source: trunk/third/enscript/compat/regex.c @ 17620

Revision 17620, 180.0 KB checked in by ghudson, 22 years ago (diff)
This commit was generated by cvs2svn to compensate for changes in r17619, which included commits to RCS files with non-trunk default branches.
Line 
1/* Extended regular expression matching and search library,
2   version 0.12.
3   (Implements POSIX draft P1003.2/D11.2, except for some of the
4   internationalization features.)
5
6   Copyright (C) 1993-1998 Free Software Foundation, Inc.
7
8   This program is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 2, or (at your option)
11   any later version.
12
13   This program is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with this program; if not, write to the Free Software Foundation,
20   Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
21
22/* AIX requires this to be the first thing in the file. */
23#if defined (_AIX) && !defined (REGEX_MALLOC)
24  #pragma alloca
25#endif
26
27#undef  _GNU_SOURCE
28#define _GNU_SOURCE
29
30#ifdef HAVE_CONFIG_H
31#include <config.h>
32#endif
33
34#if defined(STDC_HEADERS) && !defined(emacs)
35#include <stddef.h>
36#else
37/* We need this for `regex.h', and perhaps for the Emacs include files.  */
38#include <sys/types.h>
39#endif
40
41/* For platform which support the ISO C amendement 1 functionality we
42   support user defined character classes.  */
43#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
44# include <wctype.h>
45# include <wchar.h>
46#endif
47
48/* This is for other GNU distributions with internationalized messages.  */
49#if HAVE_LIBINTL_H || defined (_LIBC)
50# include <libintl.h>
51#else
52# define gettext(msgid) (msgid)
53#endif
54
55#ifndef gettext_noop
56/* This define is so xgettext can find the internationalizable
57   strings.  */
58#define gettext_noop(String) String
59#endif
60
61/* The `emacs' switch turns on certain matching commands
62   that make sense only in Emacs. */
63#ifdef emacs
64
65#include "lisp.h"
66#include "buffer.h"
67#include "syntax.h"
68
69#else  /* not emacs */
70
71/* If we are not linking with Emacs proper,
72   we can't use the relocating allocator
73   even if config.h says that we can.  */
74#undef REL_ALLOC
75
76#if defined (STDC_HEADERS) || defined (_LIBC)
77#include <stdlib.h>
78#else
79char *malloc ();
80char *realloc ();
81#endif
82
83/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
84   If nothing else has been done, use the method below.  */
85#ifdef INHIBIT_STRING_HEADER
86#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
87#if !defined (bzero) && !defined (bcopy)
88#undef INHIBIT_STRING_HEADER
89#endif
90#endif
91#endif
92
93/* This is the normal way of making sure we have a bcopy and a bzero.
94   This is used in most programs--a few other programs avoid this
95   by defining INHIBIT_STRING_HEADER.  */
96#ifndef INHIBIT_STRING_HEADER
97#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
98#include <string.h>
99#ifndef bcmp
100#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
101#endif
102#ifndef bcopy
103#define bcopy(s, d, n)  memcpy ((d), (s), (n))
104#endif
105#ifndef bzero
106#define bzero(s, n)     memset ((s), 0, (n))
107#endif
108#else
109#include <strings.h>
110#endif
111#endif
112
113/* Define the syntax stuff for \<, \>, etc.  */
114
115/* This must be nonzero for the wordchar and notwordchar pattern
116   commands in re_match_2.  */
117#ifndef Sword
118#define Sword 1
119#endif
120
121#ifdef SWITCH_ENUM_BUG
122#define SWITCH_ENUM_CAST(x) ((int)(x))
123#else
124#define SWITCH_ENUM_CAST(x) (x)
125#endif
126
127#ifdef SYNTAX_TABLE
128
129extern char *re_syntax_table;
130
131#else /* not SYNTAX_TABLE */
132
133/* How many characters in the character set.  */
134#define CHAR_SET_SIZE 256
135
136static char re_syntax_table[CHAR_SET_SIZE];
137
138static void
139init_syntax_once ()
140{
141   register int c;
142   static int done = 0;
143
144   if (done)
145     return;
146
147   bzero (re_syntax_table, sizeof re_syntax_table);
148
149   for (c = 'a'; c <= 'z'; c++)
150     re_syntax_table[c] = Sword;
151
152   for (c = 'A'; c <= 'Z'; c++)
153     re_syntax_table[c] = Sword;
154
155   for (c = '0'; c <= '9'; c++)
156     re_syntax_table[c] = Sword;
157
158   re_syntax_table['_'] = Sword;
159
160   done = 1;
161}
162
163#endif /* not SYNTAX_TABLE */
164
165#define SYNTAX(c) re_syntax_table[c]
166
167#endif /* not emacs */
168
169/* Get the interface, including the syntax bits.  */
170#include "regex.h"
171
172/* isalpha etc. are used for the character classes.  */
173#include <ctype.h>
174
175/* Jim Meyering writes:
176
177   "... Some ctype macros are valid only for character codes that
178   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
179   using /bin/cc or gcc but without giving an ansi option).  So, all
180   ctype uses should be through macros like ISPRINT...  If
181   STDC_HEADERS is defined, then autoconf has verified that the ctype
182   macros don't need to be guarded with references to isascii. ...
183   Defining isascii to 1 should let any compiler worth its salt
184   eliminate the && through constant folding."  */
185
186#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
187#define ISASCII(c) 1
188#else
189#define ISASCII(c) isascii(c)
190#endif
191
192#ifdef isblank
193#define ISBLANK(c) (ISASCII (c) && isblank (c))
194#else
195#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
196#endif
197#ifdef isgraph
198#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
199#else
200#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
201#endif
202
203#define ISPRINT(c) (ISASCII (c) && isprint (c))
204#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
205#define ISALNUM(c) (ISASCII (c) && isalnum (c))
206#define ISALPHA(c) (ISASCII (c) && isalpha (c))
207#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
208#define ISLOWER(c) (ISASCII (c) && islower (c))
209#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
210#define ISSPACE(c) (ISASCII (c) && isspace (c))
211#define ISUPPER(c) (ISASCII (c) && isupper (c))
212#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
213
214#ifndef NULL
215#define NULL (void *)0
216#endif
217
218/* We remove any previous definition of `SIGN_EXTEND_CHAR',
219   since ours (we hope) works properly with all combinations of
220   machines, compilers, `char' and `unsigned char' argument types.
221   (Per Bothner suggested the basic approach.)  */
222#undef SIGN_EXTEND_CHAR
223#if __STDC__
224#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
225#else  /* not __STDC__ */
226/* As in Harbison and Steele.  */
227#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
228#endif
229
230/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
231   use `alloca' instead of `malloc'.  This is because using malloc in
232   re_search* or re_match* could cause memory leaks when C-g is used in
233   Emacs; also, malloc is slower and causes storage fragmentation.  On
234   the other hand, malloc is more portable, and easier to debug.
235
236   Because we sometimes use alloca, some routines have to be macros,
237   not functions -- `alloca'-allocated space disappears at the end of the
238   function it is called in.  */
239
240#ifdef REGEX_MALLOC
241
242#define REGEX_ALLOCATE malloc
243#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
244#define REGEX_FREE free
245
246#else /* not REGEX_MALLOC  */
247
248/* Emacs already defines alloca, sometimes.  */
249#ifndef alloca
250
251/* Make alloca work the best possible way.  */
252#ifdef __GNUC__
253#define alloca __builtin_alloca
254#else /* not __GNUC__ */
255#if HAVE_ALLOCA_H
256#include <alloca.h>
257#else /* not __GNUC__ or HAVE_ALLOCA_H */
258#if 0 /* It is a bad idea to declare alloca.  We always cast the result.  */
259#ifndef _AIX /* Already did AIX, up at the top.  */
260char *alloca ();
261#endif /* not _AIX */
262#endif
263#endif /* not HAVE_ALLOCA_H */
264#endif /* not __GNUC__ */
265
266#endif /* not alloca */
267
268#define REGEX_ALLOCATE alloca
269
270/* Assumes a `char *destination' variable.  */
271#define REGEX_REALLOCATE(source, osize, nsize)                          \
272  (destination = (char *) alloca (nsize),                               \
273   bcopy (source, destination, osize),                                  \
274   destination)
275
276/* No need to do anything to free, after alloca.  */
277#define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
278
279#endif /* not REGEX_MALLOC */
280
281/* Define how to allocate the failure stack.  */
282
283#if defined (REL_ALLOC) && defined (REGEX_MALLOC)
284
285#define REGEX_ALLOCATE_STACK(size)                              \
286  r_alloc (&failure_stack_ptr, (size))
287#define REGEX_REALLOCATE_STACK(source, osize, nsize)            \
288  r_re_alloc (&failure_stack_ptr, (nsize))
289#define REGEX_FREE_STACK(ptr)                                   \
290  r_alloc_free (&failure_stack_ptr)
291
292#else /* not using relocating allocator */
293
294#ifdef REGEX_MALLOC
295
296#define REGEX_ALLOCATE_STACK malloc
297#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
298#define REGEX_FREE_STACK free
299
300#else /* not REGEX_MALLOC */
301
302#define REGEX_ALLOCATE_STACK alloca
303
304#define REGEX_REALLOCATE_STACK(source, osize, nsize)                    \
305   REGEX_REALLOCATE (source, osize, nsize)
306/* No need to explicitly free anything.  */
307#define REGEX_FREE_STACK(arg)
308
309#endif /* not REGEX_MALLOC */
310#endif /* not using relocating allocator */
311
312
313/* True if `size1' is non-NULL and PTR is pointing anywhere inside
314   `string1' or just past its end.  This works if PTR is NULL, which is
315   a good thing.  */
316#define FIRST_STRING_P(ptr)                                     \
317  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
318
319/* (Re)Allocate N items of type T using malloc, or fail.  */
320#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
321#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
322#define RETALLOC_IF(addr, n, t) \
323  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
324#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
325
326#define BYTEWIDTH 8 /* In bits.  */
327
328#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
329
330#undef MAX
331#undef MIN
332#define MAX(a, b) ((a) > (b) ? (a) : (b))
333#define MIN(a, b) ((a) < (b) ? (a) : (b))
334
335typedef char boolean;
336#define false 0
337#define true 1
338
339static int re_match_2_internal ();
340
341/* These are the command codes that appear in compiled regular
342   expressions.  Some opcodes are followed by argument bytes.  A
343   command code can specify any interpretation whatsoever for its
344   arguments.  Zero bytes may appear in the compiled regular expression.  */
345
346typedef enum
347{
348  no_op = 0,
349
350  /* Succeed right away--no more backtracking.  */
351  succeed,
352
353        /* Followed by one byte giving n, then by n literal bytes.  */
354  exactn,
355
356        /* Matches any (more or less) character.  */
357  anychar,
358
359        /* Matches any one char belonging to specified set.  First
360           following byte is number of bitmap bytes.  Then come bytes
361           for a bitmap saying which chars are in.  Bits in each byte
362           are ordered low-bit-first.  A character is in the set if its
363           bit is 1.  A character too large to have a bit in the map is
364           automatically not in the set.  */
365  charset,
366
367        /* Same parameters as charset, but match any character that is
368           not one of those specified.  */
369  charset_not,
370
371        /* Start remembering the text that is matched, for storing in a
372           register.  Followed by one byte with the register number, in
373           the range 0 to one less than the pattern buffer's re_nsub
374           field.  Then followed by one byte with the number of groups
375           inner to this one.  (This last has to be part of the
376           start_memory only because we need it in the on_failure_jump
377           of re_match_2.)  */
378  start_memory,
379
380        /* Stop remembering the text that is matched and store it in a
381           memory register.  Followed by one byte with the register
382           number, in the range 0 to one less than `re_nsub' in the
383           pattern buffer, and one byte with the number of inner groups,
384           just like `start_memory'.  (We need the number of inner
385           groups here because we don't have any easy way of finding the
386           corresponding start_memory when we're at a stop_memory.)  */
387  stop_memory,
388
389        /* Match a duplicate of something remembered. Followed by one
390           byte containing the register number.  */
391  duplicate,
392
393        /* Fail unless at beginning of line.  */
394  begline,
395
396        /* Fail unless at end of line.  */
397  endline,
398
399        /* Succeeds if at beginning of buffer (if emacs) or at beginning
400           of string to be matched (if not).  */
401  begbuf,
402
403        /* Analogously, for end of buffer/string.  */
404  endbuf,
405
406        /* Followed by two byte relative address to which to jump.  */
407  jump,
408
409        /* Same as jump, but marks the end of an alternative.  */
410  jump_past_alt,
411
412        /* Followed by two-byte relative address of place to resume at
413           in case of failure.  */
414  on_failure_jump,
415
416        /* Like on_failure_jump, but pushes a placeholder instead of the
417           current string position when executed.  */
418  on_failure_keep_string_jump,
419
420        /* Throw away latest failure point and then jump to following
421           two-byte relative address.  */
422  pop_failure_jump,
423
424        /* Change to pop_failure_jump if know won't have to backtrack to
425           match; otherwise change to jump.  This is used to jump
426           back to the beginning of a repeat.  If what follows this jump
427           clearly won't match what the repeat does, such that we can be
428           sure that there is no use backtracking out of repetitions
429           already matched, then we change it to a pop_failure_jump.
430           Followed by two-byte address.  */
431  maybe_pop_jump,
432
433        /* Jump to following two-byte address, and push a dummy failure
434           point. This failure point will be thrown away if an attempt
435           is made to use it for a failure.  A `+' construct makes this
436           before the first repeat.  Also used as an intermediary kind
437           of jump when compiling an alternative.  */
438  dummy_failure_jump,
439
440        /* Push a dummy failure point and continue.  Used at the end of
441           alternatives.  */
442  push_dummy_failure,
443
444        /* Followed by two-byte relative address and two-byte number n.
445           After matching N times, jump to the address upon failure.  */
446  succeed_n,
447
448        /* Followed by two-byte relative address, and two-byte number n.
449           Jump to the address N times, then fail.  */
450  jump_n,
451
452        /* Set the following two-byte relative address to the
453           subsequent two-byte number.  The address *includes* the two
454           bytes of number.  */
455  set_number_at,
456
457  wordchar,     /* Matches any word-constituent character.  */
458  notwordchar,  /* Matches any char that is not a word-constituent.  */
459
460  wordbeg,      /* Succeeds if at word beginning.  */
461  wordend,      /* Succeeds if at word end.  */
462
463  wordbound,    /* Succeeds if at a word boundary.  */
464  notwordbound  /* Succeeds if not at a word boundary.  */
465
466#ifdef emacs
467  ,before_dot,  /* Succeeds if before point.  */
468  at_dot,       /* Succeeds if at point.  */
469  after_dot,    /* Succeeds if after point.  */
470
471        /* Matches any character whose syntax is specified.  Followed by
472           a byte which contains a syntax code, e.g., Sword.  */
473  syntaxspec,
474
475        /* Matches any character whose syntax is not that specified.  */
476  notsyntaxspec
477#endif /* emacs */
478} re_opcode_t;
479
480/* Common operations on the compiled pattern.  */
481
482/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
483
484#define STORE_NUMBER(destination, number)                               \
485  do {                                                                  \
486    (destination)[0] = (number) & 0377;                                 \
487    (destination)[1] = (number) >> 8;                                   \
488  } while (0)
489
490/* Same as STORE_NUMBER, except increment DESTINATION to
491   the byte after where the number is stored.  Therefore, DESTINATION
492   must be an lvalue.  */
493
494#define STORE_NUMBER_AND_INCR(destination, number)                      \
495  do {                                                                  \
496    STORE_NUMBER (destination, number);                                 \
497    (destination) += 2;                                                 \
498  } while (0)
499
500/* Put into DESTINATION a number stored in two contiguous bytes starting
501   at SOURCE.  */
502
503#define EXTRACT_NUMBER(destination, source)                             \
504  do {                                                                  \
505    (destination) = *(source) & 0377;                                   \
506    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;           \
507  } while (0)
508
509#ifdef DEBUG
510static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
511static void
512extract_number (dest, source)
513    int *dest;
514    unsigned char *source;
515{
516  int temp = SIGN_EXTEND_CHAR (*(source + 1));
517  *dest = *source & 0377;
518  *dest += temp << 8;
519}
520
521#ifndef EXTRACT_MACROS /* To debug the macros.  */
522#undef EXTRACT_NUMBER
523#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
524#endif /* not EXTRACT_MACROS */
525
526#endif /* DEBUG */
527
528/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
529   SOURCE must be an lvalue.  */
530
531#define EXTRACT_NUMBER_AND_INCR(destination, source)                    \
532  do {                                                                  \
533    EXTRACT_NUMBER (destination, source);                               \
534    (source) += 2;                                                      \
535  } while (0)
536
537#ifdef DEBUG
538static void extract_number_and_incr _RE_ARGS ((int *destination,
539                                               unsigned char **source));
540static void
541extract_number_and_incr (destination, source)
542    int *destination;
543    unsigned char **source;
544{
545  extract_number (destination, *source);
546  *source += 2;
547}
548
549#ifndef EXTRACT_MACROS
550#undef EXTRACT_NUMBER_AND_INCR
551#define EXTRACT_NUMBER_AND_INCR(dest, src) \
552  extract_number_and_incr (&dest, &src)
553#endif /* not EXTRACT_MACROS */
554
555#endif /* DEBUG */
556
557/* If DEBUG is defined, Regex prints many voluminous messages about what
558   it is doing (if the variable `debug' is nonzero).  If linked with the
559   main program in `iregex.c', you can enter patterns and strings
560   interactively.  And if linked with the main program in `main.c' and
561   the other test files, you can run the already-written tests.  */
562
563#ifdef DEBUG
564
565/* We use standard I/O for debugging.  */
566#include <stdio.h>
567
568/* It is useful to test things that ``must'' be true when debugging.  */
569#include <assert.h>
570
571static int debug = 0;
572
573#define DEBUG_STATEMENT(e) e
574#define DEBUG_PRINT1(x) if (debug) printf (x)
575#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
576#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
577#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
578#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)                           \
579  if (debug) print_partial_compiled_pattern (s, e)
580#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)                  \
581  if (debug) print_double_string (w, s1, sz1, s2, sz2)
582
583
584/* Print the fastmap in human-readable form.  */
585
586void
587print_fastmap (fastmap)
588    char *fastmap;
589{
590  unsigned was_a_range = 0;
591  unsigned i = 0;
592
593  while (i < (1 << BYTEWIDTH))
594    {
595      if (fastmap[i++])
596        {
597          was_a_range = 0;
598          putchar (i - 1);
599          while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
600            {
601              was_a_range = 1;
602              i++;
603            }
604          if (was_a_range)
605            {
606              printf ("-");
607              putchar (i - 1);
608            }
609        }
610    }
611  putchar ('\n');
612}
613
614
615/* Print a compiled pattern string in human-readable form, starting at
616   the START pointer into it and ending just before the pointer END.  */
617
618void
619print_partial_compiled_pattern (start, end)
620    unsigned char *start;
621    unsigned char *end;
622{
623  int mcnt, mcnt2;
624  unsigned char *p1;
625  unsigned char *p = start;
626  unsigned char *pend = end;
627
628  if (start == NULL)
629    {
630      printf ("(null)\n");
631      return;
632    }
633
634  /* Loop over pattern commands.  */
635  while (p < pend)
636    {
637      printf ("%d:\t", p - start);
638
639      switch ((re_opcode_t) *p++)
640        {
641        case no_op:
642          printf ("/no_op");
643          break;
644
645        case exactn:
646          mcnt = *p++;
647          printf ("/exactn/%d", mcnt);
648          do
649            {
650              putchar ('/');
651              putchar (*p++);
652            }
653          while (--mcnt);
654          break;
655
656        case start_memory:
657          mcnt = *p++;
658          printf ("/start_memory/%d/%d", mcnt, *p++);
659          break;
660
661        case stop_memory:
662          mcnt = *p++;
663          printf ("/stop_memory/%d/%d", mcnt, *p++);
664          break;
665
666        case duplicate:
667          printf ("/duplicate/%d", *p++);
668          break;
669
670        case anychar:
671          printf ("/anychar");
672          break;
673
674        case charset:
675        case charset_not:
676          {
677            register int c, last = -100;
678            register int in_range = 0;
679
680            printf ("/charset [%s",
681                    (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
682
683            assert (p + *p < pend);
684
685            for (c = 0; c < 256; c++)
686              if (c / 8 < *p
687                  && (p[1 + (c/8)] & (1 << (c % 8))))
688                {
689                  /* Are we starting a range?  */
690                  if (last + 1 == c && ! in_range)
691                    {
692                      putchar ('-');
693                      in_range = 1;
694                    }
695                  /* Have we broken a range?  */
696                  else if (last + 1 != c && in_range)
697              {
698                      putchar (last);
699                      in_range = 0;
700                    }
701
702                  if (! in_range)
703                    putchar (c);
704
705                  last = c;
706              }
707
708            if (in_range)
709              putchar (last);
710
711            putchar (']');
712
713            p += 1 + *p;
714          }
715          break;
716
717        case begline:
718          printf ("/begline");
719          break;
720
721        case endline:
722          printf ("/endline");
723          break;
724
725        case on_failure_jump:
726          extract_number_and_incr (&mcnt, &p);
727          printf ("/on_failure_jump to %d", p + mcnt - start);
728          break;
729
730        case on_failure_keep_string_jump:
731          extract_number_and_incr (&mcnt, &p);
732          printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
733          break;
734
735        case dummy_failure_jump:
736          extract_number_and_incr (&mcnt, &p);
737          printf ("/dummy_failure_jump to %d", p + mcnt - start);
738          break;
739
740        case push_dummy_failure:
741          printf ("/push_dummy_failure");
742          break;
743
744        case maybe_pop_jump:
745          extract_number_and_incr (&mcnt, &p);
746          printf ("/maybe_pop_jump to %d", p + mcnt - start);
747          break;
748
749        case pop_failure_jump:
750          extract_number_and_incr (&mcnt, &p);
751          printf ("/pop_failure_jump to %d", p + mcnt - start);
752          break;
753
754        case jump_past_alt:
755          extract_number_and_incr (&mcnt, &p);
756          printf ("/jump_past_alt to %d", p + mcnt - start);
757          break;
758
759        case jump:
760          extract_number_and_incr (&mcnt, &p);
761          printf ("/jump to %d", p + mcnt - start);
762          break;
763
764        case succeed_n:
765          extract_number_and_incr (&mcnt, &p);
766          p1 = p + mcnt;
767          extract_number_and_incr (&mcnt2, &p);
768          printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
769          break;
770
771        case jump_n:
772          extract_number_and_incr (&mcnt, &p);
773          p1 = p + mcnt;
774          extract_number_and_incr (&mcnt2, &p);
775          printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
776          break;
777
778        case set_number_at:
779          extract_number_and_incr (&mcnt, &p);
780          p1 = p + mcnt;
781          extract_number_and_incr (&mcnt2, &p);
782          printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
783          break;
784
785        case wordbound:
786          printf ("/wordbound");
787          break;
788
789        case notwordbound:
790          printf ("/notwordbound");
791          break;
792
793        case wordbeg:
794          printf ("/wordbeg");
795          break;
796
797        case wordend:
798          printf ("/wordend");
799
800#ifdef emacs
801        case before_dot:
802          printf ("/before_dot");
803          break;
804
805        case at_dot:
806          printf ("/at_dot");
807          break;
808
809        case after_dot:
810          printf ("/after_dot");
811          break;
812
813        case syntaxspec:
814          printf ("/syntaxspec");
815          mcnt = *p++;
816          printf ("/%d", mcnt);
817          break;
818
819        case notsyntaxspec:
820          printf ("/notsyntaxspec");
821          mcnt = *p++;
822          printf ("/%d", mcnt);
823          break;
824#endif /* emacs */
825
826        case wordchar:
827          printf ("/wordchar");
828          break;
829
830        case notwordchar:
831          printf ("/notwordchar");
832          break;
833
834        case begbuf:
835          printf ("/begbuf");
836          break;
837
838        case endbuf:
839          printf ("/endbuf");
840          break;
841
842        default:
843          printf ("?%d", *(p-1));
844        }
845
846      putchar ('\n');
847    }
848
849  printf ("%d:\tend of pattern.\n", p - start);
850}
851
852
853void
854print_compiled_pattern (bufp)
855    struct re_pattern_buffer *bufp;
856{
857  unsigned char *buffer = bufp->buffer;
858
859  print_partial_compiled_pattern (buffer, buffer + bufp->used);
860  printf ("%ld bytes used/%ld bytes allocated.\n",
861          bufp->used, bufp->allocated);
862
863  if (bufp->fastmap_accurate && bufp->fastmap)
864    {
865      printf ("fastmap: ");
866      print_fastmap (bufp->fastmap);
867    }
868
869  printf ("re_nsub: %d\t", bufp->re_nsub);
870  printf ("regs_alloc: %d\t", bufp->regs_allocated);
871  printf ("can_be_null: %d\t", bufp->can_be_null);
872  printf ("newline_anchor: %d\n", bufp->newline_anchor);
873  printf ("no_sub: %d\t", bufp->no_sub);
874  printf ("not_bol: %d\t", bufp->not_bol);
875  printf ("not_eol: %d\t", bufp->not_eol);
876  printf ("syntax: %lx\n", bufp->syntax);
877  /* Perhaps we should print the translate table?  */
878}
879
880
881void
882print_double_string (where, string1, size1, string2, size2)
883    const char *where;
884    const char *string1;
885    const char *string2;
886    int size1;
887    int size2;
888{
889  int this_char;
890
891  if (where == NULL)
892    printf ("(null)");
893  else
894    {
895      if (FIRST_STRING_P (where))
896        {
897          for (this_char = where - string1; this_char < size1; this_char++)
898            putchar (string1[this_char]);
899
900          where = string2;
901        }
902
903      for (this_char = where - string2; this_char < size2; this_char++)
904        putchar (string2[this_char]);
905    }
906}
907
908void
909printchar (c)
910     int c;
911{
912  putc (c, stderr);
913}
914
915#else /* not DEBUG */
916
917#undef assert
918#define assert(e)
919
920#define DEBUG_STATEMENT(e)
921#define DEBUG_PRINT1(x)
922#define DEBUG_PRINT2(x1, x2)
923#define DEBUG_PRINT3(x1, x2, x3)
924#define DEBUG_PRINT4(x1, x2, x3, x4)
925#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
926#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
927
928#endif /* not DEBUG */
929
930/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
931   also be assigned to arbitrarily: each pattern buffer stores its own
932   syntax, so it can be changed between regex compilations.  */
933/* This has no initializer because initialized variables in Emacs
934   become read-only after dumping.  */
935reg_syntax_t re_syntax_options;
936
937
938/* Specify the precise syntax of regexps for compilation.  This provides
939   for compatibility for various utilities which historically have
940   different, incompatible syntaxes.
941
942   The argument SYNTAX is a bit mask comprised of the various bits
943   defined in regex.h.  We return the old syntax.  */
944
945reg_syntax_t
946re_set_syntax (syntax)
947    reg_syntax_t syntax;
948{
949  reg_syntax_t ret = re_syntax_options;
950
951  re_syntax_options = syntax;
952#ifdef DEBUG
953  if (syntax & RE_DEBUG)
954    debug = 1;
955  else if (debug) /* was on but now is not */
956    debug = 0;
957#endif /* DEBUG */
958  return ret;
959}
960
961void
962#if __STDC__
963re_set_character_syntax (unsigned char ch, char syntax)
964#else
965re_set_character_syntax (ch, syntax)
966     unsigned char ch;
967     char syntax;
968#endif /* not __STDC__ */
969{
970  init_syntax_once ();
971
972  switch (syntax)
973    {
974    case 'w':
975      SYNTAX (ch) = Sword;
976      break;
977
978    case ' ':
979      SYNTAX (ch) = 0;
980      break;
981
982    default:
983      /* This is an error, but we don't care. */
984      break;
985    }
986}
987
988
989/* This table gives an error message for each of the error codes listed
990   in regex.h.  Obviously the order here has to be same as there.
991   POSIX doesn't require that we do anything for REG_NOERROR,
992   but why not be nice?  */
993
994static const char *re_error_msgid[] =
995  {
996    gettext_noop ("Success"),   /* REG_NOERROR */
997    gettext_noop ("No match"),  /* REG_NOMATCH */
998    gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
999    gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1000    gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1001    gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1002    gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1003    gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1004    gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1005    gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1006    gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1007    gettext_noop ("Invalid range end"), /* REG_ERANGE */
1008    gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1009    gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1010    gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1011    gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1012    gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1013  };
1014
1015/* Avoiding alloca during matching, to placate r_alloc.  */
1016
1017/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1018   searching and matching functions should not call alloca.  On some
1019   systems, alloca is implemented in terms of malloc, and if we're
1020   using the relocating allocator routines, then malloc could cause a
1021   relocation, which might (if the strings being searched are in the
1022   ralloc heap) shift the data out from underneath the regexp
1023   routines.
1024
1025   Here's another reason to avoid allocation: Emacs
1026   processes input from X in a signal handler; processing X input may
1027   call malloc; if input arrives while a matching routine is calling
1028   malloc, then we're scrod.  But Emacs can't just block input while
1029   calling matching routines; then we don't notice interrupts when
1030   they come in.  So, Emacs blocks input around all regexp calls
1031   except the matching calls, which it leaves unprotected, in the
1032   faith that they will not malloc.  */
1033
1034/* Normally, this is fine.  */
1035#define MATCH_MAY_ALLOCATE
1036
1037/* When using GNU C, we are not REALLY using the C alloca, no matter
1038   what config.h may say.  So don't take precautions for it.  */
1039#ifdef __GNUC__
1040#undef C_ALLOCA
1041#endif
1042
1043/* The match routines may not allocate if (1) they would do it with malloc
1044   and (2) it's not safe for them to use malloc.
1045   Note that if REL_ALLOC is defined, matching would not use malloc for the
1046   failure stack, but we would still use it for the register vectors;
1047   so REL_ALLOC should not affect this.  */
1048#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1049#undef MATCH_MAY_ALLOCATE
1050#endif
1051
1052
1053/* Failure stack declarations and macros; both re_compile_fastmap and
1054   re_match_2 use a failure stack.  These have to be macros because of
1055   REGEX_ALLOCATE_STACK.  */
1056
1057
1058/* Number of failure points for which to initially allocate space
1059   when matching.  If this number is exceeded, we allocate more
1060   space, so it is not a hard limit.  */
1061#ifndef INIT_FAILURE_ALLOC
1062#define INIT_FAILURE_ALLOC 5
1063#endif
1064
1065/* Roughly the maximum number of failure points on the stack.  Would be
1066   exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1067   This is a variable only so users of regex can assign to it; we never
1068   change it ourselves.  */
1069
1070#ifdef INT_IS_16BIT
1071
1072#if defined (MATCH_MAY_ALLOCATE)
1073/* 4400 was enough to cause a crash on Alpha OSF/1,
1074   whose default stack limit is 2mb.  */
1075long int re_max_failures = 4000;
1076#else
1077long int re_max_failures = 2000;
1078#endif
1079
1080union fail_stack_elt
1081{
1082  unsigned char *pointer;
1083  long int integer;
1084};
1085
1086typedef union fail_stack_elt fail_stack_elt_t;
1087
1088typedef struct
1089{
1090  fail_stack_elt_t *stack;
1091  unsigned long int size;
1092  unsigned long int avail;              /* Offset of next open position.  */
1093} fail_stack_type;
1094
1095#else /* not INT_IS_16BIT */
1096
1097#if defined (MATCH_MAY_ALLOCATE)
1098/* 4400 was enough to cause a crash on Alpha OSF/1,
1099   whose default stack limit is 2mb.  */
1100int re_max_failures = 20000;
1101#else
1102int re_max_failures = 2000;
1103#endif
1104
1105union fail_stack_elt
1106{
1107  unsigned char *pointer;
1108  int integer;
1109};
1110
1111typedef union fail_stack_elt fail_stack_elt_t;
1112
1113typedef struct
1114{
1115  fail_stack_elt_t *stack;
1116  unsigned size;
1117  unsigned avail;                       /* Offset of next open position.  */
1118} fail_stack_type;
1119
1120#endif /* INT_IS_16BIT */
1121
1122#define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1123#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1124#define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1125
1126
1127/* Define macros to initialize and free the failure stack.
1128   Do `return -2' if the alloc fails.  */
1129
1130#ifdef MATCH_MAY_ALLOCATE
1131#define INIT_FAIL_STACK()                                               \
1132  do {                                                                  \
1133    fail_stack.stack = (fail_stack_elt_t *)                             \
1134      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t));    \
1135                                                                        \
1136    if (fail_stack.stack == NULL)                                       \
1137      return -2;                                                        \
1138                                                                        \
1139    fail_stack.size = INIT_FAILURE_ALLOC;                               \
1140    fail_stack.avail = 0;                                               \
1141  } while (0)
1142
1143#define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1144#else
1145#define INIT_FAIL_STACK()                                               \
1146  do {                                                                  \
1147    fail_stack.avail = 0;                                               \
1148  } while (0)
1149
1150#define RESET_FAIL_STACK()
1151#endif
1152
1153
1154/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1155
1156   Return 1 if succeeds, and 0 if either ran out of memory
1157   allocating space for it or it was already too large.
1158
1159   REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1160
1161#define DOUBLE_FAIL_STACK(fail_stack)                                   \
1162  ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1163   ? 0                                                                  \
1164   : ((fail_stack).stack = (fail_stack_elt_t *)                         \
1165        REGEX_REALLOCATE_STACK ((fail_stack).stack,                     \
1166          (fail_stack).size * sizeof (fail_stack_elt_t),                \
1167          ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),        \
1168                                                                        \
1169      (fail_stack).stack == NULL                                        \
1170      ? 0                                                               \
1171      : ((fail_stack).size <<= 1,                                       \
1172         1)))
1173
1174
1175/* Push pointer POINTER on FAIL_STACK.
1176   Return 1 if was able to do so and 0 if ran out of memory allocating
1177   space to do so.  */
1178#define PUSH_PATTERN_OP(POINTER, FAIL_STACK)                            \
1179  ((FAIL_STACK_FULL ()                                                  \
1180    && !DOUBLE_FAIL_STACK (FAIL_STACK))                                 \
1181   ? 0                                                                  \
1182   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,       \
1183      1))
1184
1185/* Push a pointer value onto the failure stack.
1186   Assumes the variable `fail_stack'.  Probably should only
1187   be called from within `PUSH_FAILURE_POINT'.  */
1188#define PUSH_FAILURE_POINTER(item)                                      \
1189  fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1190
1191/* This pushes an integer-valued item onto the failure stack.
1192   Assumes the variable `fail_stack'.  Probably should only
1193   be called from within `PUSH_FAILURE_POINT'.  */
1194#define PUSH_FAILURE_INT(item)                                  \
1195  fail_stack.stack[fail_stack.avail++].integer = (item)
1196
1197/* Push a fail_stack_elt_t value onto the failure stack.
1198   Assumes the variable `fail_stack'.  Probably should only
1199   be called from within `PUSH_FAILURE_POINT'.  */
1200#define PUSH_FAILURE_ELT(item)                                  \
1201  fail_stack.stack[fail_stack.avail++] =  (item)
1202
1203/* These three POP... operations complement the three PUSH... operations.
1204   All assume that `fail_stack' is nonempty.  */
1205#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1206#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1207#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1208
1209/* Used to omit pushing failure point id's when we're not debugging.  */
1210#ifdef DEBUG
1211#define DEBUG_PUSH PUSH_FAILURE_INT
1212#define DEBUG_POP(item_addr) (item_addr)->integer = POP_FAILURE_INT ()
1213#else
1214#define DEBUG_PUSH(item)
1215#define DEBUG_POP(item_addr)
1216#endif
1217
1218
1219/* Push the information about the state we will need
1220   if we ever fail back to it.
1221
1222   Requires variables fail_stack, regstart, regend, reg_info, and
1223   num_regs be declared.  DOUBLE_FAIL_STACK requires `destination' be
1224   declared.
1225
1226   Does `return FAILURE_CODE' if runs out of memory.  */
1227
1228#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)   \
1229  do {                                                                  \
1230    char *destination;                                                  \
1231    /* Must be int, so when we don't save any registers, the arithmetic \
1232       of 0 + -1 isn't done as unsigned.  */                            \
1233    /* Can't be int, since there is not a shred of a guarantee that int \
1234       is wide enough to hold a value of something to which pointer can \
1235       be assigned */                                                   \
1236    s_reg_t this_reg;                                                   \
1237                                                                        \
1238    DEBUG_STATEMENT (failure_id++);                                     \
1239    DEBUG_STATEMENT (nfailure_points_pushed++);                         \
1240    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);           \
1241    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1242    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1243                                                                        \
1244    DEBUG_PRINT2 ("  slots needed: %d\n", NUM_FAILURE_ITEMS);           \
1245    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);       \
1246                                                                        \
1247    /* Ensure we have enough space allocated for what we will push.  */ \
1248    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)                   \
1249      {                                                                 \
1250        if (!DOUBLE_FAIL_STACK (fail_stack))                            \
1251          return failure_code;                                          \
1252                                                                        \
1253        DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",              \
1254                       (fail_stack).size);                              \
1255        DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1256      }                                                                 \
1257                                                                        \
1258    /* Push the info, starting with the registers.  */                  \
1259    DEBUG_PRINT1 ("\n");                                                \
1260                                                                        \
1261    if (1)                                                              \
1262      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1263           this_reg++)                                                  \
1264        {                                                               \
1265          DEBUG_PRINT2 ("  Pushing reg: %d\n", this_reg);               \
1266          DEBUG_STATEMENT (num_regs_pushed++);                          \
1267                                                                        \
1268          DEBUG_PRINT2 ("    start: 0x%x\n", regstart[this_reg]);       \
1269          PUSH_FAILURE_POINTER (regstart[this_reg]);                    \
1270                                                                        \
1271          DEBUG_PRINT2 ("    end: 0x%x\n", regend[this_reg]);           \
1272          PUSH_FAILURE_POINTER (regend[this_reg]);                      \
1273                                                                        \
1274          DEBUG_PRINT2 ("    info: 0x%x\n      ", reg_info[this_reg]);  \
1275          DEBUG_PRINT2 (" match_null=%d",                               \
1276                        REG_MATCH_NULL_STRING_P (reg_info[this_reg]));  \
1277          DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));  \
1278          DEBUG_PRINT2 (" matched_something=%d",                        \
1279                        MATCHED_SOMETHING (reg_info[this_reg]));        \
1280          DEBUG_PRINT2 (" ever_matched=%d",                             \
1281                        EVER_MATCHED_SOMETHING (reg_info[this_reg]));   \
1282          DEBUG_PRINT1 ("\n");                                          \
1283          PUSH_FAILURE_ELT (reg_info[this_reg].word);                   \
1284        }                                                               \
1285                                                                        \
1286    DEBUG_PRINT2 ("  Pushing  low active reg: %d\n", lowest_active_reg);\
1287    PUSH_FAILURE_INT (lowest_active_reg);                               \
1288                                                                        \
1289    DEBUG_PRINT2 ("  Pushing high active reg: %d\n", highest_active_reg);\
1290    PUSH_FAILURE_INT (highest_active_reg);                              \
1291                                                                        \
1292    DEBUG_PRINT2 ("  Pushing pattern 0x%x:\n", pattern_place);          \
1293    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);           \
1294    PUSH_FAILURE_POINTER (pattern_place);                               \
1295                                                                        \
1296    DEBUG_PRINT2 ("  Pushing string 0x%x: `", string_place);            \
1297    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1298                                 size2);                                \
1299    DEBUG_PRINT1 ("'\n");                                               \
1300    PUSH_FAILURE_POINTER (string_place);                                \
1301                                                                        \
1302    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);            \
1303    DEBUG_PUSH (failure_id);                                            \
1304  } while (0)
1305
1306/* This is the number of items that are pushed and popped on the stack
1307   for each register.  */
1308#define NUM_REG_ITEMS  3
1309
1310/* Individual items aside from the registers.  */
1311#ifdef DEBUG
1312#define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1313#else
1314#define NUM_NONREG_ITEMS 4
1315#endif
1316
1317/* We push at most this many items on the stack.  */
1318/* We used to use (num_regs - 1), which is the number of registers
1319   this regexp will save; but that was changed to 5
1320   to avoid stack overflow for a regexp with lots of parens.  */
1321#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1322
1323/* We actually push this many items.  */
1324#define NUM_FAILURE_ITEMS                               \
1325  (((0                                                  \
1326     ? 0 : highest_active_reg - lowest_active_reg + 1)  \
1327    * NUM_REG_ITEMS)                                    \
1328   + NUM_NONREG_ITEMS)
1329
1330/* How many items can still be added to the stack without overflowing it.  */
1331#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1332
1333
1334/* Pops what PUSH_FAIL_STACK pushes.
1335
1336   We restore into the parameters, all of which should be lvalues:
1337     STR -- the saved data position.
1338     PAT -- the saved pattern position.
1339     LOW_REG, HIGH_REG -- the highest and lowest active registers.
1340     REGSTART, REGEND -- arrays of string positions.
1341     REG_INFO -- array of information about each subexpression.
1342
1343   Also assumes the variables `fail_stack' and (if debugging), `bufp',
1344   `pend', `string1', `size1', `string2', and `size2'.  */
1345
1346#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1347{                                                                       \
1348  DEBUG_STATEMENT (fail_stack_elt_t failure_id;)                        \
1349  s_reg_t this_reg;                                                     \
1350  const unsigned char *string_temp;                                     \
1351                                                                        \
1352  assert (!FAIL_STACK_EMPTY ());                                        \
1353                                                                        \
1354  /* Remove failure points and point to how many regs pushed.  */       \
1355  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");                                \
1356  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);    \
1357  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);     \
1358                                                                        \
1359  assert (fail_stack.avail >= NUM_NONREG_ITEMS);                        \
1360                                                                        \
1361  DEBUG_POP (&failure_id);                                              \
1362  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);              \
1363                                                                        \
1364  /* If the saved string location is NULL, it came from an              \
1365     on_failure_keep_string_jump opcode, and we want to throw away the  \
1366     saved NULL, thus retaining our current position in the string.  */ \
1367  string_temp = POP_FAILURE_POINTER ();                                 \
1368  if (string_temp != NULL)                                              \
1369    str = (const char *) string_temp;                                   \
1370                                                                        \
1371  DEBUG_PRINT2 ("  Popping string 0x%x: `", str);                       \
1372  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);      \
1373  DEBUG_PRINT1 ("'\n");                                                 \
1374                                                                        \
1375  pat = (unsigned char *) POP_FAILURE_POINTER ();                       \
1376  DEBUG_PRINT2 ("  Popping pattern 0x%x:\n", pat);                      \
1377  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);                       \
1378                                                                        \
1379  /* Restore register info.  */                                         \
1380  high_reg = (active_reg_t) POP_FAILURE_INT ();                         \
1381  DEBUG_PRINT2 ("  Popping high active reg: %d\n", high_reg);           \
1382                                                                        \
1383  low_reg = (active_reg_t) POP_FAILURE_INT ();                          \
1384  DEBUG_PRINT2 ("  Popping  low active reg: %d\n", low_reg);            \
1385                                                                        \
1386  if (1)                                                                \
1387    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)          \
1388      {                                                                 \
1389        DEBUG_PRINT2 ("    Popping reg: %d\n", this_reg);               \
1390                                                                        \
1391        reg_info[this_reg].word = POP_FAILURE_ELT ();                   \
1392        DEBUG_PRINT2 ("      info: 0x%x\n", reg_info[this_reg]);        \
1393                                                                        \
1394        regend[this_reg] = (const char *) POP_FAILURE_POINTER ();       \
1395        DEBUG_PRINT2 ("      end: 0x%x\n", regend[this_reg]);           \
1396                                                                        \
1397        regstart[this_reg] = (const char *) POP_FAILURE_POINTER ();     \
1398        DEBUG_PRINT2 ("      start: 0x%x\n", regstart[this_reg]);       \
1399      }                                                                 \
1400  else                                                                  \
1401    {                                                                   \
1402      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1403        {                                                               \
1404          reg_info[this_reg].word.integer = 0;                          \
1405          regend[this_reg] = 0;                                         \
1406          regstart[this_reg] = 0;                                       \
1407        }                                                               \
1408      highest_active_reg = high_reg;                                    \
1409    }                                                                   \
1410                                                                        \
1411  set_regs_matched_done = 0;                                            \
1412  DEBUG_STATEMENT (nfailure_points_popped++);                           \
1413} /* POP_FAILURE_POINT */
1414
1415
1416
1417/* Structure for per-register (a.k.a. per-group) information.
1418   Other register information, such as the
1419   starting and ending positions (which are addresses), and the list of
1420   inner groups (which is a bits list) are maintained in separate
1421   variables.
1422
1423   We are making a (strictly speaking) nonportable assumption here: that
1424   the compiler will pack our bit fields into something that fits into
1425   the type of `word', i.e., is something that fits into one item on the
1426   failure stack.  */
1427
1428
1429/* Declarations and macros for re_match_2.  */
1430
1431typedef union
1432{
1433  fail_stack_elt_t word;
1434  struct
1435  {
1436      /* This field is one if this group can match the empty string,
1437         zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1438#define MATCH_NULL_UNSET_VALUE 3
1439    unsigned match_null_string_p : 2;
1440    unsigned is_active : 1;
1441    unsigned matched_something : 1;
1442    unsigned ever_matched_something : 1;
1443  } bits;
1444} register_info_type;
1445
1446#define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1447#define IS_ACTIVE(R)  ((R).bits.is_active)
1448#define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1449#define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1450
1451
1452/* Call this when have matched a real character; it sets `matched' flags
1453   for the subexpressions which we are currently inside.  Also records
1454   that those subexprs have matched.  */
1455#define SET_REGS_MATCHED()                                              \
1456  do                                                                    \
1457    {                                                                   \
1458      if (!set_regs_matched_done)                                       \
1459        {                                                               \
1460          active_reg_t r;                                               \
1461          set_regs_matched_done = 1;                                    \
1462          for (r = lowest_active_reg; r <= highest_active_reg; r++)     \
1463            {                                                           \
1464              MATCHED_SOMETHING (reg_info[r])                           \
1465                = EVER_MATCHED_SOMETHING (reg_info[r])                  \
1466                = 1;                                                    \
1467            }                                                           \
1468        }                                                               \
1469    }                                                                   \
1470  while (0)
1471
1472/* Registers are set to a sentinel when they haven't yet matched.  */
1473static char reg_unset_dummy;
1474#define REG_UNSET_VALUE (&reg_unset_dummy)
1475#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1476
1477/* Subroutine declarations and macros for regex_compile.  */
1478
1479static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1480                                              reg_syntax_t syntax,
1481                                              struct re_pattern_buffer *bufp));
1482static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1483static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1484                                 int arg1, int arg2));
1485static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1486                                  int arg, unsigned char *end));
1487static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1488                                  int arg1, int arg2, unsigned char *end));
1489static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1490                                           reg_syntax_t syntax));
1491static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1492                                           reg_syntax_t syntax));
1493static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1494                                              const char *pend,
1495                                              char *translate,
1496                                              reg_syntax_t syntax,
1497                                              unsigned char *b));
1498
1499/* Fetch the next character in the uncompiled pattern---translating it
1500   if necessary.  Also cast from a signed character in the constant
1501   string passed to us by the user to an unsigned char that we can use
1502   as an array index (in, e.g., `translate').  */
1503#ifndef PATFETCH
1504#define PATFETCH(c)                                                     \
1505  do {if (p == pend) return REG_EEND;                                   \
1506    c = (unsigned char) *p++;                                           \
1507    if (translate) c = (unsigned char) translate[c];                    \
1508  } while (0)
1509#endif
1510
1511/* Fetch the next character in the uncompiled pattern, with no
1512   translation.  */
1513#define PATFETCH_RAW(c)                                                 \
1514  do {if (p == pend) return REG_EEND;                                   \
1515    c = (unsigned char) *p++;                                           \
1516  } while (0)
1517
1518/* Go backwards one character in the pattern.  */
1519#define PATUNFETCH p--
1520
1521
1522/* If `translate' is non-null, return translate[D], else just D.  We
1523   cast the subscript to translate because some data is declared as
1524   `char *', to avoid warnings when a string constant is passed.  But
1525   when we use a character as a subscript we must make it unsigned.  */
1526#ifndef TRANSLATE
1527#define TRANSLATE(d) \
1528  (translate ? (char) translate[(unsigned char) (d)] : (d))
1529#endif
1530
1531
1532/* Macros for outputting the compiled pattern into `buffer'.  */
1533
1534/* If the buffer isn't allocated when it comes in, use this.  */
1535#define INIT_BUF_SIZE  32
1536
1537/* Make sure we have at least N more bytes of space in buffer.  */
1538#define GET_BUFFER_SPACE(n)                                             \
1539    while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)  \
1540      EXTEND_BUFFER ()
1541
1542/* Make sure we have one more byte of buffer space and then add C to it.  */
1543#define BUF_PUSH(c)                                                     \
1544  do {                                                                  \
1545    GET_BUFFER_SPACE (1);                                               \
1546    *b++ = (unsigned char) (c);                                         \
1547  } while (0)
1548
1549
1550/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1551#define BUF_PUSH_2(c1, c2)                                              \
1552  do {                                                                  \
1553    GET_BUFFER_SPACE (2);                                               \
1554    *b++ = (unsigned char) (c1);                                        \
1555    *b++ = (unsigned char) (c2);                                        \
1556  } while (0)
1557
1558
1559/* As with BUF_PUSH_2, except for three bytes.  */
1560#define BUF_PUSH_3(c1, c2, c3)                                          \
1561  do {                                                                  \
1562    GET_BUFFER_SPACE (3);                                               \
1563    *b++ = (unsigned char) (c1);                                        \
1564    *b++ = (unsigned char) (c2);                                        \
1565    *b++ = (unsigned char) (c3);                                        \
1566  } while (0)
1567
1568
1569/* Store a jump with opcode OP at LOC to location TO.  We store a
1570   relative address offset by the three bytes the jump itself occupies.  */
1571#define STORE_JUMP(op, loc, to) \
1572  store_op1 (op, loc, (int) ((to) - (loc) - 3))
1573
1574/* Likewise, for a two-argument jump.  */
1575#define STORE_JUMP2(op, loc, to, arg) \
1576  store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1577
1578/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
1579#define INSERT_JUMP(op, loc, to) \
1580  insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1581
1582/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1583#define INSERT_JUMP2(op, loc, to, arg) \
1584  insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1585
1586
1587/* This is not an arbitrary limit: the arguments which represent offsets
1588   into the pattern are two bytes long.  So if 2^16 bytes turns out to
1589   be too small, many things would have to change.  */
1590/* Any other compiler which, like MSC, has allocation limit below 2^16
1591   bytes will have to use approach similar to what was done below for
1592   MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
1593   reallocating to 0 bytes.  Such thing is not going to work too well.
1594   You have been warned!!  */
1595#if defined(_MSC_VER) && !defined(WIN32)
1596/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1597   The REALLOC define eliminates a flurry of conversion warnings,
1598   but is not required. */
1599#define MAX_BUF_SIZE  65500L
1600#define REALLOC(p,s) realloc ((p), (size_t) (s))
1601#else
1602#define MAX_BUF_SIZE (1L << 16)
1603#define REALLOC(p,s) realloc ((p), (s))
1604#endif
1605
1606/* Extend the buffer by twice its current size via realloc and
1607   reset the pointers that pointed into the old block to point to the
1608   correct places in the new one.  If extending the buffer results in it
1609   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
1610#define EXTEND_BUFFER()                                                 \
1611  do {                                                                  \
1612    unsigned char *old_buffer = bufp->buffer;                           \
1613    if (bufp->allocated == MAX_BUF_SIZE)                                \
1614      return REG_ESIZE;                                                 \
1615    bufp->allocated <<= 1;                                              \
1616    if (bufp->allocated > MAX_BUF_SIZE)                                 \
1617      bufp->allocated = MAX_BUF_SIZE;                                   \
1618    bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1619    if (bufp->buffer == NULL)                                           \
1620      return REG_ESPACE;                                                \
1621    /* If the buffer moved, move all the pointers into it.  */          \
1622    if (old_buffer != bufp->buffer)                                     \
1623      {                                                                 \
1624        b = (b - old_buffer) + bufp->buffer;                            \
1625        begalt = (begalt - old_buffer) + bufp->buffer;                  \
1626        if (fixup_alt_jump)                                             \
1627          fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1628        if (laststart)                                                  \
1629          laststart = (laststart - old_buffer) + bufp->buffer;          \
1630        if (pending_exact)                                              \
1631          pending_exact = (pending_exact - old_buffer) + bufp->buffer;  \
1632      }                                                                 \
1633  } while (0)
1634
1635
1636/* Since we have one byte reserved for the register number argument to
1637   {start,stop}_memory, the maximum number of groups we can report
1638   things about is what fits in that byte.  */
1639#define MAX_REGNUM 255
1640
1641/* But patterns can have more than `MAX_REGNUM' registers.  We just
1642   ignore the excess.  */
1643typedef unsigned regnum_t;
1644
1645
1646/* Macros for the compile stack.  */
1647
1648/* Since offsets can go either forwards or backwards, this type needs to
1649   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
1650/* int may be not enough when sizeof(int) == 2.  */
1651typedef long pattern_offset_t;
1652
1653typedef struct
1654{
1655  pattern_offset_t begalt_offset;
1656  pattern_offset_t fixup_alt_jump;
1657  pattern_offset_t inner_group_offset;
1658  pattern_offset_t laststart_offset;
1659  regnum_t regnum;
1660} compile_stack_elt_t;
1661
1662
1663typedef struct
1664{
1665  compile_stack_elt_t *stack;
1666  unsigned size;
1667  unsigned avail;                       /* Offset of next open position.  */
1668} compile_stack_type;
1669
1670
1671#define INIT_COMPILE_STACK_SIZE 32
1672
1673#define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
1674#define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
1675
1676/* The next available element.  */
1677#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1678
1679
1680/* Set the bit for character C in a list.  */
1681#define SET_LIST_BIT(c)                               \
1682  (b[((unsigned char) (c)) / BYTEWIDTH]               \
1683   |= 1 << (((unsigned char) c) % BYTEWIDTH))
1684
1685
1686/* Get the next unsigned number in the uncompiled pattern.  */
1687#define GET_UNSIGNED_NUMBER(num)                                        \
1688  { if (p != pend)                                                      \
1689     {                                                                  \
1690       PATFETCH (c);                                                    \
1691       while (ISDIGIT (c))                                              \
1692         {                                                              \
1693           if (num < 0)                                                 \
1694              num = 0;                                                  \
1695           num = num * 10 + c - '0';                                    \
1696           if (p == pend)                                               \
1697              break;                                                    \
1698           PATFETCH (c);                                                \
1699         }                                                              \
1700       }                                                                \
1701    }
1702
1703#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1704/* The GNU C library provides support for user-defined character classes
1705   and the functions from ISO C amendement 1.  */
1706# ifdef CHARCLASS_NAME_MAX
1707#  define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1708# else
1709/* This shouldn't happen but some implementation might still have this
1710   problem.  Use a reasonable default value.  */
1711#  define CHAR_CLASS_MAX_LENGTH 256
1712# endif
1713
1714# define IS_CHAR_CLASS(string) wctype (string)
1715#else
1716# define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
1717
1718# define IS_CHAR_CLASS(string)                                          \
1719   (STREQ (string, "alpha") || STREQ (string, "upper")                  \
1720    || STREQ (string, "lower") || STREQ (string, "digit")               \
1721    || STREQ (string, "alnum") || STREQ (string, "xdigit")              \
1722    || STREQ (string, "space") || STREQ (string, "print")               \
1723    || STREQ (string, "punct") || STREQ (string, "graph")               \
1724    || STREQ (string, "cntrl") || STREQ (string, "blank"))
1725#endif
1726
1727#ifndef MATCH_MAY_ALLOCATE
1728
1729/* If we cannot allocate large objects within re_match_2_internal,
1730   we make the fail stack and register vectors global.
1731   The fail stack, we grow to the maximum size when a regexp
1732   is compiled.
1733   The register vectors, we adjust in size each time we
1734   compile a regexp, according to the number of registers it needs.  */
1735
1736static fail_stack_type fail_stack;
1737
1738/* Size with which the following vectors are currently allocated.
1739   That is so we can make them bigger as needed,
1740   but never make them smaller.  */
1741static int regs_allocated_size;
1742
1743static const char **     regstart, **     regend;
1744static const char ** old_regstart, ** old_regend;
1745static const char **best_regstart, **best_regend;
1746static register_info_type *reg_info;
1747static const char **reg_dummy;
1748static register_info_type *reg_info_dummy;
1749
1750/* Make the register vectors big enough for NUM_REGS registers,
1751   but don't make them smaller.  */
1752
1753static
1754regex_grow_registers (num_regs)
1755     int num_regs;
1756{
1757  if (num_regs > regs_allocated_size)
1758    {
1759      RETALLOC_IF (regstart,     num_regs, const char *);
1760      RETALLOC_IF (regend,       num_regs, const char *);
1761      RETALLOC_IF (old_regstart, num_regs, const char *);
1762      RETALLOC_IF (old_regend,   num_regs, const char *);
1763      RETALLOC_IF (best_regstart, num_regs, const char *);
1764      RETALLOC_IF (best_regend,  num_regs, const char *);
1765      RETALLOC_IF (reg_info,     num_regs, register_info_type);
1766      RETALLOC_IF (reg_dummy,    num_regs, const char *);
1767      RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1768
1769      regs_allocated_size = num_regs;
1770    }
1771}
1772
1773#endif /* not MATCH_MAY_ALLOCATE */
1774
1775static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1776                                                 compile_stack,
1777                                                 regnum_t regnum));
1778
1779/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1780   Returns one of error codes defined in `regex.h', or zero for success.
1781
1782   Assumes the `allocated' (and perhaps `buffer') and `translate'
1783   fields are set in BUFP on entry.
1784
1785   If it succeeds, results are put in BUFP (if it returns an error, the
1786   contents of BUFP are undefined):
1787     `buffer' is the compiled pattern;
1788     `syntax' is set to SYNTAX;
1789     `used' is set to the length of the compiled pattern;
1790     `fastmap_accurate' is zero;
1791     `re_nsub' is the number of subexpressions in PATTERN;
1792     `not_bol' and `not_eol' are zero;
1793
1794   The `fastmap' and `newline_anchor' fields are neither
1795   examined nor set.  */
1796
1797/* Return, freeing storage we allocated.  */
1798#define FREE_STACK_RETURN(value)                \
1799  return (free (compile_stack.stack), value)
1800
1801static reg_errcode_t
1802regex_compile (pattern, size, syntax, bufp)
1803     const char *pattern;
1804     size_t size;
1805     reg_syntax_t syntax;
1806     struct re_pattern_buffer *bufp;
1807{
1808  /* We fetch characters from PATTERN here.  Even though PATTERN is
1809     `char *' (i.e., signed), we declare these variables as unsigned, so
1810     they can be reliably used as array indices.  */
1811  register unsigned char c, c1;
1812
1813  /* A random temporary spot in PATTERN.  */
1814  const char *p1;
1815
1816  /* Points to the end of the buffer, where we should append.  */
1817  register unsigned char *b;
1818
1819  /* Keeps track of unclosed groups.  */
1820  compile_stack_type compile_stack;
1821
1822  /* Points to the current (ending) position in the pattern.  */
1823  const char *p = pattern;
1824  const char *pend = pattern + size;
1825
1826  /* How to translate the characters in the pattern.  */
1827  RE_TRANSLATE_TYPE translate = bufp->translate;
1828
1829  /* Address of the count-byte of the most recently inserted `exactn'
1830     command.  This makes it possible to tell if a new exact-match
1831     character can be added to that command or if the character requires
1832     a new `exactn' command.  */
1833  unsigned char *pending_exact = 0;
1834
1835  /* Address of start of the most recently finished expression.
1836     This tells, e.g., postfix * where to find the start of its
1837     operand.  Reset at the beginning of groups and alternatives.  */
1838  unsigned char *laststart = 0;
1839
1840  /* Address of beginning of regexp, or inside of last group.  */
1841  unsigned char *begalt;
1842
1843  /* Place in the uncompiled pattern (i.e., the {) to
1844     which to go back if the interval is invalid.  */
1845  const char *beg_interval;
1846
1847  /* Address of the place where a forward jump should go to the end of
1848     the containing expression.  Each alternative of an `or' -- except the
1849     last -- ends with a forward jump of this sort.  */
1850  unsigned char *fixup_alt_jump = 0;
1851
1852  /* Counts open-groups as they are encountered.  Remembered for the
1853     matching close-group on the compile stack, so the same register
1854     number is put in the stop_memory as the start_memory.  */
1855  regnum_t regnum = 0;
1856
1857#ifdef DEBUG
1858  DEBUG_PRINT1 ("\nCompiling pattern: ");
1859  if (debug)
1860    {
1861      unsigned debug_count;
1862
1863      for (debug_count = 0; debug_count < size; debug_count++)
1864        putchar (pattern[debug_count]);
1865      putchar ('\n');
1866    }
1867#endif /* DEBUG */
1868
1869  /* Initialize the compile stack.  */
1870  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1871  if (compile_stack.stack == NULL)
1872    return REG_ESPACE;
1873
1874  compile_stack.size = INIT_COMPILE_STACK_SIZE;
1875  compile_stack.avail = 0;
1876
1877  /* Initialize the pattern buffer.  */
1878  bufp->syntax = syntax;
1879  bufp->fastmap_accurate = 0;
1880  bufp->not_bol = bufp->not_eol = 0;
1881
1882  /* Set `used' to zero, so that if we return an error, the pattern
1883     printer (for debugging) will think there's no pattern.  We reset it
1884     at the end.  */
1885  bufp->used = 0;
1886
1887  /* Always count groups, whether or not bufp->no_sub is set.  */
1888  bufp->re_nsub = 0;
1889
1890#if !defined (emacs) && !defined (SYNTAX_TABLE)
1891  /* Initialize the syntax table.  */
1892   init_syntax_once ();
1893#endif
1894
1895  if (bufp->allocated == 0)
1896    {
1897      if (bufp->buffer)
1898        { /* If zero allocated, but buffer is non-null, try to realloc
1899             enough space.  This loses if buffer's address is bogus, but
1900             that is the user's responsibility.  */
1901          RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1902        }
1903      else
1904        { /* Caller did not allocate a buffer.  Do it for them.  */
1905          bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1906        }
1907      if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1908
1909      bufp->allocated = INIT_BUF_SIZE;
1910    }
1911
1912  begalt = b = bufp->buffer;
1913
1914  /* Loop through the uncompiled pattern until we're at the end.  */
1915  while (p != pend)
1916    {
1917      PATFETCH (c);
1918
1919      switch (c)
1920        {
1921        case '^':
1922          {
1923            if (   /* If at start of pattern, it's an operator.  */
1924                   p == pattern + 1
1925                   /* If context independent, it's an operator.  */
1926                || syntax & RE_CONTEXT_INDEP_ANCHORS
1927                   /* Otherwise, depends on what's come before.  */
1928                || at_begline_loc_p (pattern, p, syntax))
1929              BUF_PUSH (begline);
1930            else
1931              goto normal_char;
1932          }
1933          break;
1934
1935
1936        case '$':
1937          {
1938            if (   /* If at end of pattern, it's an operator.  */
1939                   p == pend
1940                   /* If context independent, it's an operator.  */
1941                || syntax & RE_CONTEXT_INDEP_ANCHORS
1942                   /* Otherwise, depends on what's next.  */
1943                || at_endline_loc_p (p, pend, syntax))
1944               BUF_PUSH (endline);
1945             else
1946               goto normal_char;
1947           }
1948           break;
1949
1950
1951        case '+':
1952        case '?':
1953          if ((syntax & RE_BK_PLUS_QM)
1954              || (syntax & RE_LIMITED_OPS))
1955            goto normal_char;
1956        handle_plus:
1957        case '*':
1958          /* If there is no previous pattern... */
1959          if (!laststart)
1960            {
1961              if (syntax & RE_CONTEXT_INVALID_OPS)
1962                FREE_STACK_RETURN (REG_BADRPT);
1963              else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1964                goto normal_char;
1965            }
1966
1967          {
1968            /* Are we optimizing this jump?  */
1969            boolean keep_string_p = false;
1970
1971            /* 1 means zero (many) matches is allowed.  */
1972            char zero_times_ok = 0, many_times_ok = 0;
1973
1974            /* If there is a sequence of repetition chars, collapse it
1975               down to just one (the right one).  We can't combine
1976               interval operators with these because of, e.g., `a{2}*',
1977               which should only match an even number of `a's.  */
1978
1979            for (;;)
1980              {
1981                zero_times_ok |= c != '+';
1982                many_times_ok |= c != '?';
1983
1984                if (p == pend)
1985                  break;
1986
1987                PATFETCH (c);
1988
1989                if (c == '*'
1990                    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1991                  ;
1992
1993                else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
1994                  {
1995                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1996
1997                    PATFETCH (c1);
1998                    if (!(c1 == '+' || c1 == '?'))
1999                      {
2000                        PATUNFETCH;
2001                        PATUNFETCH;
2002                        break;
2003                      }
2004
2005                    c = c1;
2006                  }
2007                else
2008                  {
2009                    PATUNFETCH;
2010                    break;
2011                  }
2012
2013                /* If we get here, we found another repeat character.  */
2014               }
2015
2016            /* Star, etc. applied to an empty pattern is equivalent
2017               to an empty pattern.  */
2018            if (!laststart)
2019              break;
2020
2021            /* Now we know whether or not zero matches is allowed
2022               and also whether or not two or more matches is allowed.  */
2023            if (many_times_ok)
2024              { /* More than one repetition is allowed, so put in at the
2025                   end a backward relative jump from `b' to before the next
2026                   jump we're going to put in below (which jumps from
2027                   laststart to after this jump).
2028
2029                   But if we are at the `*' in the exact sequence `.*\n',
2030                   insert an unconditional jump backwards to the .,
2031                   instead of the beginning of the loop.  This way we only
2032                   push a failure point once, instead of every time
2033                   through the loop.  */
2034                assert (p - 1 > pattern);
2035
2036                /* Allocate the space for the jump.  */
2037                GET_BUFFER_SPACE (3);
2038
2039                /* We know we are not at the first character of the pattern,
2040                   because laststart was nonzero.  And we've already
2041                   incremented `p', by the way, to be the character after
2042                   the `*'.  Do we have to do something analogous here
2043                   for null bytes, because of RE_DOT_NOT_NULL?  */
2044                if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2045                    && zero_times_ok
2046                    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2047                    && !(syntax & RE_DOT_NEWLINE))
2048                  { /* We have .*\n.  */
2049                    STORE_JUMP (jump, b, laststart);
2050                    keep_string_p = true;
2051                  }
2052                else
2053                  /* Anything else.  */
2054                  STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2055
2056                /* We've added more stuff to the buffer.  */
2057                b += 3;
2058              }
2059
2060            /* On failure, jump from laststart to b + 3, which will be the
2061               end of the buffer after this jump is inserted.  */
2062            GET_BUFFER_SPACE (3);
2063            INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2064                                       : on_failure_jump,
2065                         laststart, b + 3);
2066            pending_exact = 0;
2067            b += 3;
2068
2069            if (!zero_times_ok)
2070              {
2071                /* At least one repetition is required, so insert a
2072                   `dummy_failure_jump' before the initial
2073                   `on_failure_jump' instruction of the loop. This
2074                   effects a skip over that instruction the first time
2075                   we hit that loop.  */
2076                GET_BUFFER_SPACE (3);
2077                INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2078                b += 3;
2079              }
2080            }
2081          break;
2082
2083
2084        case '.':
2085          laststart = b;
2086          BUF_PUSH (anychar);
2087          break;
2088
2089
2090        case '[':
2091          {
2092            boolean had_char_class = false;
2093
2094            if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2095
2096            /* Ensure that we have enough space to push a charset: the
2097               opcode, the length count, and the bitset; 34 bytes in all.  */
2098            GET_BUFFER_SPACE (34);
2099
2100            laststart = b;
2101
2102            /* We test `*p == '^' twice, instead of using an if
2103               statement, so we only need one BUF_PUSH.  */
2104            BUF_PUSH (*p == '^' ? charset_not : charset);
2105            if (*p == '^')
2106              p++;
2107
2108            /* Remember the first position in the bracket expression.  */
2109            p1 = p;
2110
2111            /* Push the number of bytes in the bitmap.  */
2112            BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2113
2114            /* Clear the whole map.  */
2115            bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2116
2117            /* charset_not matches newline according to a syntax bit.  */
2118            if ((re_opcode_t) b[-2] == charset_not
2119                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2120              SET_LIST_BIT ('\n');
2121
2122            /* Read in characters and ranges, setting map bits.  */
2123            for (;;)
2124              {
2125                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2126
2127                PATFETCH (c);
2128
2129                /* \ might escape characters inside [...] and [^...].  */
2130                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2131                  {
2132                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2133
2134                    PATFETCH (c1);
2135                    SET_LIST_BIT (c1);
2136                    continue;
2137                  }
2138
2139                /* Could be the end of the bracket expression.  If it's
2140                   not (i.e., when the bracket expression is `[]' so
2141                   far), the ']' character bit gets set way below.  */
2142                if (c == ']' && p != p1 + 1)
2143                  break;
2144
2145                /* Look ahead to see if it's a range when the last thing
2146                   was a character class.  */
2147                if (had_char_class && c == '-' && *p != ']')
2148                  FREE_STACK_RETURN (REG_ERANGE);
2149
2150                /* Look ahead to see if it's a range when the last thing
2151                   was a character: if this is a hyphen not at the
2152                   beginning or the end of a list, then it's the range
2153                   operator.  */
2154                if (c == '-'
2155                    && !(p - 2 >= pattern && p[-2] == '[')
2156                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2157                    && *p != ']')
2158                  {
2159                    reg_errcode_t ret
2160                      = compile_range (&p, pend, translate, syntax, b);
2161                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2162                  }
2163
2164                else if (p[0] == '-' && p[1] != ']')
2165                  { /* This handles ranges made up of characters only.  */
2166                    reg_errcode_t ret;
2167
2168                    /* Move past the `-'.  */
2169                    PATFETCH (c1);
2170
2171                    ret = compile_range (&p, pend, translate, syntax, b);
2172                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2173                  }
2174
2175                /* See if we're at the beginning of a possible character
2176                   class.  */
2177
2178                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2179                  { /* Leave room for the null.  */
2180                    char str[CHAR_CLASS_MAX_LENGTH + 1];
2181
2182                    PATFETCH (c);
2183                    c1 = 0;
2184
2185                    /* If pattern is `[[:'.  */
2186                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2187
2188                    for (;;)
2189                      {
2190                        PATFETCH (c);
2191                        if (c == ':' || c == ']' || p == pend
2192                            || c1 == CHAR_CLASS_MAX_LENGTH)
2193                          break;
2194                        str[c1++] = c;
2195                      }
2196                    str[c1] = '\0';
2197
2198                    /* If isn't a word bracketed by `[:' and:`]':
2199                       undo the ending character, the letters, and leave
2200                       the leading `:' and `[' (but set bits for them).  */
2201                    if (c == ':' && *p == ']')
2202                      {
2203#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
2204                        boolean is_lower = STREQ (str, "lower");
2205                        boolean is_upper = STREQ (str, "upper");
2206                        wctype_t wt;
2207                        int ch;
2208
2209                        wt = wctype (str);
2210                        if (wt == 0)
2211                          FREE_STACK_RETURN (REG_ECTYPE);
2212
2213                        /* Throw away the ] at the end of the character
2214                           class.  */
2215                        PATFETCH (c);
2216
2217                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2218
2219                        for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2220                          {
2221                            if (iswctype (btowc (ch), wt))
2222                              SET_LIST_BIT (ch);
2223
2224                            if (translate && (is_upper || is_lower)
2225                                && (ISUPPER (ch) || ISLOWER (ch)))
2226                              SET_LIST_BIT (ch);
2227                          }
2228
2229                        had_char_class = true;
2230#else
2231                        int ch;
2232                        boolean is_alnum = STREQ (str, "alnum");
2233                        boolean is_alpha = STREQ (str, "alpha");
2234                        boolean is_blank = STREQ (str, "blank");
2235                        boolean is_cntrl = STREQ (str, "cntrl");
2236                        boolean is_digit = STREQ (str, "digit");
2237                        boolean is_graph = STREQ (str, "graph");
2238                        boolean is_lower = STREQ (str, "lower");
2239                        boolean is_print = STREQ (str, "print");
2240                        boolean is_punct = STREQ (str, "punct");
2241                        boolean is_space = STREQ (str, "space");
2242                        boolean is_upper = STREQ (str, "upper");
2243                        boolean is_xdigit = STREQ (str, "xdigit");
2244
2245                        if (!IS_CHAR_CLASS (str))
2246                          FREE_STACK_RETURN (REG_ECTYPE);
2247
2248                        /* Throw away the ] at the end of the character
2249                           class.  */
2250                        PATFETCH (c);
2251
2252                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2253
2254                        for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2255                          {
2256                            /* This was split into 3 if's to
2257                               avoid an arbitrary limit in some compiler.  */
2258                            if (   (is_alnum  && ISALNUM (ch))
2259                                || (is_alpha  && ISALPHA (ch))
2260                                || (is_blank  && ISBLANK (ch))
2261                                || (is_cntrl  && ISCNTRL (ch)))
2262                              SET_LIST_BIT (ch);
2263                            if (   (is_digit  && ISDIGIT (ch))
2264                                || (is_graph  && ISGRAPH (ch))
2265                                || (is_lower  && ISLOWER (ch))
2266                                || (is_print  && ISPRINT (ch)))
2267                              SET_LIST_BIT (ch);
2268                            if (   (is_punct  && ISPUNCT (ch))
2269                                || (is_space  && ISSPACE (ch))
2270                                || (is_upper  && ISUPPER (ch))
2271                                || (is_xdigit && ISXDIGIT (ch)))
2272                              SET_LIST_BIT (ch);
2273                            if (   translate && (is_upper || is_lower)
2274                                && (ISUPPER (ch) || ISLOWER (ch)))
2275                              SET_LIST_BIT (ch);
2276                          }
2277                        had_char_class = true;
2278#endif  /* libc || wctype.h */
2279                      }
2280                    else
2281                      {
2282                        c1++;
2283                        while (c1--)
2284                          PATUNFETCH;
2285                        SET_LIST_BIT ('[');
2286                        SET_LIST_BIT (':');
2287                        had_char_class = false;
2288                      }
2289                  }
2290                else
2291                  {
2292                    had_char_class = false;
2293                    SET_LIST_BIT (c);
2294                  }
2295              }
2296
2297            /* Discard any (non)matching list bytes that are all 0 at the
2298               end of the map.  Decrease the map-length byte too.  */
2299            while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2300              b[-1]--;
2301            b += b[-1];
2302          }
2303          break;
2304
2305
2306        case '(':
2307          if (syntax & RE_NO_BK_PARENS)
2308            goto handle_open;
2309          else
2310            goto normal_char;
2311
2312
2313        case ')':
2314          if (syntax & RE_NO_BK_PARENS)
2315            goto handle_close;
2316          else
2317            goto normal_char;
2318
2319
2320        case '\n':
2321          if (syntax & RE_NEWLINE_ALT)
2322            goto handle_alt;
2323          else
2324            goto normal_char;
2325
2326
2327        case '|':
2328          if (syntax & RE_NO_BK_VBAR)
2329            goto handle_alt;
2330          else
2331            goto normal_char;
2332
2333
2334        case '{':
2335           if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2336             goto handle_interval;
2337           else
2338             goto normal_char;
2339
2340
2341        case '\\':
2342          if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2343
2344          /* Do not translate the character after the \, so that we can
2345             distinguish, e.g., \B from \b, even if we normally would
2346             translate, e.g., B to b.  */
2347          PATFETCH_RAW (c);
2348
2349          switch (c)
2350            {
2351            case '(':
2352              if (syntax & RE_NO_BK_PARENS)
2353                goto normal_backslash;
2354
2355            handle_open:
2356              bufp->re_nsub++;
2357              regnum++;
2358
2359              if (COMPILE_STACK_FULL)
2360                {
2361                  RETALLOC (compile_stack.stack, compile_stack.size << 1,
2362                            compile_stack_elt_t);
2363                  if (compile_stack.stack == NULL) return REG_ESPACE;
2364
2365                  compile_stack.size <<= 1;
2366                }
2367
2368              /* These are the values to restore when we hit end of this
2369                 group.  They are all relative offsets, so that if the
2370                 whole pattern moves because of realloc, they will still
2371                 be valid.  */
2372              COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2373              COMPILE_STACK_TOP.fixup_alt_jump
2374                = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2375              COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2376              COMPILE_STACK_TOP.regnum = regnum;
2377
2378              /* We will eventually replace the 0 with the number of
2379                 groups inner to this one.  But do not push a
2380                 start_memory for groups beyond the last one we can
2381                 represent in the compiled pattern.  */
2382              if (regnum <= MAX_REGNUM)
2383                {
2384                  COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2385                  BUF_PUSH_3 (start_memory, regnum, 0);
2386                }
2387
2388              compile_stack.avail++;
2389
2390              fixup_alt_jump = 0;
2391              laststart = 0;
2392              begalt = b;
2393              /* If we've reached MAX_REGNUM groups, then this open
2394                 won't actually generate any code, so we'll have to
2395                 clear pending_exact explicitly.  */
2396              pending_exact = 0;
2397              break;
2398
2399
2400            case ')':
2401              if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2402
2403              if (COMPILE_STACK_EMPTY)
2404                if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2405                  goto normal_backslash;
2406                else
2407                  FREE_STACK_RETURN (REG_ERPAREN);
2408
2409            handle_close:
2410              if (fixup_alt_jump)
2411                { /* Push a dummy failure point at the end of the
2412                     alternative for a possible future
2413                     `pop_failure_jump' to pop.  See comments at
2414                     `push_dummy_failure' in `re_match_2'.  */
2415                  BUF_PUSH (push_dummy_failure);
2416
2417                  /* We allocated space for this jump when we assigned
2418                     to `fixup_alt_jump', in the `handle_alt' case below.  */
2419                  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2420                }
2421
2422              /* See similar code for backslashed left paren above.  */
2423              if (COMPILE_STACK_EMPTY)
2424                if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2425                  goto normal_char;
2426                else
2427                  FREE_STACK_RETURN (REG_ERPAREN);
2428
2429              /* Since we just checked for an empty stack above, this
2430                 ``can't happen''.  */
2431              assert (compile_stack.avail != 0);
2432              {
2433                /* We don't just want to restore into `regnum', because
2434                   later groups should continue to be numbered higher,
2435                   as in `(ab)c(de)' -- the second group is #2.  */
2436                regnum_t this_group_regnum;
2437
2438                compile_stack.avail--;
2439                begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2440                fixup_alt_jump
2441                  = COMPILE_STACK_TOP.fixup_alt_jump
2442                    ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2443                    : 0;
2444                laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2445                this_group_regnum = COMPILE_STACK_TOP.regnum;
2446                /* If we've reached MAX_REGNUM groups, then this open
2447                   won't actually generate any code, so we'll have to
2448                   clear pending_exact explicitly.  */
2449                pending_exact = 0;
2450
2451                /* We're at the end of the group, so now we know how many
2452                   groups were inside this one.  */
2453                if (this_group_regnum <= MAX_REGNUM)
2454                  {
2455                    unsigned char *inner_group_loc
2456                      = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2457
2458                    *inner_group_loc = regnum - this_group_regnum;
2459                    BUF_PUSH_3 (stop_memory, this_group_regnum,
2460                                regnum - this_group_regnum);
2461                  }
2462              }
2463              break;
2464
2465
2466            case '|':                                   /* `\|'.  */
2467              if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2468                goto normal_backslash;
2469            handle_alt:
2470              if (syntax & RE_LIMITED_OPS)
2471                goto normal_char;
2472
2473              /* Insert before the previous alternative a jump which
2474                 jumps to this alternative if the former fails.  */
2475              GET_BUFFER_SPACE (3);
2476              INSERT_JUMP (on_failure_jump, begalt, b + 6);
2477              pending_exact = 0;
2478              b += 3;
2479
2480              /* The alternative before this one has a jump after it
2481                 which gets executed if it gets matched.  Adjust that
2482                 jump so it will jump to this alternative's analogous
2483                 jump (put in below, which in turn will jump to the next
2484                 (if any) alternative's such jump, etc.).  The last such
2485                 jump jumps to the correct final destination.  A picture:
2486                          _____ _____
2487                          |   | |   |
2488                          |   v |   v
2489                         a | b   | c
2490
2491                 If we are at `b', then fixup_alt_jump right now points to a
2492                 three-byte space after `a'.  We'll put in the jump, set
2493                 fixup_alt_jump to right after `b', and leave behind three
2494                 bytes which we'll fill in when we get to after `c'.  */
2495
2496              if (fixup_alt_jump)
2497                STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2498
2499              /* Mark and leave space for a jump after this alternative,
2500                 to be filled in later either by next alternative or
2501                 when know we're at the end of a series of alternatives.  */
2502              fixup_alt_jump = b;
2503              GET_BUFFER_SPACE (3);
2504              b += 3;
2505
2506              laststart = 0;
2507              begalt = b;
2508              break;
2509
2510
2511            case '{':
2512              /* If \{ is a literal.  */
2513              if (!(syntax & RE_INTERVALS)
2514                     /* If we're at `\{' and it's not the open-interval
2515                        operator.  */
2516                  || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2517                  || (p - 2 == pattern  &&  p == pend))
2518                goto normal_backslash;
2519
2520            handle_interval:
2521              {
2522                /* If got here, then the syntax allows intervals.  */
2523
2524                /* At least (most) this many matches must be made.  */
2525                int lower_bound = -1, upper_bound = -1;
2526
2527                beg_interval = p - 1;
2528
2529                if (p == pend)
2530                  {
2531                    if (syntax & RE_NO_BK_BRACES)
2532                      goto unfetch_interval;
2533                    else
2534                      FREE_STACK_RETURN (REG_EBRACE);
2535                  }
2536
2537                GET_UNSIGNED_NUMBER (lower_bound);
2538
2539                if (c == ',')
2540                  {
2541                    GET_UNSIGNED_NUMBER (upper_bound);
2542                    if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2543                  }
2544                else
2545                  /* Interval such as `{1}' => match exactly once. */
2546                  upper_bound = lower_bound;
2547
2548                if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2549                    || lower_bound > upper_bound)
2550                  {
2551                    if (syntax & RE_NO_BK_BRACES)
2552                      goto unfetch_interval;
2553                    else
2554                      FREE_STACK_RETURN (REG_BADBR);
2555                  }
2556
2557                if (!(syntax & RE_NO_BK_BRACES))
2558                  {
2559                    if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2560
2561                    PATFETCH (c);
2562                  }
2563
2564                if (c != '}')
2565                  {
2566                    if (syntax & RE_NO_BK_BRACES)
2567                      goto unfetch_interval;
2568                    else
2569                      FREE_STACK_RETURN (REG_BADBR);
2570                  }
2571
2572                /* We just parsed a valid interval.  */
2573
2574                /* If it's invalid to have no preceding re.  */
2575                if (!laststart)
2576                  {
2577                    if (syntax & RE_CONTEXT_INVALID_OPS)
2578                      FREE_STACK_RETURN (REG_BADRPT);
2579                    else if (syntax & RE_CONTEXT_INDEP_OPS)
2580                      laststart = b;
2581                    else
2582                      goto unfetch_interval;
2583                  }
2584
2585                /* If the upper bound is zero, don't want to succeed at
2586                   all; jump from `laststart' to `b + 3', which will be
2587                   the end of the buffer after we insert the jump.  */
2588                 if (upper_bound == 0)
2589                   {
2590                     GET_BUFFER_SPACE (3);
2591                     INSERT_JUMP (jump, laststart, b + 3);
2592                     b += 3;
2593                   }
2594
2595                 /* Otherwise, we have a nontrivial interval.  When
2596                    we're all done, the pattern will look like:
2597                      set_number_at <jump count> <upper bound>
2598                      set_number_at <succeed_n count> <lower bound>
2599                      succeed_n <after jump addr> <succeed_n count>
2600                      <body of loop>
2601                      jump_n <succeed_n addr> <jump count>
2602                    (The upper bound and `jump_n' are omitted if
2603                    `upper_bound' is 1, though.)  */
2604                 else
2605                   { /* If the upper bound is > 1, we need to insert
2606                        more at the end of the loop.  */
2607                     unsigned nbytes = 10 + (upper_bound > 1) * 10;
2608
2609                     GET_BUFFER_SPACE (nbytes);
2610
2611                     /* Initialize lower bound of the `succeed_n', even
2612                        though it will be set during matching by its
2613                        attendant `set_number_at' (inserted next),
2614                        because `re_compile_fastmap' needs to know.
2615                        Jump to the `jump_n' we might insert below.  */
2616                     INSERT_JUMP2 (succeed_n, laststart,
2617                                   b + 5 + (upper_bound > 1) * 5,
2618                                   lower_bound);
2619                     b += 5;
2620
2621                     /* Code to initialize the lower bound.  Insert
2622                        before the `succeed_n'.  The `5' is the last two
2623                        bytes of this `set_number_at', plus 3 bytes of
2624                        the following `succeed_n'.  */
2625                     insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2626                     b += 5;
2627
2628                     if (upper_bound > 1)
2629                       { /* More than one repetition is allowed, so
2630                            append a backward jump to the `succeed_n'
2631                            that starts this interval.
2632
2633                            When we've reached this during matching,
2634                            we'll have matched the interval once, so
2635                            jump back only `upper_bound - 1' times.  */
2636                         STORE_JUMP2 (jump_n, b, laststart + 5,
2637                                      upper_bound - 1);
2638                         b += 5;
2639
2640                         /* The location we want to set is the second
2641                            parameter of the `jump_n'; that is `b-2' as
2642                            an absolute address.  `laststart' will be
2643                            the `set_number_at' we're about to insert;
2644                            `laststart+3' the number to set, the source
2645                            for the relative address.  But we are
2646                            inserting into the middle of the pattern --
2647                            so everything is getting moved up by 5.
2648                            Conclusion: (b - 2) - (laststart + 3) + 5,
2649                            i.e., b - laststart.
2650
2651                            We insert this at the beginning of the loop
2652                            so that if we fail during matching, we'll
2653                            reinitialize the bounds.  */
2654                         insert_op2 (set_number_at, laststart, b - laststart,
2655                                     upper_bound - 1, b);
2656                         b += 5;
2657                       }
2658                   }
2659                pending_exact = 0;
2660                beg_interval = NULL;
2661              }
2662              break;
2663
2664            unfetch_interval:
2665              /* If an invalid interval, match the characters as literals.  */
2666               assert (beg_interval);
2667               p = beg_interval;
2668               beg_interval = NULL;
2669
2670               /* normal_char and normal_backslash need `c'.  */
2671               PATFETCH (c);
2672
2673               if (!(syntax & RE_NO_BK_BRACES))
2674                 {
2675                   if (p > pattern  &&  p[-1] == '\\')
2676                     goto normal_backslash;
2677                 }
2678               goto normal_char;
2679
2680#ifdef emacs
2681            /* There is no way to specify the before_dot and after_dot
2682               operators.  rms says this is ok.  --karl  */
2683            case '=':
2684              BUF_PUSH (at_dot);
2685              break;
2686
2687            case 's':
2688              laststart = b;
2689              PATFETCH (c);
2690              BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2691              break;
2692
2693            case 'S':
2694              laststart = b;
2695              PATFETCH (c);
2696              BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2697              break;
2698#endif /* emacs */
2699
2700
2701            case 'w':
2702              if (re_syntax_options & RE_NO_GNU_OPS)
2703                goto normal_char;
2704              laststart = b;
2705              BUF_PUSH (wordchar);
2706              break;
2707
2708
2709            case 'W':
2710              if (re_syntax_options & RE_NO_GNU_OPS)
2711                goto normal_char;
2712              laststart = b;
2713              BUF_PUSH (notwordchar);
2714              break;
2715
2716
2717            case '<':
2718              if (re_syntax_options & RE_NO_GNU_OPS)
2719                goto normal_char;
2720              BUF_PUSH (wordbeg);
2721              break;
2722
2723            case '>':
2724              if (re_syntax_options & RE_NO_GNU_OPS)
2725                goto normal_char;
2726              BUF_PUSH (wordend);
2727              break;
2728
2729            case 'b':
2730              if (re_syntax_options & RE_NO_GNU_OPS)
2731                goto normal_char;
2732              BUF_PUSH (wordbound);
2733              break;
2734
2735            case 'B':
2736              if (re_syntax_options & RE_NO_GNU_OPS)
2737                goto normal_char;
2738              BUF_PUSH (notwordbound);
2739              break;
2740
2741            case '`':
2742              if (re_syntax_options & RE_NO_GNU_OPS)
2743                goto normal_char;
2744              BUF_PUSH (begbuf);
2745              break;
2746
2747            case '\'':
2748              if (re_syntax_options & RE_NO_GNU_OPS)
2749                goto normal_char;
2750              BUF_PUSH (endbuf);
2751              break;
2752
2753            case '1': case '2': case '3': case '4': case '5':
2754            case '6': case '7': case '8': case '9':
2755              if (syntax & RE_NO_BK_REFS)
2756                goto normal_char;
2757
2758              c1 = c - '0';
2759
2760              if (c1 > regnum)
2761                FREE_STACK_RETURN (REG_ESUBREG);
2762
2763              /* Can't back reference to a subexpression if inside of it.  */
2764              if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2765                goto normal_char;
2766
2767              laststart = b;
2768              BUF_PUSH_2 (duplicate, c1);
2769              break;
2770
2771
2772            case '+':
2773            case '?':
2774              if (syntax & RE_BK_PLUS_QM)
2775                goto handle_plus;
2776              else
2777                goto normal_backslash;
2778
2779            default:
2780            normal_backslash:
2781              /* You might think it would be useful for \ to mean
2782                 not to translate; but if we don't translate it
2783                 it will never match anything.  */
2784              c = TRANSLATE (c);
2785              goto normal_char;
2786            }
2787          break;
2788
2789
2790        default:
2791        /* Expects the character in `c'.  */
2792        normal_char:
2793              /* If no exactn currently being built.  */
2794          if (!pending_exact
2795
2796              /* If last exactn not at current position.  */
2797              || pending_exact + *pending_exact + 1 != b
2798
2799              /* We have only one byte following the exactn for the count.  */
2800              || *pending_exact == (1 << BYTEWIDTH) - 1
2801
2802              /* If followed by a repetition operator.  */
2803              || *p == '*' || *p == '^'
2804              || ((syntax & RE_BK_PLUS_QM)
2805                  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2806                  : (*p == '+' || *p == '?'))
2807              || ((syntax & RE_INTERVALS)
2808                  && ((syntax & RE_NO_BK_BRACES)
2809                      ? *p == '{'
2810                      : (p[0] == '\\' && p[1] == '{'))))
2811            {
2812              /* Start building a new exactn.  */
2813
2814              laststart = b;
2815
2816              BUF_PUSH_2 (exactn, 0);
2817              pending_exact = b - 1;
2818            }
2819
2820          BUF_PUSH (c);
2821          (*pending_exact)++;
2822          break;
2823        } /* switch (c) */
2824    } /* while p != pend */
2825
2826
2827  /* Through the pattern now.  */
2828
2829  if (fixup_alt_jump)
2830    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2831
2832  if (!COMPILE_STACK_EMPTY)
2833    FREE_STACK_RETURN (REG_EPAREN);
2834
2835  /* If we don't want backtracking, force success
2836     the first time we reach the end of the compiled pattern.  */
2837  if (syntax & RE_NO_POSIX_BACKTRACKING)
2838    BUF_PUSH (succeed);
2839
2840  free (compile_stack.stack);
2841
2842  /* We have succeeded; set the length of the buffer.  */
2843  bufp->used = b - bufp->buffer;
2844
2845#ifdef DEBUG
2846  if (debug)
2847    {
2848      DEBUG_PRINT1 ("\nCompiled pattern: \n");
2849      print_compiled_pattern (bufp);
2850    }
2851#endif /* DEBUG */
2852
2853#ifndef MATCH_MAY_ALLOCATE
2854  /* Initialize the failure stack to the largest possible stack.  This
2855     isn't necessary unless we're trying to avoid calling alloca in
2856     the search and match routines.  */
2857  {
2858    int num_regs = bufp->re_nsub + 1;
2859
2860    /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2861       is strictly greater than re_max_failures, the largest possible stack
2862       is 2 * re_max_failures failure points.  */
2863    if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2864      {
2865        fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2866
2867#ifdef emacs
2868        if (! fail_stack.stack)
2869          fail_stack.stack
2870            = (fail_stack_elt_t *) xmalloc (fail_stack.size
2871                                            * sizeof (fail_stack_elt_t));
2872        else
2873          fail_stack.stack
2874            = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2875                                             (fail_stack.size
2876                                              * sizeof (fail_stack_elt_t)));
2877#else /* not emacs */
2878        if (! fail_stack.stack)
2879          fail_stack.stack
2880            = (fail_stack_elt_t *) malloc (fail_stack.size
2881                                           * sizeof (fail_stack_elt_t));
2882        else
2883          fail_stack.stack
2884            = (fail_stack_elt_t *) realloc (fail_stack.stack,
2885                                            (fail_stack.size
2886                                             * sizeof (fail_stack_elt_t)));
2887#endif /* not emacs */
2888      }
2889
2890    regex_grow_registers (num_regs);
2891  }
2892#endif /* not MATCH_MAY_ALLOCATE */
2893
2894  return REG_NOERROR;
2895} /* regex_compile */
2896
2897/* Subroutines for `regex_compile'.  */
2898
2899/* Store OP at LOC followed by two-byte integer parameter ARG.  */
2900
2901static void
2902store_op1 (op, loc, arg)
2903    re_opcode_t op;
2904    unsigned char *loc;
2905    int arg;
2906{
2907  *loc = (unsigned char) op;
2908  STORE_NUMBER (loc + 1, arg);
2909}
2910
2911
2912/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
2913
2914static void
2915store_op2 (op, loc, arg1, arg2)
2916    re_opcode_t op;
2917    unsigned char *loc;
2918    int arg1, arg2;
2919{
2920  *loc = (unsigned char) op;
2921  STORE_NUMBER (loc + 1, arg1);
2922  STORE_NUMBER (loc + 3, arg2);
2923}
2924
2925
2926/* Copy the bytes from LOC to END to open up three bytes of space at LOC
2927   for OP followed by two-byte integer parameter ARG.  */
2928
2929static void
2930insert_op1 (op, loc, arg, end)
2931    re_opcode_t op;
2932    unsigned char *loc;
2933    int arg;
2934    unsigned char *end;
2935{
2936  register unsigned char *pfrom = end;
2937  register unsigned char *pto = end + 3;
2938
2939  while (pfrom != loc)
2940    *--pto = *--pfrom;
2941
2942  store_op1 (op, loc, arg);
2943}
2944
2945
2946/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
2947
2948static void
2949insert_op2 (op, loc, arg1, arg2, end)
2950    re_opcode_t op;
2951    unsigned char *loc;
2952    int arg1, arg2;
2953    unsigned char *end;
2954{
2955  register unsigned char *pfrom = end;
2956  register unsigned char *pto = end + 5;
2957
2958  while (pfrom != loc)
2959    *--pto = *--pfrom;
2960
2961  store_op2 (op, loc, arg1, arg2);
2962}
2963
2964
2965/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
2966   after an alternative or a begin-subexpression.  We assume there is at
2967   least one character before the ^.  */
2968
2969static boolean
2970at_begline_loc_p (pattern, p, syntax)
2971    const char *pattern, *p;
2972    reg_syntax_t syntax;
2973{
2974  const char *prev = p - 2;
2975  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2976
2977  return
2978       /* After a subexpression?  */
2979       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2980       /* After an alternative?  */
2981    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2982}
2983
2984
2985/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
2986   at least one character after the $, i.e., `P < PEND'.  */
2987
2988static boolean
2989at_endline_loc_p (p, pend, syntax)
2990    const char *p, *pend;
2991    reg_syntax_t syntax;
2992{
2993  const char *next = p;
2994  boolean next_backslash = *next == '\\';
2995  const char *next_next = p + 1 < pend ? p + 1 : 0;
2996
2997  return
2998       /* Before a subexpression?  */
2999       (syntax & RE_NO_BK_PARENS ? *next == ')'
3000        : next_backslash && next_next && *next_next == ')')
3001       /* Before an alternative?  */
3002    || (syntax & RE_NO_BK_VBAR ? *next == '|'
3003        : next_backslash && next_next && *next_next == '|');
3004}
3005
3006
3007/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3008   false if it's not.  */
3009
3010static boolean
3011group_in_compile_stack (compile_stack, regnum)
3012    compile_stack_type compile_stack;
3013    regnum_t regnum;
3014{
3015  int this_element;
3016
3017  for (this_element = compile_stack.avail - 1;
3018       this_element >= 0;
3019       this_element--)
3020    if (compile_stack.stack[this_element].regnum == regnum)
3021      return true;
3022
3023  return false;
3024}
3025
3026
3027/* Read the ending character of a range (in a bracket expression) from the
3028   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
3029   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
3030   Then we set the translation of all bits between the starting and
3031   ending characters (inclusive) in the compiled pattern B.
3032
3033   Return an error code.
3034
3035   We use these short variable names so we can use the same macros as
3036   `regex_compile' itself.  */
3037
3038static reg_errcode_t
3039compile_range (p_ptr, pend, translate, syntax, b)
3040    const char **p_ptr, *pend;
3041    RE_TRANSLATE_TYPE translate;
3042    reg_syntax_t syntax;
3043    unsigned char *b;
3044{
3045  unsigned this_char;
3046
3047  const char *p = *p_ptr;
3048  unsigned int range_start, range_end;
3049
3050  if (p == pend)
3051    return REG_ERANGE;
3052
3053  /* Even though the pattern is a signed `char *', we need to fetch
3054     with unsigned char *'s; if the high bit of the pattern character
3055     is set, the range endpoints will be negative if we fetch using a
3056     signed char *.
3057
3058     We also want to fetch the endpoints without translating them; the
3059     appropriate translation is done in the bit-setting loop below.  */
3060  /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *.  */
3061  range_start = ((const unsigned char *) p)[-2];
3062  range_end   = ((const unsigned char *) p)[0];
3063
3064  /* Have to increment the pointer into the pattern string, so the
3065     caller isn't still at the ending character.  */
3066  (*p_ptr)++;
3067
3068  /* If the start is after the end, the range is empty.  */
3069  if (range_start > range_end)
3070    return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3071
3072  /* Here we see why `this_char' has to be larger than an `unsigned
3073     char' -- the range is inclusive, so if `range_end' == 0xff
3074     (assuming 8-bit characters), we would otherwise go into an infinite
3075     loop, since all characters <= 0xff.  */
3076  for (this_char = range_start; this_char <= range_end; this_char++)
3077    {
3078      SET_LIST_BIT (TRANSLATE (this_char));
3079    }
3080
3081  return REG_NOERROR;
3082}
3083
3084/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3085   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
3086   characters can start a string that matches the pattern.  This fastmap
3087   is used by re_search to skip quickly over impossible starting points.
3088
3089   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3090   area as BUFP->fastmap.
3091
3092   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3093   the pattern buffer.
3094
3095   Returns 0 if we succeed, -2 if an internal error.   */
3096
3097int
3098re_compile_fastmap (bufp)
3099     struct re_pattern_buffer *bufp;
3100{
3101  int j, k;
3102#ifdef MATCH_MAY_ALLOCATE
3103  fail_stack_type fail_stack;
3104#endif
3105#ifndef REGEX_MALLOC
3106  char *destination;
3107#endif
3108  /* We don't push any register information onto the failure stack.  */
3109  unsigned num_regs = 0;
3110
3111  register char *fastmap = bufp->fastmap;
3112  unsigned char *pattern = bufp->buffer;
3113  unsigned char *p = pattern;
3114  register unsigned char *pend = pattern + bufp->used;
3115
3116#ifdef REL_ALLOC
3117  /* This holds the pointer to the failure stack, when
3118     it is allocated relocatably.  */
3119  fail_stack_elt_t *failure_stack_ptr;
3120#endif
3121
3122  /* Assume that each path through the pattern can be null until
3123     proven otherwise.  We set this false at the bottom of switch
3124     statement, to which we get only if a particular path doesn't
3125     match the empty string.  */
3126  boolean path_can_be_null = true;
3127
3128  /* We aren't doing a `succeed_n' to begin with.  */
3129  boolean succeed_n_p = false;
3130
3131  assert (fastmap != NULL && p != NULL);
3132
3133  INIT_FAIL_STACK ();
3134  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
3135  bufp->fastmap_accurate = 1;       /* It will be when we're done.  */
3136  bufp->can_be_null = 0;
3137
3138  while (1)
3139    {
3140      if (p == pend || *p == succeed)
3141        {
3142          /* We have reached the (effective) end of pattern.  */
3143          if (!FAIL_STACK_EMPTY ())
3144            {
3145              bufp->can_be_null |= path_can_be_null;
3146
3147              /* Reset for next path.  */
3148              path_can_be_null = true;
3149
3150              p = fail_stack.stack[--fail_stack.avail].pointer;
3151
3152              continue;
3153            }
3154          else
3155            break;
3156        }
3157
3158      /* We should never be about to go beyond the end of the pattern.  */
3159      assert (p < pend);
3160
3161      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3162        {
3163
3164        /* I guess the idea here is to simply not bother with a fastmap
3165           if a backreference is used, since it's too hard to figure out
3166           the fastmap for the corresponding group.  Setting
3167           `can_be_null' stops `re_search_2' from using the fastmap, so
3168           that is all we do.  */
3169        case duplicate:
3170          bufp->can_be_null = 1;
3171          goto done;
3172
3173
3174      /* Following are the cases which match a character.  These end
3175         with `break'.  */
3176
3177        case exactn:
3178          fastmap[p[1]] = 1;
3179          break;
3180
3181
3182        case charset:
3183          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3184            if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3185              fastmap[j] = 1;
3186          break;
3187
3188
3189        case charset_not:
3190          /* Chars beyond end of map must be allowed.  */
3191          for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3192            fastmap[j] = 1;
3193
3194          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3195            if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3196              fastmap[j] = 1;
3197          break;
3198
3199
3200        case wordchar:
3201          for (j = 0; j < (1 << BYTEWIDTH); j++)
3202            if (SYNTAX (j) == Sword)
3203              fastmap[j] = 1;
3204          break;
3205
3206
3207        case notwordchar:
3208          for (j = 0; j < (1 << BYTEWIDTH); j++)
3209            if (SYNTAX (j) != Sword)
3210              fastmap[j] = 1;
3211          break;
3212
3213
3214        case anychar:
3215          {
3216            int fastmap_newline = fastmap['\n'];
3217
3218            /* `.' matches anything ...  */
3219            for (j = 0; j < (1 << BYTEWIDTH); j++)
3220              fastmap[j] = 1;
3221
3222            /* ... except perhaps newline.  */
3223            if (!(bufp->syntax & RE_DOT_NEWLINE))
3224              fastmap['\n'] = fastmap_newline;
3225
3226            /* Return if we have already set `can_be_null'; if we have,
3227               then the fastmap is irrelevant.  Something's wrong here.  */
3228            else if (bufp->can_be_null)
3229              goto done;
3230
3231            /* Otherwise, have to check alternative paths.  */
3232            break;
3233          }
3234
3235#ifdef emacs
3236        case syntaxspec:
3237          k = *p++;
3238          for (j = 0; j < (1 << BYTEWIDTH); j++)
3239            if (SYNTAX (j) == (enum syntaxcode) k)
3240              fastmap[j] = 1;
3241          break;
3242
3243
3244        case notsyntaxspec:
3245          k = *p++;
3246          for (j = 0; j < (1 << BYTEWIDTH); j++)
3247            if (SYNTAX (j) != (enum syntaxcode) k)
3248              fastmap[j] = 1;
3249          break;
3250
3251
3252      /* All cases after this match the empty string.  These end with
3253         `continue'.  */
3254
3255
3256        case before_dot:
3257        case at_dot:
3258        case after_dot:
3259          continue;
3260#endif /* emacs */
3261
3262
3263        case no_op:
3264        case begline:
3265        case endline:
3266        case begbuf:
3267        case endbuf:
3268        case wordbound:
3269        case notwordbound:
3270        case wordbeg:
3271        case wordend:
3272        case push_dummy_failure:
3273          continue;
3274
3275
3276        case jump_n:
3277        case pop_failure_jump:
3278        case maybe_pop_jump:
3279        case jump:
3280        case jump_past_alt:
3281        case dummy_failure_jump:
3282          EXTRACT_NUMBER_AND_INCR (j, p);
3283          p += j;
3284          if (j > 0)
3285            continue;
3286
3287          /* Jump backward implies we just went through the body of a
3288             loop and matched nothing.  Opcode jumped to should be
3289             `on_failure_jump' or `succeed_n'.  Just treat it like an
3290             ordinary jump.  For a * loop, it has pushed its failure
3291             point already; if so, discard that as redundant.  */
3292          if ((re_opcode_t) *p != on_failure_jump
3293              && (re_opcode_t) *p != succeed_n)
3294            continue;
3295
3296          p++;
3297          EXTRACT_NUMBER_AND_INCR (j, p);
3298          p += j;
3299
3300          /* If what's on the stack is where we are now, pop it.  */
3301          if (!FAIL_STACK_EMPTY ()
3302              && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3303            fail_stack.avail--;
3304
3305          continue;
3306
3307
3308        case on_failure_jump:
3309        case on_failure_keep_string_jump:
3310        handle_on_failure_jump:
3311          EXTRACT_NUMBER_AND_INCR (j, p);
3312
3313          /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3314             end of the pattern.  We don't want to push such a point,
3315             since when we restore it above, entering the switch will
3316             increment `p' past the end of the pattern.  We don't need
3317             to push such a point since we obviously won't find any more
3318             fastmap entries beyond `pend'.  Such a pattern can match
3319             the null string, though.  */
3320          if (p + j < pend)
3321            {
3322              if (!PUSH_PATTERN_OP (p + j, fail_stack))
3323                {
3324                  RESET_FAIL_STACK ();
3325                  return -2;
3326                }
3327            }
3328          else
3329            bufp->can_be_null = 1;
3330
3331          if (succeed_n_p)
3332            {
3333              EXTRACT_NUMBER_AND_INCR (k, p);   /* Skip the n.  */
3334              succeed_n_p = false;
3335            }
3336
3337          continue;
3338
3339
3340        case succeed_n:
3341          /* Get to the number of times to succeed.  */
3342          p += 2;
3343
3344          /* Increment p past the n for when k != 0.  */
3345          EXTRACT_NUMBER_AND_INCR (k, p);
3346          if (k == 0)
3347            {
3348              p -= 4;
3349              succeed_n_p = true;  /* Spaghetti code alert.  */
3350              goto handle_on_failure_jump;
3351            }
3352          continue;
3353
3354
3355        case set_number_at:
3356          p += 4;
3357          continue;
3358
3359
3360        case start_memory:
3361        case stop_memory:
3362          p += 2;
3363          continue;
3364
3365
3366        default:
3367          abort (); /* We have listed all the cases.  */
3368        } /* switch *p++ */
3369
3370      /* Getting here means we have found the possible starting
3371         characters for one path of the pattern -- and that the empty
3372         string does not match.  We need not follow this path further.
3373         Instead, look at the next alternative (remembered on the
3374         stack), or quit if no more.  The test at the top of the loop
3375         does these things.  */
3376      path_can_be_null = false;
3377      p = pend;
3378    } /* while p */
3379
3380  /* Set `can_be_null' for the last path (also the first path, if the
3381     pattern is empty).  */
3382  bufp->can_be_null |= path_can_be_null;
3383
3384 done:
3385  RESET_FAIL_STACK ();
3386  return 0;
3387} /* re_compile_fastmap */
3388
3389/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3390   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
3391   this memory for recording register information.  STARTS and ENDS
3392   must be allocated using the malloc library routine, and must each
3393   be at least NUM_REGS * sizeof (regoff_t) bytes long.
3394
3395   If NUM_REGS == 0, then subsequent matches should allocate their own
3396   register data.
3397
3398   Unless this function is called, the first search or match using
3399   PATTERN_BUFFER will allocate its own register data, without
3400   freeing the old data.  */
3401
3402void
3403re_set_registers (bufp, regs, num_regs, starts, ends)
3404    struct re_pattern_buffer *bufp;
3405    struct re_registers *regs;
3406    unsigned num_regs;
3407    regoff_t *starts, *ends;
3408{
3409  if (num_regs)
3410    {
3411      bufp->regs_allocated = REGS_REALLOCATE;
3412      regs->num_regs = num_regs;
3413      regs->start = starts;
3414      regs->end = ends;
3415    }
3416  else
3417    {
3418      bufp->regs_allocated = REGS_UNALLOCATED;
3419      regs->num_regs = 0;
3420      regs->start = regs->end = (regoff_t *) 0;
3421    }
3422}
3423
3424/* Searching routines.  */
3425
3426/* Like re_search_2, below, but only one string is specified, and
3427   doesn't let you say where to stop matching. */
3428
3429int
3430re_search (bufp, string, size, startpos, range, regs)
3431     struct re_pattern_buffer *bufp;
3432     const char *string;
3433     int size, startpos, range;
3434     struct re_registers *regs;
3435{
3436  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3437                      regs, size);
3438}
3439
3440
3441/* Using the compiled pattern in BUFP->buffer, first tries to match the
3442   virtual concatenation of STRING1 and STRING2, starting first at index
3443   STARTPOS, then at STARTPOS + 1, and so on.
3444
3445   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3446
3447   RANGE is how far to scan while trying to match.  RANGE = 0 means try
3448   only at STARTPOS; in general, the last start tried is STARTPOS +
3449   RANGE.
3450
3451   In REGS, return the indices of the virtual concatenation of STRING1
3452   and STRING2 that matched the entire BUFP->buffer and its contained
3453   subexpressions.
3454
3455   Do not consider matching one past the index STOP in the virtual
3456   concatenation of STRING1 and STRING2.
3457
3458   We return either the position in the strings at which the match was
3459   found, -1 if no match, or -2 if error (such as failure
3460   stack overflow).  */
3461
3462int
3463re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3464     struct re_pattern_buffer *bufp;
3465     const char *string1, *string2;
3466     int size1, size2;
3467     int startpos;
3468     int range;
3469     struct re_registers *regs;
3470     int stop;
3471{
3472  int val;
3473  register char *fastmap = bufp->fastmap;
3474  register RE_TRANSLATE_TYPE translate = bufp->translate;
3475  int total_size = size1 + size2;
3476  int endpos = startpos + range;
3477
3478  /* Check for out-of-range STARTPOS.  */
3479  if (startpos < 0 || startpos > total_size)
3480    return -1;
3481
3482  /* Fix up RANGE if it might eventually take us outside
3483     the virtual concatenation of STRING1 and STRING2.
3484     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
3485  if (endpos < 0)
3486    range = 0 - startpos;
3487  else if (endpos > total_size)
3488    range = total_size - startpos;
3489
3490  /* If the search isn't to be a backwards one, don't waste time in a
3491     search for a pattern that must be anchored.  */
3492  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3493    {
3494      if (startpos > 0)
3495        return -1;
3496      else
3497        range = 1;
3498    }
3499
3500#ifdef emacs
3501  /* In a forward search for something that starts with \=.
3502     don't keep searching past point.  */
3503  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3504    {
3505      range = PT - startpos;
3506      if (range <= 0)
3507        return -1;
3508    }
3509#endif /* emacs */
3510
3511  /* Update the fastmap now if not correct already.  */
3512  if (fastmap && !bufp->fastmap_accurate)
3513    if (re_compile_fastmap (bufp) == -2)
3514      return -2;
3515
3516  /* Loop through the string, looking for a place to start matching.  */
3517  for (;;)
3518    {
3519      /* If a fastmap is supplied, skip quickly over characters that
3520         cannot be the start of a match.  If the pattern can match the
3521         null string, however, we don't need to skip characters; we want
3522         the first null string.  */
3523      if (fastmap && startpos < total_size && !bufp->can_be_null)
3524        {
3525          if (range > 0)        /* Searching forwards.  */
3526            {
3527              register const char *d;
3528              register int lim = 0;
3529              int irange = range;
3530
3531              if (startpos < size1 && startpos + range >= size1)
3532                lim = range - (size1 - startpos);
3533
3534              d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3535
3536              /* Written out as an if-else to avoid testing `translate'
3537                 inside the loop.  */
3538              if (translate)
3539                while (range > lim
3540                       && !fastmap[(unsigned char)
3541                                   translate[(unsigned char) *d++]])
3542                  range--;
3543              else
3544                while (range > lim && !fastmap[(unsigned char) *d++])
3545                  range--;
3546
3547              startpos += irange - range;
3548            }
3549          else                          /* Searching backwards.  */
3550            {
3551              register char c = (size1 == 0 || startpos >= size1
3552                                 ? string2[startpos - size1]
3553                                 : string1[startpos]);
3554
3555              if (!fastmap[(unsigned char) TRANSLATE (c)])
3556                goto advance;
3557            }
3558        }
3559
3560      /* If can't match the null string, and that's all we have left, fail.  */
3561      if (range >= 0 && startpos == total_size && fastmap
3562          && !bufp->can_be_null)
3563        return -1;
3564
3565      val = re_match_2_internal (bufp, string1, size1, string2, size2,
3566                                 startpos, regs, stop);
3567#ifndef REGEX_MALLOC
3568#ifdef C_ALLOCA
3569      alloca (0);
3570#endif
3571#endif
3572
3573      if (val >= 0)
3574        return startpos;
3575
3576      if (val == -2)
3577        return -2;
3578
3579    advance:
3580      if (!range)
3581        break;
3582      else if (range > 0)
3583        {
3584          range--;
3585          startpos++;
3586        }
3587      else
3588        {
3589          range++;
3590          startpos--;
3591        }
3592    }
3593  return -1;
3594} /* re_search_2 */
3595
3596/* This converts PTR, a pointer into one of the search strings `string1'
3597   and `string2' into an offset from the beginning of that string.  */
3598#define POINTER_TO_OFFSET(ptr)                  \
3599  (FIRST_STRING_P (ptr)                         \
3600   ? ((regoff_t) ((ptr) - string1))             \
3601   : ((regoff_t) ((ptr) - string2 + size1)))
3602
3603/* Macros for dealing with the split strings in re_match_2.  */
3604
3605#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
3606
3607/* Call before fetching a character with *d.  This switches over to
3608   string2 if necessary.  */
3609#define PREFETCH()                                                      \
3610  while (d == dend)                                                     \
3611    {                                                                   \
3612      /* End of string2 => fail.  */                                    \
3613      if (dend == end_match_2)                                          \
3614        goto fail;                                                      \
3615      /* End of string1 => advance to string2.  */                      \
3616      d = string2;                                                      \
3617      dend = end_match_2;                                               \
3618    }
3619
3620
3621/* Test if at very beginning or at very end of the virtual concatenation
3622   of `string1' and `string2'.  If only one string, it's `string2'.  */
3623#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3624#define AT_STRINGS_END(d) ((d) == end2)
3625
3626
3627/* Test if D points to a character which is word-constituent.  We have
3628   two special cases to check for: if past the end of string1, look at
3629   the first character in string2; and if before the beginning of
3630   string2, look at the last character in string1.  */
3631#define WORDCHAR_P(d)                                                   \
3632  (SYNTAX ((d) == end1 ? *string2                                       \
3633           : (d) == string2 - 1 ? *(end1 - 1) : *(d))                   \
3634   == Sword)
3635
3636/* Disabled due to a compiler bug -- see comment at case wordbound */
3637#if 0
3638/* Test if the character before D and the one at D differ with respect
3639   to being word-constituent.  */
3640#define AT_WORD_BOUNDARY(d)                                             \
3641  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)                             \
3642   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3643#endif
3644
3645/* Free everything we malloc.  */
3646#ifdef MATCH_MAY_ALLOCATE
3647#define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3648#define FREE_VARIABLES()                                                \
3649  do {                                                                  \
3650    REGEX_FREE_STACK (fail_stack.stack);                                \
3651    FREE_VAR (regstart);                                                \
3652    FREE_VAR (regend);                                                  \
3653    FREE_VAR (old_regstart);                                            \
3654    FREE_VAR (old_regend);                                              \
3655    FREE_VAR (best_regstart);                                           \
3656    FREE_VAR (best_regend);                                             \
3657    FREE_VAR (reg_info);                                                \
3658    FREE_VAR (reg_dummy);                                               \
3659    FREE_VAR (reg_info_dummy);                                          \
3660  } while (0)
3661#else
3662#define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning.  */
3663#endif /* not MATCH_MAY_ALLOCATE */
3664
3665/* These values must meet several constraints.  They must not be valid
3666   register values; since we have a limit of 255 registers (because
3667   we use only one byte in the pattern for the register number), we can
3668   use numbers larger than 255.  They must differ by 1, because of
3669   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
3670   be larger than the value for the highest register, so we do not try
3671   to actually save any registers when none are active.  */
3672#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3673#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3674
3675/* Matching routines.  */
3676
3677#ifndef emacs   /* Emacs never uses this.  */
3678/* re_match is like re_match_2 except it takes only a single string.  */
3679
3680int
3681re_match (bufp, string, size, pos, regs)
3682     struct re_pattern_buffer *bufp;
3683     const char *string;
3684     int size, pos;
3685     struct re_registers *regs;
3686{
3687  int result = re_match_2_internal (bufp, NULL, 0, string, size,
3688                                    pos, regs, size);
3689#ifndef REGEX_MALLOC
3690#ifdef C_ALLOCA
3691  alloca (0);
3692#endif
3693#endif
3694  return result;
3695}
3696#endif /* not emacs */
3697
3698static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3699                                                    unsigned char *end,
3700                                                register_info_type *reg_info));
3701static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3702                                                  unsigned char *end,
3703                                                register_info_type *reg_info));
3704static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3705                                                        unsigned char *end,
3706                                                register_info_type *reg_info));
3707static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3708                                     int len, char *translate));
3709
3710/* re_match_2 matches the compiled pattern in BUFP against the
3711   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3712   and SIZE2, respectively).  We start matching at POS, and stop
3713   matching at STOP.
3714
3715   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3716   store offsets for the substring each group matched in REGS.  See the
3717   documentation for exactly how many groups we fill.
3718
3719   We return -1 if no match, -2 if an internal error (such as the
3720   failure stack overflowing).  Otherwise, we return the length of the
3721   matched substring.  */
3722
3723int
3724re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3725     struct re_pattern_buffer *bufp;
3726     const char *string1, *string2;
3727     int size1, size2;
3728     int pos;
3729     struct re_registers *regs;
3730     int stop;
3731{
3732  int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3733                                    pos, regs, stop);
3734#ifndef REGEX_MALLOC
3735#ifdef C_ALLOCA
3736  alloca (0);
3737#endif
3738#endif
3739  return result;
3740}
3741
3742/* This is a separate function so that we can force an alloca cleanup
3743   afterwards.  */
3744static int
3745re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3746     struct re_pattern_buffer *bufp;
3747     const char *string1, *string2;
3748     int size1, size2;
3749     int pos;
3750     struct re_registers *regs;
3751     int stop;
3752{
3753  /* General temporaries.  */
3754  int mcnt;
3755  unsigned char *p1;
3756
3757  /* Just past the end of the corresponding string.  */
3758  const char *end1, *end2;
3759
3760  /* Pointers into string1 and string2, just past the last characters in
3761     each to consider matching.  */
3762  const char *end_match_1, *end_match_2;
3763
3764  /* Where we are in the data, and the end of the current string.  */
3765  const char *d, *dend;
3766
3767  /* Where we are in the pattern, and the end of the pattern.  */
3768  unsigned char *p = bufp->buffer;
3769  register unsigned char *pend = p + bufp->used;
3770
3771  /* Mark the opcode just after a start_memory, so we can test for an
3772     empty subpattern when we get to the stop_memory.  */
3773  unsigned char *just_past_start_mem = 0;
3774
3775  /* We use this to map every character in the string.  */
3776  RE_TRANSLATE_TYPE translate = bufp->translate;
3777
3778  /* Failure point stack.  Each place that can handle a failure further
3779     down the line pushes a failure point on this stack.  It consists of
3780     restart, regend, and reg_info for all registers corresponding to
3781     the subexpressions we're currently inside, plus the number of such
3782     registers, and, finally, two char *'s.  The first char * is where
3783     to resume scanning the pattern; the second one is where to resume
3784     scanning the strings.  If the latter is zero, the failure point is
3785     a ``dummy''; if a failure happens and the failure point is a dummy,
3786     it gets discarded and the next next one is tried.  */
3787#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
3788  fail_stack_type fail_stack;
3789#endif
3790#ifdef DEBUG
3791  static unsigned failure_id = 0;
3792  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3793#endif
3794
3795#ifdef REL_ALLOC
3796  /* This holds the pointer to the failure stack, when
3797     it is allocated relocatably.  */
3798  fail_stack_elt_t *failure_stack_ptr;
3799#endif
3800
3801  /* We fill all the registers internally, independent of what we
3802     return, for use in backreferences.  The number here includes
3803     an element for register zero.  */
3804  size_t num_regs = bufp->re_nsub + 1;
3805
3806  /* The currently active registers.  */
3807  active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3808  active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3809
3810  /* Information on the contents of registers. These are pointers into
3811     the input strings; they record just what was matched (on this
3812     attempt) by a subexpression part of the pattern, that is, the
3813     regnum-th regstart pointer points to where in the pattern we began
3814     matching and the regnum-th regend points to right after where we
3815     stopped matching the regnum-th subexpression.  (The zeroth register
3816     keeps track of what the whole pattern matches.)  */
3817#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3818  const char **regstart, **regend;
3819#endif
3820
3821  /* If a group that's operated upon by a repetition operator fails to
3822     match anything, then the register for its start will need to be
3823     restored because it will have been set to wherever in the string we
3824     are when we last see its open-group operator.  Similarly for a
3825     register's end.  */
3826#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3827  const char **old_regstart, **old_regend;
3828#endif
3829
3830  /* The is_active field of reg_info helps us keep track of which (possibly
3831     nested) subexpressions we are currently in. The matched_something
3832     field of reg_info[reg_num] helps us tell whether or not we have
3833     matched any of the pattern so far this time through the reg_num-th
3834     subexpression.  These two fields get reset each time through any
3835     loop their register is in.  */
3836#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
3837  register_info_type *reg_info;
3838#endif
3839
3840  /* The following record the register info as found in the above
3841     variables when we find a match better than any we've seen before.
3842     This happens as we backtrack through the failure points, which in
3843     turn happens only if we have not yet matched the entire string. */
3844  unsigned best_regs_set = false;
3845#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3846  const char **best_regstart, **best_regend;
3847#endif
3848
3849  /* Logically, this is `best_regend[0]'.  But we don't want to have to
3850     allocate space for that if we're not allocating space for anything
3851     else (see below).  Also, we never need info about register 0 for
3852     any of the other register vectors, and it seems rather a kludge to
3853     treat `best_regend' differently than the rest.  So we keep track of
3854     the end of the best match so far in a separate variable.  We
3855     initialize this to NULL so that when we backtrack the first time
3856     and need to test it, it's not garbage.  */
3857  const char *match_end = NULL;
3858
3859  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
3860  int set_regs_matched_done = 0;
3861
3862  /* Used when we pop values we don't care about.  */
3863#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3864  const char **reg_dummy;
3865  register_info_type *reg_info_dummy;
3866#endif
3867
3868#ifdef DEBUG
3869  /* Counts the total number of registers pushed.  */
3870  unsigned num_regs_pushed = 0;
3871#endif
3872
3873  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3874
3875  INIT_FAIL_STACK ();
3876
3877#ifdef MATCH_MAY_ALLOCATE
3878  /* Do not bother to initialize all the register variables if there are
3879     no groups in the pattern, as it takes a fair amount of time.  If
3880     there are groups, we include space for register 0 (the whole
3881     pattern), even though we never use it, since it simplifies the
3882     array indexing.  We should fix this.  */
3883  if (bufp->re_nsub)
3884    {
3885      regstart = REGEX_TALLOC (num_regs, const char *);
3886      regend = REGEX_TALLOC (num_regs, const char *);
3887      old_regstart = REGEX_TALLOC (num_regs, const char *);
3888      old_regend = REGEX_TALLOC (num_regs, const char *);
3889      best_regstart = REGEX_TALLOC (num_regs, const char *);
3890      best_regend = REGEX_TALLOC (num_regs, const char *);
3891      reg_info = REGEX_TALLOC (num_regs, register_info_type);
3892      reg_dummy = REGEX_TALLOC (num_regs, const char *);
3893      reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3894
3895      if (!(regstart && regend && old_regstart && old_regend && reg_info
3896            && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3897        {
3898          FREE_VARIABLES ();
3899          return -2;
3900        }
3901    }
3902  else
3903    {
3904      /* We must initialize all our variables to NULL, so that
3905         `FREE_VARIABLES' doesn't try to free them.  */
3906      regstart = regend = old_regstart = old_regend = best_regstart
3907        = best_regend = reg_dummy = NULL;
3908      reg_info = reg_info_dummy = (register_info_type *) NULL;
3909    }
3910#endif /* MATCH_MAY_ALLOCATE */
3911
3912  /* The starting position is bogus.  */
3913  if (pos < 0 || pos > size1 + size2)
3914    {
3915      FREE_VARIABLES ();
3916      return -1;
3917    }
3918
3919  /* Initialize subexpression text positions to -1 to mark ones that no
3920     start_memory/stop_memory has been seen for. Also initialize the
3921     register information struct.  */
3922  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
3923    {
3924      regstart[mcnt] = regend[mcnt]
3925        = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3926
3927      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3928      IS_ACTIVE (reg_info[mcnt]) = 0;
3929      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3930      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3931    }
3932
3933  /* We move `string1' into `string2' if the latter's empty -- but not if
3934     `string1' is null.  */
3935  if (size2 == 0 && string1 != NULL)
3936    {
3937      string2 = string1;
3938      size2 = size1;
3939      string1 = 0;
3940      size1 = 0;
3941    }
3942  end1 = string1 + size1;
3943  end2 = string2 + size2;
3944
3945  /* Compute where to stop matching, within the two strings.  */
3946  if (stop <= size1)
3947    {
3948      end_match_1 = string1 + stop;
3949      end_match_2 = string2;
3950    }
3951  else
3952    {
3953      end_match_1 = end1;
3954      end_match_2 = string2 + stop - size1;
3955    }
3956
3957  /* `p' scans through the pattern as `d' scans through the data.
3958     `dend' is the end of the input string that `d' points within.  `d'
3959     is advanced into the following input string whenever necessary, but
3960     this happens before fetching; therefore, at the beginning of the
3961     loop, `d' can be pointing at the end of a string, but it cannot
3962     equal `string2'.  */
3963  if (size1 > 0 && pos <= size1)
3964    {
3965      d = string1 + pos;
3966      dend = end_match_1;
3967    }
3968  else
3969    {
3970      d = string2 + pos - size1;
3971      dend = end_match_2;
3972    }
3973
3974  DEBUG_PRINT1 ("The compiled pattern is:\n");
3975  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3976  DEBUG_PRINT1 ("The string to match is: `");
3977  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3978  DEBUG_PRINT1 ("'\n");
3979
3980  /* This loops over pattern commands.  It exits by returning from the
3981     function if the match is complete, or it drops through if the match
3982     fails at this starting point in the input data.  */
3983  for (;;)
3984    {
3985#ifdef _LIBC
3986      DEBUG_PRINT2 ("\n%p: ", p);
3987#else
3988      DEBUG_PRINT2 ("\n0x%x: ", p);
3989#endif
3990
3991      if (p == pend)
3992        { /* End of pattern means we might have succeeded.  */
3993          DEBUG_PRINT1 ("end of pattern ... ");
3994
3995          /* If we haven't matched the entire string, and we want the
3996             longest match, try backtracking.  */
3997          if (d != end_match_2)
3998            {
3999              /* 1 if this match ends in the same string (string1 or string2)
4000                 as the best previous match.  */
4001              boolean same_str_p = (FIRST_STRING_P (match_end)
4002                                    == MATCHING_IN_FIRST_STRING);
4003              /* 1 if this match is the best seen so far.  */
4004              boolean best_match_p;
4005
4006              /* AIX compiler got confused when this was combined
4007                 with the previous declaration.  */
4008              if (same_str_p)
4009                best_match_p = d > match_end;
4010              else
4011                best_match_p = !MATCHING_IN_FIRST_STRING;
4012
4013              DEBUG_PRINT1 ("backtracking.\n");
4014
4015              if (!FAIL_STACK_EMPTY ())
4016                { /* More failure points to try.  */
4017
4018                  /* If exceeds best match so far, save it.  */
4019                  if (!best_regs_set || best_match_p)
4020                    {
4021                      best_regs_set = true;
4022                      match_end = d;
4023
4024                      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4025
4026                      for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4027                        {
4028                          best_regstart[mcnt] = regstart[mcnt];
4029                          best_regend[mcnt] = regend[mcnt];
4030                        }
4031                    }
4032                  goto fail;
4033                }
4034
4035              /* If no failure points, don't restore garbage.  And if
4036                 last match is real best match, don't restore second
4037                 best one. */
4038              else if (best_regs_set && !best_match_p)
4039                {
4040                restore_best_regs:
4041                  /* Restore best match.  It may happen that `dend ==
4042                     end_match_1' while the restored d is in string2.
4043                     For example, the pattern `x.*y.*z' against the
4044                     strings `x-' and `y-z-', if the two strings are
4045                     not consecutive in memory.  */
4046                  DEBUG_PRINT1 ("Restoring best registers.\n");
4047
4048                  d = match_end;
4049                  dend = ((d >= string1 && d <= end1)
4050                           ? end_match_1 : end_match_2);
4051
4052                  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4053                    {
4054                      regstart[mcnt] = best_regstart[mcnt];
4055                      regend[mcnt] = best_regend[mcnt];
4056                    }
4057                }
4058            } /* d != end_match_2 */
4059
4060        succeed_label:
4061          DEBUG_PRINT1 ("Accepting match.\n");
4062
4063          /* If caller wants register contents data back, do it.  */
4064          if (regs && !bufp->no_sub)
4065            {
4066              /* Have the register data arrays been allocated?  */
4067              if (bufp->regs_allocated == REGS_UNALLOCATED)
4068                { /* No.  So allocate them with malloc.  We need one
4069                     extra element beyond `num_regs' for the `-1' marker
4070                     GNU code uses.  */
4071                  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4072                  regs->start = TALLOC (regs->num_regs, regoff_t);
4073                  regs->end = TALLOC (regs->num_regs, regoff_t);
4074                  if (regs->start == NULL || regs->end == NULL)
4075                    {
4076                      FREE_VARIABLES ();
4077                      return -2;
4078                    }
4079                  bufp->regs_allocated = REGS_REALLOCATE;
4080                }
4081              else if (bufp->regs_allocated == REGS_REALLOCATE)
4082                { /* Yes.  If we need more elements than were already
4083                     allocated, reallocate them.  If we need fewer, just
4084                     leave it alone.  */
4085                  if (regs->num_regs < num_regs + 1)
4086                    {
4087                      regs->num_regs = num_regs + 1;
4088                      RETALLOC (regs->start, regs->num_regs, regoff_t);
4089                      RETALLOC (regs->end, regs->num_regs, regoff_t);
4090                      if (regs->start == NULL || regs->end == NULL)
4091                        {
4092                          FREE_VARIABLES ();
4093                          return -2;
4094                        }
4095                    }
4096                }
4097              else
4098                {
4099                  /* These braces fend off a "empty body in an else-statement"
4100                     warning under GCC when assert expands to nothing.  */
4101                  assert (bufp->regs_allocated == REGS_FIXED);
4102                }
4103
4104              /* Convert the pointer data in `regstart' and `regend' to
4105                 indices.  Register zero has to be set differently,
4106                 since we haven't kept track of any info for it.  */
4107              if (regs->num_regs > 0)
4108                {
4109                  regs->start[0] = pos;
4110                  regs->end[0] = (MATCHING_IN_FIRST_STRING
4111                                  ? ((regoff_t) (d - string1))
4112                                  : ((regoff_t) (d - string2 + size1)));
4113                }
4114
4115              /* Go through the first `min (num_regs, regs->num_regs)'
4116                 registers, since that is all we initialized.  */
4117              for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4118                   mcnt++)
4119                {
4120                  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4121                    regs->start[mcnt] = regs->end[mcnt] = -1;
4122                  else
4123                    {
4124                      regs->start[mcnt]
4125                        = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4126                      regs->end[mcnt]
4127                        = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4128                    }
4129                }
4130
4131              /* If the regs structure we return has more elements than
4132                 were in the pattern, set the extra elements to -1.  If
4133                 we (re)allocated the registers, this is the case,
4134                 because we always allocate enough to have at least one
4135                 -1 at the end.  */
4136              for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4137                regs->start[mcnt] = regs->end[mcnt] = -1;
4138            } /* regs && !bufp->no_sub */
4139
4140          DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4141                        nfailure_points_pushed, nfailure_points_popped,
4142                        nfailure_points_pushed - nfailure_points_popped);
4143          DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4144
4145          mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4146                            ? string1
4147                            : string2 - size1);
4148
4149          DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4150
4151          FREE_VARIABLES ();
4152          return mcnt;
4153        }
4154
4155      /* Otherwise match next pattern command.  */
4156      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4157        {
4158        /* Ignore these.  Used to ignore the n of succeed_n's which
4159           currently have n == 0.  */
4160        case no_op:
4161          DEBUG_PRINT1 ("EXECUTING no_op.\n");
4162          break;
4163
4164        case succeed:
4165          DEBUG_PRINT1 ("EXECUTING succeed.\n");
4166          goto succeed_label;
4167
4168        /* Match the next n pattern characters exactly.  The following
4169           byte in the pattern defines n, and the n bytes after that
4170           are the characters to match.  */
4171        case exactn:
4172          mcnt = *p++;
4173          DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4174
4175          /* This is written out as an if-else so we don't waste time
4176             testing `translate' inside the loop.  */
4177          if (translate)
4178            {
4179              do
4180                {
4181                  PREFETCH ();
4182                  if ((unsigned char) translate[(unsigned char) *d++]
4183                      != (unsigned char) *p++)
4184                    goto fail;
4185                }
4186              while (--mcnt);
4187            }
4188          else
4189            {
4190              do
4191                {
4192                  PREFETCH ();
4193                  if (*d++ != (char) *p++) goto fail;
4194                }
4195              while (--mcnt);
4196            }
4197          SET_REGS_MATCHED ();
4198          break;
4199
4200
4201        /* Match any character except possibly a newline or a null.  */
4202        case anychar:
4203          DEBUG_PRINT1 ("EXECUTING anychar.\n");
4204
4205          PREFETCH ();
4206
4207          if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4208              || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4209            goto fail;
4210
4211          SET_REGS_MATCHED ();
4212          DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
4213          d++;
4214          break;
4215
4216
4217        case charset:
4218        case charset_not:
4219          {
4220            register unsigned char c;
4221            boolean not = (re_opcode_t) *(p - 1) == charset_not;
4222
4223            DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4224
4225            PREFETCH ();
4226            c = TRANSLATE (*d); /* The character to match.  */
4227
4228            /* Cast to `unsigned' instead of `unsigned char' in case the
4229               bit list is a full 32 bytes long.  */
4230            if (c < (unsigned) (*p * BYTEWIDTH)
4231                && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4232              not = !not;
4233
4234            p += 1 + *p;
4235
4236            if (!not) goto fail;
4237
4238            SET_REGS_MATCHED ();
4239            d++;
4240            break;
4241          }
4242
4243
4244        /* The beginning of a group is represented by start_memory.
4245           The arguments are the register number in the next byte, and the
4246           number of groups inner to this one in the next.  The text
4247           matched within the group is recorded (in the internal
4248           registers data structure) under the register number.  */
4249        case start_memory:
4250          DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4251
4252          /* Find out if this group can match the empty string.  */
4253          p1 = p;               /* To send to group_match_null_string_p.  */
4254
4255          if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4256            REG_MATCH_NULL_STRING_P (reg_info[*p])
4257              = group_match_null_string_p (&p1, pend, reg_info);
4258
4259          /* Save the position in the string where we were the last time
4260             we were at this open-group operator in case the group is
4261             operated upon by a repetition operator, e.g., with `(a*)*b'
4262             against `ab'; then we want to ignore where we are now in
4263             the string in case this attempt to match fails.  */
4264          old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4265                             ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4266                             : regstart[*p];
4267          DEBUG_PRINT2 ("  old_regstart: %d\n",
4268                         POINTER_TO_OFFSET (old_regstart[*p]));
4269
4270          regstart[*p] = d;
4271          DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4272
4273          IS_ACTIVE (reg_info[*p]) = 1;
4274          MATCHED_SOMETHING (reg_info[*p]) = 0;
4275
4276          /* Clear this whenever we change the register activity status.  */
4277          set_regs_matched_done = 0;
4278
4279          /* This is the new highest active register.  */
4280          highest_active_reg = *p;
4281
4282          /* If nothing was active before, this is the new lowest active
4283             register.  */
4284          if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4285            lowest_active_reg = *p;
4286
4287          /* Move past the register number and inner group count.  */
4288          p += 2;
4289          just_past_start_mem = p;
4290
4291          break;
4292
4293
4294        /* The stop_memory opcode represents the end of a group.  Its
4295           arguments are the same as start_memory's: the register
4296           number, and the number of inner groups.  */
4297        case stop_memory:
4298          DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4299
4300          /* We need to save the string position the last time we were at
4301             this close-group operator in case the group is operated
4302             upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4303             against `aba'; then we want to ignore where we are now in
4304             the string in case this attempt to match fails.  */
4305          old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4306                           ? REG_UNSET (regend[*p]) ? d : regend[*p]
4307                           : regend[*p];
4308          DEBUG_PRINT2 ("      old_regend: %d\n",
4309                         POINTER_TO_OFFSET (old_regend[*p]));
4310
4311          regend[*p] = d;
4312          DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4313
4314          /* This register isn't active anymore.  */
4315          IS_ACTIVE (reg_info[*p]) = 0;
4316
4317          /* Clear this whenever we change the register activity status.  */
4318          set_regs_matched_done = 0;
4319
4320          /* If this was the only register active, nothing is active
4321             anymore.  */
4322          if (lowest_active_reg == highest_active_reg)
4323            {
4324              lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4325              highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4326            }
4327          else
4328            { /* We must scan for the new highest active register, since
4329                 it isn't necessarily one less than now: consider
4330                 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
4331                 new highest active register is 1.  */
4332              unsigned char r = *p - 1;
4333              while (r > 0 && !IS_ACTIVE (reg_info[r]))
4334                r--;
4335
4336              /* If we end up at register zero, that means that we saved
4337                 the registers as the result of an `on_failure_jump', not
4338                 a `start_memory', and we jumped to past the innermost
4339                 `stop_memory'.  For example, in ((.)*) we save
4340                 registers 1 and 2 as a result of the *, but when we pop
4341                 back to the second ), we are at the stop_memory 1.
4342                 Thus, nothing is active.  */
4343              if (r == 0)
4344                {
4345                  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4346                  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4347                }
4348              else
4349                highest_active_reg = r;
4350            }
4351
4352          /* If just failed to match something this time around with a
4353             group that's operated on by a repetition operator, try to
4354             force exit from the ``loop'', and restore the register
4355             information for this group that we had before trying this
4356             last match.  */
4357          if ((!MATCHED_SOMETHING (reg_info[*p])
4358               || just_past_start_mem == p - 1)
4359              && (p + 2) < pend)
4360            {
4361              boolean is_a_jump_n = false;
4362
4363              p1 = p + 2;
4364              mcnt = 0;
4365              switch ((re_opcode_t) *p1++)
4366                {
4367                  case jump_n:
4368                    is_a_jump_n = true;
4369                  case pop_failure_jump:
4370                  case maybe_pop_jump:
4371                  case jump:
4372                  case dummy_failure_jump:
4373                    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4374                    if (is_a_jump_n)
4375                      p1 += 2;
4376                    break;
4377
4378                  default:
4379                    /* do nothing */ ;
4380                }
4381              p1 += mcnt;
4382
4383              /* If the next operation is a jump backwards in the pattern
4384                 to an on_failure_jump right before the start_memory
4385                 corresponding to this stop_memory, exit from the loop
4386                 by forcing a failure after pushing on the stack the
4387                 on_failure_jump's jump in the pattern, and d.  */
4388              if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4389                  && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4390                {
4391                  /* If this group ever matched anything, then restore
4392                     what its registers were before trying this last
4393                     failed match, e.g., with `(a*)*b' against `ab' for
4394                     regstart[1], and, e.g., with `((a*)*(b*)*)*'
4395                     against `aba' for regend[3].
4396
4397                     Also restore the registers for inner groups for,
4398                     e.g., `((a*)(b*))*' against `aba' (register 3 would
4399                     otherwise get trashed).  */
4400
4401                  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4402                    {
4403                      unsigned r;
4404
4405                      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4406
4407                      /* Restore this and inner groups' (if any) registers.  */
4408                      for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4409                           r++)
4410                        {
4411                          regstart[r] = old_regstart[r];
4412
4413                          /* xx why this test?  */
4414                          if (old_regend[r] >= regstart[r])
4415                            regend[r] = old_regend[r];
4416                        }
4417                    }
4418                  p1++;
4419                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4420                  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4421
4422                  goto fail;
4423                }
4424            }
4425
4426          /* Move past the register number and the inner group count.  */
4427          p += 2;
4428          break;
4429
4430
4431        /* \<digit> has been turned into a `duplicate' command which is
4432           followed by the numeric value of <digit> as the register number.  */
4433        case duplicate:
4434          {
4435            register const char *d2, *dend2;
4436            int regno = *p++;   /* Get which register to match against.  */
4437            DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4438
4439            /* Can't back reference a group which we've never matched.  */
4440            if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4441              goto fail;
4442
4443            /* Where in input to try to start matching.  */
4444            d2 = regstart[regno];
4445
4446            /* Where to stop matching; if both the place to start and
4447               the place to stop matching are in the same string, then
4448               set to the place to stop, otherwise, for now have to use
4449               the end of the first string.  */
4450
4451            dend2 = ((FIRST_STRING_P (regstart[regno])
4452                      == FIRST_STRING_P (regend[regno]))
4453                     ? regend[regno] : end_match_1);
4454            for (;;)
4455              {
4456                /* If necessary, advance to next segment in register
4457                   contents.  */
4458                while (d2 == dend2)
4459                  {
4460                    if (dend2 == end_match_2) break;
4461                    if (dend2 == regend[regno]) break;
4462
4463                    /* End of string1 => advance to string2. */
4464                    d2 = string2;
4465                    dend2 = regend[regno];
4466                  }
4467                /* At end of register contents => success */
4468                if (d2 == dend2) break;
4469
4470                /* If necessary, advance to next segment in data.  */
4471                PREFETCH ();
4472
4473                /* How many characters left in this segment to match.  */
4474                mcnt = dend - d;
4475
4476                /* Want how many consecutive characters we can match in
4477                   one shot, so, if necessary, adjust the count.  */
4478                if (mcnt > dend2 - d2)
4479                  mcnt = dend2 - d2;
4480
4481                /* Compare that many; failure if mismatch, else move
4482                   past them.  */
4483                if (translate
4484                    ? bcmp_translate (d, d2, mcnt, translate)
4485                    : bcmp (d, d2, mcnt))
4486                  goto fail;
4487                d += mcnt, d2 += mcnt;
4488
4489                /* Do this because we've match some characters.  */
4490                SET_REGS_MATCHED ();
4491              }
4492          }
4493          break;
4494
4495
4496        /* begline matches the empty string at the beginning of the string
4497           (unless `not_bol' is set in `bufp'), and, if
4498           `newline_anchor' is set, after newlines.  */
4499        case begline:
4500          DEBUG_PRINT1 ("EXECUTING begline.\n");
4501
4502          if (AT_STRINGS_BEG (d))
4503            {
4504              if (!bufp->not_bol) break;
4505            }
4506          else if (d[-1] == '\n' && bufp->newline_anchor)
4507            {
4508              break;
4509            }
4510          /* In all other cases, we fail.  */
4511          goto fail;
4512
4513
4514        /* endline is the dual of begline.  */
4515        case endline:
4516          DEBUG_PRINT1 ("EXECUTING endline.\n");
4517
4518          if (AT_STRINGS_END (d))
4519            {
4520              if (!bufp->not_eol) break;
4521            }
4522
4523          /* We have to ``prefetch'' the next character.  */
4524          else if ((d == end1 ? *string2 : *d) == '\n'
4525                   && bufp->newline_anchor)
4526            {
4527              break;
4528            }
4529          goto fail;
4530
4531
4532        /* Match at the very beginning of the data.  */
4533        case begbuf:
4534          DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4535          if (AT_STRINGS_BEG (d))
4536            break;
4537          goto fail;
4538
4539
4540        /* Match at the very end of the data.  */
4541        case endbuf:
4542          DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4543          if (AT_STRINGS_END (d))
4544            break;
4545          goto fail;
4546
4547
4548        /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
4549           pushes NULL as the value for the string on the stack.  Then
4550           `pop_failure_point' will keep the current value for the
4551           string, instead of restoring it.  To see why, consider
4552           matching `foo\nbar' against `.*\n'.  The .* matches the foo;
4553           then the . fails against the \n.  But the next thing we want
4554           to do is match the \n against the \n; if we restored the
4555           string value, we would be back at the foo.
4556
4557           Because this is used only in specific cases, we don't need to
4558           check all the things that `on_failure_jump' does, to make
4559           sure the right things get saved on the stack.  Hence we don't
4560           share its code.  The only reason to push anything on the
4561           stack at all is that otherwise we would have to change
4562           `anychar's code to do something besides goto fail in this
4563           case; that seems worse than this.  */
4564        case on_failure_keep_string_jump:
4565          DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4566
4567          EXTRACT_NUMBER_AND_INCR (mcnt, p);
4568#ifdef _LIBC
4569          DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4570#else
4571          DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4572#endif
4573
4574          PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4575          break;
4576
4577
4578        /* Uses of on_failure_jump:
4579
4580           Each alternative starts with an on_failure_jump that points
4581           to the beginning of the next alternative.  Each alternative
4582           except the last ends with a jump that in effect jumps past
4583           the rest of the alternatives.  (They really jump to the
4584           ending jump of the following alternative, because tensioning
4585           these jumps is a hassle.)
4586
4587           Repeats start with an on_failure_jump that points past both
4588           the repetition text and either the following jump or
4589           pop_failure_jump back to this on_failure_jump.  */
4590        case on_failure_jump:
4591        on_failure:
4592          DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4593
4594          EXTRACT_NUMBER_AND_INCR (mcnt, p);
4595#ifdef _LIBC
4596          DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4597#else
4598          DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4599#endif
4600
4601          /* If this on_failure_jump comes right before a group (i.e.,
4602             the original * applied to a group), save the information
4603             for that group and all inner ones, so that if we fail back
4604             to this point, the group's information will be correct.
4605             For example, in \(a*\)*\1, we need the preceding group,
4606             and in \(zz\(a*\)b*\)\2, we need the inner group.  */
4607
4608          /* We can't use `p' to check ahead because we push
4609             a failure point to `p + mcnt' after we do this.  */
4610          p1 = p;
4611
4612          /* We need to skip no_op's before we look for the
4613             start_memory in case this on_failure_jump is happening as
4614             the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4615             against aba.  */
4616          while (p1 < pend && (re_opcode_t) *p1 == no_op)
4617            p1++;
4618
4619          if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4620            {
4621              /* We have a new highest active register now.  This will
4622                 get reset at the start_memory we are about to get to,
4623                 but we will have saved all the registers relevant to
4624                 this repetition op, as described above.  */
4625              highest_active_reg = *(p1 + 1) + *(p1 + 2);
4626              if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4627                lowest_active_reg = *(p1 + 1);
4628            }
4629
4630          DEBUG_PRINT1 (":\n");
4631          PUSH_FAILURE_POINT (p + mcnt, d, -2);
4632          break;
4633
4634
4635        /* A smart repeat ends with `maybe_pop_jump'.
4636           We change it to either `pop_failure_jump' or `jump'.  */
4637        case maybe_pop_jump:
4638          EXTRACT_NUMBER_AND_INCR (mcnt, p);
4639          DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4640          {
4641            register unsigned char *p2 = p;
4642
4643            /* Compare the beginning of the repeat with what in the
4644               pattern follows its end. If we can establish that there
4645               is nothing that they would both match, i.e., that we
4646               would have to backtrack because of (as in, e.g., `a*a')
4647               then we can change to pop_failure_jump, because we'll
4648               never have to backtrack.
4649
4650               This is not true in the case of alternatives: in
4651               `(a|ab)*' we do need to backtrack to the `ab' alternative
4652               (e.g., if the string was `ab').  But instead of trying to
4653               detect that here, the alternative has put on a dummy
4654               failure point which is what we will end up popping.  */
4655
4656            /* Skip over open/close-group commands.
4657               If what follows this loop is a ...+ construct,
4658               look at what begins its body, since we will have to
4659               match at least one of that.  */
4660            while (1)
4661              {
4662                if (p2 + 2 < pend
4663                    && ((re_opcode_t) *p2 == stop_memory
4664                        || (re_opcode_t) *p2 == start_memory))
4665                  p2 += 3;
4666                else if (p2 + 6 < pend
4667                         && (re_opcode_t) *p2 == dummy_failure_jump)
4668                  p2 += 6;
4669                else
4670                  break;
4671              }
4672
4673            p1 = p + mcnt;
4674            /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4675               to the `maybe_finalize_jump' of this case.  Examine what
4676               follows.  */
4677
4678            /* If we're at the end of the pattern, we can change.  */
4679            if (p2 == pend)
4680              {
4681                /* Consider what happens when matching ":\(.*\)"
4682                   against ":/".  I don't really understand this code
4683                   yet.  */
4684                p[-3] = (unsigned char) pop_failure_jump;
4685                DEBUG_PRINT1
4686                  ("  End of pattern: change to `pop_failure_jump'.\n");
4687              }
4688
4689            else if ((re_opcode_t) *p2 == exactn
4690                     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4691              {
4692                register unsigned char c
4693                  = *p2 == (unsigned char) endline ? '\n' : p2[2];
4694
4695                if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4696                  {
4697                    p[-3] = (unsigned char) pop_failure_jump;
4698                    DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
4699                                  c, p1[5]);
4700                  }
4701
4702                else if ((re_opcode_t) p1[3] == charset
4703                         || (re_opcode_t) p1[3] == charset_not)
4704                  {
4705                    int not = (re_opcode_t) p1[3] == charset_not;
4706
4707                    if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4708                        && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4709                      not = !not;
4710
4711                    /* `not' is equal to 1 if c would match, which means
4712                        that we can't change to pop_failure_jump.  */
4713                    if (!not)
4714                      {
4715                        p[-3] = (unsigned char) pop_failure_jump;
4716                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4717                      }
4718                  }
4719              }
4720            else if ((re_opcode_t) *p2 == charset)
4721              {
4722#ifdef DEBUG
4723                register unsigned char c
4724                  = *p2 == (unsigned char) endline ? '\n' : p2[2];
4725#endif
4726
4727#if 0
4728                if ((re_opcode_t) p1[3] == exactn
4729                    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4730                          && (p2[2 + p1[5] / BYTEWIDTH]
4731                              & (1 << (p1[5] % BYTEWIDTH)))))
4732#else
4733                if ((re_opcode_t) p1[3] == exactn
4734                    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4735                          && (p2[2 + p1[4] / BYTEWIDTH]
4736                              & (1 << (p1[4] % BYTEWIDTH)))))
4737#endif
4738                  {
4739                    p[-3] = (unsigned char) pop_failure_jump;
4740                    DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
4741                                  c, p1[5]);
4742                  }
4743
4744                else if ((re_opcode_t) p1[3] == charset_not)
4745                  {
4746                    int idx;
4747                    /* We win if the charset_not inside the loop
4748                       lists every character listed in the charset after.  */
4749                    for (idx = 0; idx < (int) p2[1]; idx++)
4750                      if (! (p2[2 + idx] == 0
4751                             || (idx < (int) p1[4]
4752                                 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4753                        break;
4754
4755                    if (idx == p2[1])
4756                      {
4757                        p[-3] = (unsigned char) pop_failure_jump;
4758                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4759                      }
4760                  }
4761                else if ((re_opcode_t) p1[3] == charset)
4762                  {
4763                    int idx;
4764                    /* We win if the charset inside the loop
4765                       has no overlap with the one after the loop.  */
4766                    for (idx = 0;
4767                         idx < (int) p2[1] && idx < (int) p1[4];
4768                         idx++)
4769                      if ((p2[2 + idx] & p1[5 + idx]) != 0)
4770                        break;
4771
4772                    if (idx == p2[1] || idx == p1[4])
4773                      {
4774                        p[-3] = (unsigned char) pop_failure_jump;
4775                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4776                      }
4777                  }
4778              }
4779          }
4780          p -= 2;               /* Point at relative address again.  */
4781          if ((re_opcode_t) p[-1] != pop_failure_jump)
4782            {
4783              p[-1] = (unsigned char) jump;
4784              DEBUG_PRINT1 ("  Match => jump.\n");
4785              goto unconditional_jump;
4786            }
4787        /* Note fall through.  */
4788
4789
4790        /* The end of a simple repeat has a pop_failure_jump back to
4791           its matching on_failure_jump, where the latter will push a
4792           failure point.  The pop_failure_jump takes off failure
4793           points put on by this pop_failure_jump's matching
4794           on_failure_jump; we got through the pattern to here from the
4795           matching on_failure_jump, so didn't fail.  */
4796        case pop_failure_jump:
4797          {
4798            /* We need to pass separate storage for the lowest and
4799               highest registers, even though we don't care about the
4800               actual values.  Otherwise, we will restore only one
4801               register from the stack, since lowest will == highest in
4802               `pop_failure_point'.  */
4803            active_reg_t dummy_low_reg, dummy_high_reg;
4804            unsigned char *pdummy;
4805            const char *sdummy;
4806
4807            DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4808            POP_FAILURE_POINT (sdummy, pdummy,
4809                               dummy_low_reg, dummy_high_reg,
4810                               reg_dummy, reg_dummy, reg_info_dummy);
4811          }
4812          /* Note fall through.  */
4813
4814        unconditional_jump:
4815#ifdef _LIBC
4816          DEBUG_PRINT2 ("\n%p: ", p);
4817#else
4818          DEBUG_PRINT2 ("\n0x%x: ", p);
4819#endif
4820          /* Note fall through.  */
4821
4822        /* Unconditionally jump (without popping any failure points).  */
4823        case jump:
4824          EXTRACT_NUMBER_AND_INCR (mcnt, p);    /* Get the amount to jump.  */
4825          DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4826          p += mcnt;                            /* Do the jump.  */
4827#ifdef _LIBC
4828          DEBUG_PRINT2 ("(to %p).\n", p);
4829#else
4830          DEBUG_PRINT2 ("(to 0x%x).\n", p);
4831#endif
4832          break;
4833
4834
4835        /* We need this opcode so we can detect where alternatives end
4836           in `group_match_null_string_p' et al.  */
4837        case jump_past_alt:
4838          DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4839          goto unconditional_jump;
4840
4841
4842        /* Normally, the on_failure_jump pushes a failure point, which
4843           then gets popped at pop_failure_jump.  We will end up at
4844           pop_failure_jump, also, and with a pattern of, say, `a+', we
4845           are skipping over the on_failure_jump, so we have to push
4846           something meaningless for pop_failure_jump to pop.  */
4847        case dummy_failure_jump:
4848          DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4849          /* It doesn't matter what we push for the string here.  What
4850             the code at `fail' tests is the value for the pattern.  */
4851          PUSH_FAILURE_POINT (0, 0, -2);
4852          goto unconditional_jump;
4853
4854
4855        /* At the end of an alternative, we need to push a dummy failure
4856           point in case we are followed by a `pop_failure_jump', because
4857           we don't want the failure point for the alternative to be
4858           popped.  For example, matching `(a|ab)*' against `aab'
4859           requires that we match the `ab' alternative.  */
4860        case push_dummy_failure:
4861          DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4862          /* See comments just above at `dummy_failure_jump' about the
4863             two zeroes.  */
4864          PUSH_FAILURE_POINT (0, 0, -2);
4865          break;
4866
4867        /* Have to succeed matching what follows at least n times.
4868           After that, handle like `on_failure_jump'.  */
4869        case succeed_n:
4870          EXTRACT_NUMBER (mcnt, p + 2);
4871          DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4872
4873          assert (mcnt >= 0);
4874          /* Originally, this is how many times we HAVE to succeed.  */
4875          if (mcnt > 0)
4876            {
4877               mcnt--;
4878               p += 2;
4879               STORE_NUMBER_AND_INCR (p, mcnt);
4880#ifdef _LIBC
4881               DEBUG_PRINT3 ("  Setting %p to %d.\n", p - 2, mcnt);
4882#else
4883               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - 2, mcnt);
4884#endif
4885            }
4886          else if (mcnt == 0)
4887            {
4888#ifdef _LIBC
4889              DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n", p+2);
4890#else
4891              DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
4892#endif
4893              p[2] = (unsigned char) no_op;
4894              p[3] = (unsigned char) no_op;
4895              goto on_failure;
4896            }
4897          break;
4898
4899        case jump_n:
4900          EXTRACT_NUMBER (mcnt, p + 2);
4901          DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4902
4903          /* Originally, this is how many times we CAN jump.  */
4904          if (mcnt)
4905            {
4906               mcnt--;
4907               STORE_NUMBER (p + 2, mcnt);
4908#ifdef _LIBC
4909               DEBUG_PRINT3 ("  Setting %p to %d.\n", p + 2, mcnt);
4910#else
4911               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + 2, mcnt);
4912#endif
4913               goto unconditional_jump;
4914            }
4915          /* If don't have to jump any more, skip over the rest of command.  */
4916          else
4917            p += 4;
4918          break;
4919
4920        case set_number_at:
4921          {
4922            DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4923
4924            EXTRACT_NUMBER_AND_INCR (mcnt, p);
4925            p1 = p + mcnt;
4926            EXTRACT_NUMBER_AND_INCR (mcnt, p);
4927#ifdef _LIBC
4928            DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
4929#else
4930            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
4931#endif
4932            STORE_NUMBER (p1, mcnt);
4933            break;
4934          }
4935
4936#if 0
4937        /* The DEC Alpha C compiler 3.x generates incorrect code for the
4938           test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
4939           AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
4940           macro and introducing temporary variables works around the bug.  */
4941
4942        case wordbound:
4943          DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4944          if (AT_WORD_BOUNDARY (d))
4945            break;
4946          goto fail;
4947
4948        case notwordbound:
4949          DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4950          if (AT_WORD_BOUNDARY (d))
4951            goto fail;
4952          break;
4953#else
4954        case wordbound:
4955        {
4956          boolean prevchar, thischar;
4957
4958          DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4959          if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4960            break;
4961
4962          prevchar = WORDCHAR_P (d - 1);
4963          thischar = WORDCHAR_P (d);
4964          if (prevchar != thischar)
4965            break;
4966          goto fail;
4967        }
4968
4969      case notwordbound:
4970        {
4971          boolean prevchar, thischar;
4972
4973          DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4974          if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4975            goto fail;
4976
4977          prevchar = WORDCHAR_P (d - 1);
4978          thischar = WORDCHAR_P (d);
4979          if (prevchar != thischar)
4980            goto fail;
4981          break;
4982        }
4983#endif
4984
4985        case wordbeg:
4986          DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4987          if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4988            break;
4989          goto fail;
4990
4991        case wordend:
4992          DEBUG_PRINT1 ("EXECUTING wordend.\n");
4993          if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4994              && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4995            break;
4996          goto fail;
4997
4998#ifdef emacs
4999        case before_dot:
5000          DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5001          if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5002            goto fail;
5003          break;
5004
5005        case at_dot:
5006          DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5007          if (PTR_CHAR_POS ((unsigned char *) d) != point)
5008            goto fail;
5009          break;
5010
5011        case after_dot:
5012          DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5013          if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5014            goto fail;
5015          break;
5016
5017        case syntaxspec:
5018          DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5019          mcnt = *p++;
5020          goto matchsyntax;
5021
5022        case wordchar:
5023          DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5024          mcnt = (int) Sword;
5025        matchsyntax:
5026          PREFETCH ();
5027          /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
5028          d++;
5029          if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5030            goto fail;
5031          SET_REGS_MATCHED ();
5032          break;
5033
5034        case notsyntaxspec:
5035          DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5036          mcnt = *p++;
5037          goto matchnotsyntax;
5038
5039        case notwordchar:
5040          DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5041          mcnt = (int) Sword;
5042        matchnotsyntax:
5043          PREFETCH ();
5044          /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
5045          d++;
5046          if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5047            goto fail;
5048          SET_REGS_MATCHED ();
5049          break;
5050
5051#else /* not emacs */
5052        case wordchar:
5053          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5054          PREFETCH ();
5055          if (!WORDCHAR_P (d))
5056            goto fail;
5057          SET_REGS_MATCHED ();
5058          d++;
5059          break;
5060
5061        case notwordchar:
5062          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5063          PREFETCH ();
5064          if (WORDCHAR_P (d))
5065            goto fail;
5066          SET_REGS_MATCHED ();
5067          d++;
5068          break;
5069#endif /* not emacs */
5070
5071        default:
5072          abort ();
5073        }
5074      continue;  /* Successfully executed one pattern command; keep going.  */
5075
5076
5077    /* We goto here if a matching operation fails. */
5078    fail:
5079      if (!FAIL_STACK_EMPTY ())
5080        { /* A restart point is known.  Restore to that state.  */
5081          DEBUG_PRINT1 ("\nFAIL:\n");
5082          POP_FAILURE_POINT (d, p,
5083                             lowest_active_reg, highest_active_reg,
5084                             regstart, regend, reg_info);
5085
5086          /* If this failure point is a dummy, try the next one.  */
5087          if (!p)
5088            goto fail;
5089
5090          /* If we failed to the end of the pattern, don't examine *p.  */
5091          assert (p <= pend);
5092          if (p < pend)
5093            {
5094              boolean is_a_jump_n = false;
5095
5096              /* If failed to a backwards jump that's part of a repetition
5097                 loop, need to pop this failure point and use the next one.  */
5098              switch ((re_opcode_t) *p)
5099                {
5100                case jump_n:
5101                  is_a_jump_n = true;
5102                case maybe_pop_jump:
5103                case pop_failure_jump:
5104                case jump:
5105                  p1 = p + 1;
5106                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5107                  p1 += mcnt;
5108
5109                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5110                      || (!is_a_jump_n
5111                          && (re_opcode_t) *p1 == on_failure_jump))
5112                    goto fail;
5113                  break;
5114                default:
5115                  /* do nothing */ ;
5116                }
5117            }
5118
5119          if (d >= string1 && d <= end1)
5120            dend = end_match_1;
5121        }
5122      else
5123        break;   /* Matching at this starting point really fails.  */
5124    } /* for (;;) */
5125
5126  if (best_regs_set)
5127    goto restore_best_regs;
5128
5129  FREE_VARIABLES ();
5130
5131  return -1;                            /* Failure to match.  */
5132} /* re_match_2 */
5133
5134/* Subroutine definitions for re_match_2.  */
5135
5136
5137/* We are passed P pointing to a register number after a start_memory.
5138
5139   Return true if the pattern up to the corresponding stop_memory can
5140   match the empty string, and false otherwise.
5141
5142   If we find the matching stop_memory, sets P to point to one past its number.
5143   Otherwise, sets P to an undefined byte less than or equal to END.
5144
5145   We don't handle duplicates properly (yet).  */
5146
5147static boolean
5148group_match_null_string_p (p, end, reg_info)
5149    unsigned char **p, *end;
5150    register_info_type *reg_info;
5151{
5152  int mcnt;
5153  /* Point to after the args to the start_memory.  */
5154  unsigned char *p1 = *p + 2;
5155
5156  while (p1 < end)
5157    {
5158      /* Skip over opcodes that can match nothing, and return true or
5159         false, as appropriate, when we get to one that can't, or to the
5160         matching stop_memory.  */
5161
5162      switch ((re_opcode_t) *p1)
5163        {
5164        /* Could be either a loop or a series of alternatives.  */
5165        case on_failure_jump:
5166          p1++;
5167          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5168
5169          /* If the next operation is not a jump backwards in the
5170             pattern.  */
5171
5172          if (mcnt >= 0)
5173            {
5174              /* Go through the on_failure_jumps of the alternatives,
5175                 seeing if any of the alternatives cannot match nothing.
5176                 The last alternative starts with only a jump,
5177                 whereas the rest start with on_failure_jump and end
5178                 with a jump, e.g., here is the pattern for `a|b|c':
5179
5180                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5181                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5182                 /exactn/1/c
5183
5184                 So, we have to first go through the first (n-1)
5185                 alternatives and then deal with the last one separately.  */
5186
5187
5188              /* Deal with the first (n-1) alternatives, which start
5189                 with an on_failure_jump (see above) that jumps to right
5190                 past a jump_past_alt.  */
5191
5192              while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5193                {
5194                  /* `mcnt' holds how many bytes long the alternative
5195                     is, including the ending `jump_past_alt' and
5196                     its number.  */
5197
5198                  if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5199                                                      reg_info))
5200                    return false;
5201
5202                  /* Move to right after this alternative, including the
5203                     jump_past_alt.  */
5204                  p1 += mcnt;
5205
5206                  /* Break if it's the beginning of an n-th alternative
5207                     that doesn't begin with an on_failure_jump.  */
5208                  if ((re_opcode_t) *p1 != on_failure_jump)
5209                    break;
5210
5211                  /* Still have to check that it's not an n-th
5212                     alternative that starts with an on_failure_jump.  */
5213                  p1++;
5214                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5215                  if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5216                    {
5217                      /* Get to the beginning of the n-th alternative.  */
5218                      p1 -= 3;
5219                      break;
5220                    }
5221                }
5222
5223              /* Deal with the last alternative: go back and get number
5224                 of the `jump_past_alt' just before it.  `mcnt' contains
5225                 the length of the alternative.  */
5226              EXTRACT_NUMBER (mcnt, p1 - 2);
5227
5228              if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5229                return false;
5230
5231              p1 += mcnt;       /* Get past the n-th alternative.  */
5232            } /* if mcnt > 0 */
5233          break;
5234
5235
5236        case stop_memory:
5237          assert (p1[1] == **p);
5238          *p = p1 + 2;
5239          return true;
5240
5241
5242        default:
5243          if (!common_op_match_null_string_p (&p1, end, reg_info))
5244            return false;
5245        }
5246    } /* while p1 < end */
5247
5248  return false;
5249} /* group_match_null_string_p */
5250
5251
5252/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5253   It expects P to be the first byte of a single alternative and END one
5254   byte past the last. The alternative can contain groups.  */
5255
5256static boolean
5257alt_match_null_string_p (p, end, reg_info)
5258    unsigned char *p, *end;
5259    register_info_type *reg_info;
5260{
5261  int mcnt;
5262  unsigned char *p1 = p;
5263
5264  while (p1 < end)
5265    {
5266      /* Skip over opcodes that can match nothing, and break when we get
5267         to one that can't.  */
5268
5269      switch ((re_opcode_t) *p1)
5270        {
5271        /* It's a loop.  */
5272        case on_failure_jump:
5273          p1++;
5274          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5275          p1 += mcnt;
5276          break;
5277
5278        default:
5279          if (!common_op_match_null_string_p (&p1, end, reg_info))
5280            return false;
5281        }
5282    }  /* while p1 < end */
5283
5284  return true;
5285} /* alt_match_null_string_p */
5286
5287
5288/* Deals with the ops common to group_match_null_string_p and
5289   alt_match_null_string_p.
5290
5291   Sets P to one after the op and its arguments, if any.  */
5292
5293static boolean
5294common_op_match_null_string_p (p, end, reg_info)
5295    unsigned char **p, *end;
5296    register_info_type *reg_info;
5297{
5298  int mcnt;
5299  boolean ret;
5300  int reg_no;
5301  unsigned char *p1 = *p;
5302
5303  switch ((re_opcode_t) *p1++)
5304    {
5305    case no_op:
5306    case begline:
5307    case endline:
5308    case begbuf:
5309    case endbuf:
5310    case wordbeg:
5311    case wordend:
5312    case wordbound:
5313    case notwordbound:
5314#ifdef emacs
5315    case before_dot:
5316    case at_dot:
5317    case after_dot:
5318#endif
5319      break;
5320
5321    case start_memory:
5322      reg_no = *p1;
5323      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5324      ret = group_match_null_string_p (&p1, end, reg_info);
5325
5326      /* Have to set this here in case we're checking a group which
5327         contains a group and a back reference to it.  */
5328
5329      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5330        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5331
5332      if (!ret)
5333        return false;
5334      break;
5335
5336    /* If this is an optimized succeed_n for zero times, make the jump.  */
5337    case jump:
5338      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5339      if (mcnt >= 0)
5340        p1 += mcnt;
5341      else
5342        return false;
5343      break;
5344
5345    case succeed_n:
5346      /* Get to the number of times to succeed.  */
5347      p1 += 2;
5348      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5349
5350      if (mcnt == 0)
5351        {
5352          p1 -= 4;
5353          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5354          p1 += mcnt;
5355        }
5356      else
5357        return false;
5358      break;
5359
5360    case duplicate:
5361      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5362        return false;
5363      break;
5364
5365    case set_number_at:
5366      p1 += 4;
5367
5368    default:
5369      /* All other opcodes mean we cannot match the empty string.  */
5370      return false;
5371  }
5372
5373  *p = p1;
5374  return true;
5375} /* common_op_match_null_string_p */
5376
5377
5378/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5379   bytes; nonzero otherwise.  */
5380
5381static int
5382bcmp_translate (s1, s2, len, translate)
5383     const char *s1, *s2;
5384     register int len;
5385     RE_TRANSLATE_TYPE translate;
5386{
5387  register const unsigned char *p1 = (const unsigned char *) s1;
5388  register const unsigned char *p2 = (const unsigned char *) s2;
5389  while (len)
5390    {
5391      if (translate[*p1++] != translate[*p2++]) return 1;
5392      len--;
5393    }
5394  return 0;
5395}
5396
5397/* Entry points for GNU code.  */
5398
5399/* re_compile_pattern is the GNU regular expression compiler: it
5400   compiles PATTERN (of length SIZE) and puts the result in BUFP.
5401   Returns 0 if the pattern was valid, otherwise an error string.
5402
5403   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5404   are set in BUFP on entry.
5405
5406   We call regex_compile to do the actual compilation.  */
5407
5408const char *
5409re_compile_pattern (pattern, length, bufp)
5410     const char *pattern;
5411     size_t length;
5412     struct re_pattern_buffer *bufp;
5413{
5414  reg_errcode_t ret;
5415
5416  /* GNU code is written to assume at least RE_NREGS registers will be set
5417     (and at least one extra will be -1).  */
5418  bufp->regs_allocated = REGS_UNALLOCATED;
5419
5420  /* And GNU code determines whether or not to get register information
5421     by passing null for the REGS argument to re_match, etc., not by
5422     setting no_sub.  */
5423  bufp->no_sub = 0;
5424
5425  /* Match anchors at newline.  */
5426  bufp->newline_anchor = 1;
5427
5428  ret = regex_compile (pattern, length, re_syntax_options, bufp);
5429
5430  if (!ret)
5431    return NULL;
5432  return gettext (re_error_msgid[(int) ret]);
5433}
5434
5435/* Entry points compatible with 4.2 BSD regex library.  We don't define
5436   them unless specifically requested.  */
5437
5438#if defined (_REGEX_RE_COMP) || defined (_LIBC)
5439
5440/* BSD has one and only one pattern buffer.  */
5441static struct re_pattern_buffer re_comp_buf;
5442
5443char *
5444#ifdef _LIBC
5445/* Make these definitions weak in libc, so POSIX programs can redefine
5446   these names if they don't use our functions, and still use
5447   regcomp/regexec below without link errors.  */
5448weak_function
5449#endif
5450re_comp (s)
5451    const char *s;
5452{
5453  reg_errcode_t ret;
5454
5455  if (!s)
5456    {
5457      if (!re_comp_buf.buffer)
5458        return gettext ("No previous regular expression");
5459      return 0;
5460    }
5461
5462  if (!re_comp_buf.buffer)
5463    {
5464      re_comp_buf.buffer = (unsigned char *) malloc (200);
5465      if (re_comp_buf.buffer == NULL)
5466        return gettext (re_error_msgid[(int) REG_ESPACE]);
5467      re_comp_buf.allocated = 200;
5468
5469      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5470      if (re_comp_buf.fastmap == NULL)
5471        return gettext (re_error_msgid[(int) REG_ESPACE]);
5472    }
5473
5474  /* Since `re_exec' always passes NULL for the `regs' argument, we
5475     don't need to initialize the pattern buffer fields which affect it.  */
5476
5477  /* Match anchors at newlines.  */
5478  re_comp_buf.newline_anchor = 1;
5479
5480  ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5481
5482  if (!ret)
5483    return NULL;
5484
5485  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
5486  return (char *) gettext (re_error_msgid[(int) ret]);
5487}
5488
5489
5490int
5491#ifdef _LIBC
5492weak_function
5493#endif
5494re_exec (s)
5495    const char *s;
5496{
5497  const int len = strlen (s);
5498  return
5499    0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5500}
5501
5502#endif /* _REGEX_RE_COMP */
5503
5504/* POSIX.2 functions.  Don't define these for Emacs.  */
5505
5506#ifndef emacs
5507
5508/* regcomp takes a regular expression as a string and compiles it.
5509
5510   PREG is a regex_t *.  We do not expect any fields to be initialized,
5511   since POSIX says we shouldn't.  Thus, we set
5512
5513     `buffer' to the compiled pattern;
5514     `used' to the length of the compiled pattern;
5515     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5516       REG_EXTENDED bit in CFLAGS is set; otherwise, to
5517       RE_SYNTAX_POSIX_BASIC;
5518     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5519     `fastmap' and `fastmap_accurate' to zero;
5520     `re_nsub' to the number of subexpressions in PATTERN.
5521
5522   PATTERN is the address of the pattern string.
5523
5524   CFLAGS is a series of bits which affect compilation.
5525
5526     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5527     use POSIX basic syntax.
5528
5529     If REG_NEWLINE is set, then . and [^...] don't match newline.
5530     Also, regexec will try a match beginning after every newline.
5531
5532     If REG_ICASE is set, then we considers upper- and lowercase
5533     versions of letters to be equivalent when matching.
5534
5535     If REG_NOSUB is set, then when PREG is passed to regexec, that
5536     routine will report only success or failure, and nothing about the
5537     registers.
5538
5539   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
5540   the return codes and their meanings.)  */
5541
5542int
5543regcomp (preg, pattern, cflags)
5544    regex_t *preg;
5545    const char *pattern;
5546    int cflags;
5547{
5548  reg_errcode_t ret;
5549  reg_syntax_t syntax
5550    = (cflags & REG_EXTENDED) ?
5551      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5552
5553  /* regex_compile will allocate the space for the compiled pattern.  */
5554  preg->buffer = 0;
5555  preg->allocated = 0;
5556  preg->used = 0;
5557
5558  /* Don't bother to use a fastmap when searching.  This simplifies the
5559     REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5560     characters after newlines into the fastmap.  This way, we just try
5561     every character.  */
5562  preg->fastmap = 0;
5563
5564  if (cflags & REG_ICASE)
5565    {
5566      unsigned i;
5567
5568      preg->translate
5569        = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5570                                      * sizeof (*(RE_TRANSLATE_TYPE)0));
5571      if (preg->translate == NULL)
5572        return (int) REG_ESPACE;
5573
5574      /* Map uppercase characters to corresponding lowercase ones.  */
5575      for (i = 0; i < CHAR_SET_SIZE; i++)
5576        preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5577    }
5578  else
5579    preg->translate = NULL;
5580
5581  /* If REG_NEWLINE is set, newlines are treated differently.  */
5582  if (cflags & REG_NEWLINE)
5583    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
5584      syntax &= ~RE_DOT_NEWLINE;
5585      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5586      /* It also changes the matching behavior.  */
5587      preg->newline_anchor = 1;
5588    }
5589  else
5590    preg->newline_anchor = 0;
5591
5592  preg->no_sub = !!(cflags & REG_NOSUB);
5593
5594  /* POSIX says a null character in the pattern terminates it, so we
5595     can use strlen here in compiling the pattern.  */
5596  ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5597
5598  /* POSIX doesn't distinguish between an unmatched open-group and an
5599     unmatched close-group: both are REG_EPAREN.  */
5600  if (ret == REG_ERPAREN) ret = REG_EPAREN;
5601
5602  return (int) ret;
5603}
5604
5605
5606/* regexec searches for a given pattern, specified by PREG, in the
5607   string STRING.
5608
5609   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5610   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
5611   least NMATCH elements, and we set them to the offsets of the
5612   corresponding matched substrings.
5613
5614   EFLAGS specifies `execution flags' which affect matching: if
5615   REG_NOTBOL is set, then ^ does not match at the beginning of the
5616   string; if REG_NOTEOL is set, then $ does not match at the end.
5617
5618   We return 0 if we find a match and REG_NOMATCH if not.  */
5619
5620int
5621regexec (preg, string, nmatch, pmatch, eflags)
5622    const regex_t *preg;
5623    const char *string;
5624    size_t nmatch;
5625    regmatch_t pmatch[];
5626    int eflags;
5627{
5628  int ret;
5629  struct re_registers regs;
5630  regex_t private_preg;
5631  int len = strlen (string);
5632  boolean want_reg_info = !preg->no_sub && nmatch > 0;
5633
5634  private_preg = *preg;
5635
5636  private_preg.not_bol = !!(eflags & REG_NOTBOL);
5637  private_preg.not_eol = !!(eflags & REG_NOTEOL);
5638
5639  /* The user has told us exactly how many registers to return
5640     information about, via `nmatch'.  We have to pass that on to the
5641     matching routines.  */
5642  private_preg.regs_allocated = REGS_FIXED;
5643
5644  if (want_reg_info)
5645    {
5646      regs.num_regs = nmatch;
5647      regs.start = TALLOC (nmatch, regoff_t);
5648      regs.end = TALLOC (nmatch, regoff_t);
5649      if (regs.start == NULL || regs.end == NULL)
5650        return (int) REG_NOMATCH;
5651    }
5652
5653  /* Perform the searching operation.  */
5654  ret = re_search (&private_preg, string, len,
5655                   /* start: */ 0, /* range: */ len,
5656                   want_reg_info ? &regs : (struct re_registers *) 0);
5657
5658  /* Copy the register information to the POSIX structure.  */
5659  if (want_reg_info)
5660    {
5661      if (ret >= 0)
5662        {
5663          unsigned r;
5664
5665          for (r = 0; r < nmatch; r++)
5666            {
5667              pmatch[r].rm_so = regs.start[r];
5668              pmatch[r].rm_eo = regs.end[r];
5669            }
5670        }
5671
5672      /* If we needed the temporary register info, free the space now.  */
5673      free (regs.start);
5674      free (regs.end);
5675    }
5676
5677  /* We want zero return to mean success, unlike `re_search'.  */
5678  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5679}
5680
5681
5682/* Returns a message corresponding to an error code, ERRCODE, returned
5683   from either regcomp or regexec.   We don't use PREG here.  */
5684
5685size_t
5686regerror (errcode, preg, errbuf, errbuf_size)
5687    int errcode;
5688    const regex_t *preg;
5689    char *errbuf;
5690    size_t errbuf_size;
5691{
5692  const char *msg;
5693  size_t msg_size;
5694
5695  if (errcode < 0
5696      || errcode >= (int) (sizeof (re_error_msgid)
5697                           / sizeof (re_error_msgid[0])))
5698    /* Only error codes returned by the rest of the code should be passed
5699       to this routine.  If we are given anything else, or if other regex
5700       code generates an invalid error code, then the program has a bug.
5701       Dump core so we can fix it.  */
5702    abort ();
5703
5704  msg = gettext (re_error_msgid[errcode]);
5705
5706  msg_size = strlen (msg) + 1; /* Includes the null.  */
5707
5708  if (errbuf_size != 0)
5709    {
5710      if (msg_size > errbuf_size)
5711        {
5712          strncpy (errbuf, msg, errbuf_size - 1);
5713          errbuf[errbuf_size - 1] = 0;
5714        }
5715      else
5716        strcpy (errbuf, msg);
5717    }
5718
5719  return msg_size;
5720}
5721
5722
5723/* Free dynamically allocated space used by PREG.  */
5724
5725void
5726regfree (preg)
5727    regex_t *preg;
5728{
5729  if (preg->buffer != NULL)
5730    free (preg->buffer);
5731  preg->buffer = NULL;
5732
5733  preg->allocated = 0;
5734  preg->used = 0;
5735
5736  if (preg->fastmap != NULL)
5737    free (preg->fastmap);
5738  preg->fastmap = NULL;
5739  preg->fastmap_accurate = 0;
5740
5741  if (preg->translate != NULL)
5742    free (preg->translate);
5743  preg->translate = NULL;
5744}
5745
5746#endif /* not emacs  */
Note: See TracBrowser for help on using the repository browser.