_preg.regs_allocated = REGS_FIXED; |
---|
5133 | |
---|
5134 | if (want_reg_info) |
---|
5135 | { |
---|
5136 | regs.num_regs = nmatch; |
---|
5137 | regs.start = TALLOC (nmatch, regoff_t); |
---|
5138 | regs.end = TALLOC (nmatch, regoff_t); |
---|
5139 | if (regs.start == NULL || regs.end == NULL) |
---|
5140 | return (int) REG_NOMATCH; |
---|
5141 | } |
---|
5142 | |
---|
5143 | /* Perform the searching operation. */ |
---|
5144 | ret = re_search (&private_preg, string, len, |
---|
5145 | /* start: */ 0, /* range: */ len, |
---|
5146 | want_reg_info ? ®s : (struct re_registers *) 0); |
---|
5147 | |
---|
5148 | /* Copy the register information to the POSIX structure. */ |
---|
5149 | if (want_reg_info) |
---|
5150 | { |
---|
5151 | if (ret >= 0) |
---|
5152 | { |
---|
5153 | unsigned r; |
---|
5154 | |
---|
5155 | for (r = 0; r < nmatch; r++) |
---|
5156 | { |
---|
5157 | pmatch[r].rm_so = regs.start[r]; |
---|
5158 | pmatch[r].rm_eo = regs.end[r]; |
---|
5159 | } |
---|
5160 | } |
---|
5161 | |
---|
5162 | /* If we needed the temporary register info, free the space now. */ |
---|
5163 | free (regs.start); |
---|
5164 | free (regs.end); |
---|
5165 | } |
---|
5166 | |
---|
5167 | /* We want zero return to mean success, unlike `re_search'. */ |
---|
5168 | return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; |
---|
5169 | } |
---|
5170 | |
---|
5171 | |
---|
5172 | /* Returns a message corresponding to an error code, ERRCODE, returned |
---|
5173 | from either regcomp or regexec. We don't use PREG here. */ |
---|
5174 | |
---|
5175 | size_t |
---|
5176 | regerror (errcode, preg, errbuf, errbuf_size) |
---|
5177 | int errcode; |
---|
5178 | const regex_t *preg; |
---|
5179 | char *errbuf; |
---|
5180 | size_t errbuf_size; |
---|
5181 | { |
---|
5182 | const char *msg; |
---|
5183 | size_t msg_size; |
---|
5184 | |
---|
5185 | if (errcode < 0 |
---|
5186 | || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0]))) |
---|
5187 | /* Only error codes returned by the rest of the code should be passed |
---|
5188 | to this routine. If we are given anything else, or if other regex |
---|
5189 | code generates an invalid error code, then the program has a bug. |
---|
5190 | Dump core so we can fix it. */ |
---|
5191 | abort (); |
---|
5192 | |
---|
5193 | msg = re_error_msg[errcode]; |
---|
5194 | |
---|
5195 | /* POSIX doesn't require that we do anything in this case, but why |
---|
5196 | not be nice. */ |
---|
5197 | if (! msg) |
---|
5198 | msg = "Success"; |
---|
5199 | |
---|
5200 | msg_size = strlen (msg) + 1; /* Includes the null. */ |
---|
5201 | |
---|
5202 | if (errbuf_size != 0) |
---|
5203 | { |
---|
5204 | if (msg_size > errbuf_size) |
---|
5205 | { |
---|
5206 | strncpy (errbuf, msg, errbuf_size - 1); |
---|
5207 | errbuf[errbuf_size - 1] = 0; |
---|
5208 | } |
---|
5209 | else |
---|
5210 | strcpy (errbuf, msg); |
---|
5211 | } |
---|
5212 | |
---|
5213 | return msg_size; |
---|
5214 | } |
---|
5215 | |
---|
5216 | |
---|
5217 | /* Free dynamically allocated space used by PREG. */ |
---|
5218 | |
---|
5219 | void |
---|
5220 | regfree (preg) |
---|
5221 | regex_t *preg; |
---|
5222 | { |
---|
5223 | if (preg->buffer != NULL) |
---|
5224 | free (preg->buffer); |
---|
5225 | preg->buffer = NULL; |
---|
5226 | |
---|
5227 | preg->allocated = 0; |
---|
5228 | preg->used = 0; |
---|
5229 | |
---|
5230 | if (preg->fastmap != NULL) |
---|
5231 | free (preg->fastmap); |
---|
5232 | preg->fastmap = NULL; |
---|
5233 | preg->fastmap_accurate = 0; |
---|
5234 | |
---|
5235 | if (preg->translate != NULL) |
---|
5236 | free (preg->translate); |
---|
5237 | preg->translate = NULL; |
---|
5238 | } |
---|
5239 | |
---|
5240 | #endif /* not emacs */ |
---|
5241 | |
---|
5242 | /* |
---|
5243 | Local variables: |
---|
5244 | make-backup-files: t |
---|
5245 | version-control: t |
---|
5246 | trim-versions-without-asking: nil |
---|
5247 | End: |
---|
5248 | */ |
---|