1 | /*- |
---|
2 | * See the file LICENSE for redistribution information. |
---|
3 | * |
---|
4 | * Copyright (c) 1996-2002 |
---|
5 | * Sleepycat Software. All rights reserved. |
---|
6 | */ |
---|
7 | /* |
---|
8 | * Copyright (c) 1990, 1993, 1994, 1995, 1996 |
---|
9 | * Keith Bostic. All rights reserved. |
---|
10 | */ |
---|
11 | /* |
---|
12 | * Copyright (c) 1990, 1993, 1994, 1995 |
---|
13 | * The Regents of the University of California. All rights reserved. |
---|
14 | * |
---|
15 | * Redistribution and use in source and binary forms, with or without |
---|
16 | * modification, are permitted provided that the following conditions |
---|
17 | * are met: |
---|
18 | * 1. Redistributions of source code must retain the above copyright |
---|
19 | * notice, this list of conditions and the following disclaimer. |
---|
20 | * 2. Redistributions in binary form must reproduce the above copyright |
---|
21 | * notice, this list of conditions and the following disclaimer in the |
---|
22 | * documentation and/or other materials provided with the distribution. |
---|
23 | * 3. Neither the name of the University nor the names of its contributors |
---|
24 | * may be used to endorse or promote products derived from this software |
---|
25 | * without specific prior written permission. |
---|
26 | * |
---|
27 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
---|
28 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
---|
29 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
---|
30 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
---|
31 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
---|
32 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
---|
33 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
---|
34 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
35 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
---|
36 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
---|
37 | * SUCH DAMAGE. |
---|
38 | */ |
---|
39 | |
---|
40 | #include "db_config.h" |
---|
41 | |
---|
42 | #ifndef lint |
---|
43 | static const char revid[] = "$Id: bt_split.c,v 1.1.1.1 2004-12-17 17:26:45 ghudson Exp $"; |
---|
44 | #endif /* not lint */ |
---|
45 | |
---|
46 | #ifndef NO_SYSTEM_INCLUDES |
---|
47 | #include <sys/types.h> |
---|
48 | |
---|
49 | #include <limits.h> |
---|
50 | #include <string.h> |
---|
51 | #endif |
---|
52 | |
---|
53 | #include "db_int.h" |
---|
54 | #include "dbinc/db_page.h" |
---|
55 | #include "dbinc/db_shash.h" |
---|
56 | #include "dbinc/lock.h" |
---|
57 | #include "dbinc/btree.h" |
---|
58 | |
---|
59 | static int __bam_broot __P((DBC *, PAGE *, PAGE *, PAGE *)); |
---|
60 | static int __bam_page __P((DBC *, EPG *, EPG *)); |
---|
61 | static int __bam_pinsert __P((DBC *, EPG *, PAGE *, PAGE *, int)); |
---|
62 | static int __bam_psplit __P((DBC *, EPG *, PAGE *, PAGE *, db_indx_t *)); |
---|
63 | static int __bam_root __P((DBC *, EPG *)); |
---|
64 | static int __ram_root __P((DBC *, PAGE *, PAGE *, PAGE *)); |
---|
65 | |
---|
66 | /* |
---|
67 | * __bam_split -- |
---|
68 | * Split a page. |
---|
69 | * |
---|
70 | * PUBLIC: int __bam_split __P((DBC *, void *, db_pgno_t *)); |
---|
71 | */ |
---|
72 | int |
---|
73 | __bam_split(dbc, arg, root_pgnop) |
---|
74 | DBC *dbc; |
---|
75 | void *arg; |
---|
76 | db_pgno_t *root_pgnop; |
---|
77 | { |
---|
78 | BTREE_CURSOR *cp; |
---|
79 | enum { UP, DOWN } dir; |
---|
80 | db_pgno_t root_pgno; |
---|
81 | int exact, level, ret; |
---|
82 | |
---|
83 | cp = (BTREE_CURSOR *)dbc->internal; |
---|
84 | root_pgno = cp->root; |
---|
85 | |
---|
86 | /* |
---|
87 | * The locking protocol we use to avoid deadlock to acquire locks by |
---|
88 | * walking down the tree, but we do it as lazily as possible, locking |
---|
89 | * the root only as a last resort. We expect all stack pages to have |
---|
90 | * been discarded before we're called; we discard all short-term locks. |
---|
91 | * |
---|
92 | * When __bam_split is first called, we know that a leaf page was too |
---|
93 | * full for an insert. We don't know what leaf page it was, but we |
---|
94 | * have the key/recno that caused the problem. We call XX_search to |
---|
95 | * reacquire the leaf page, but this time get both the leaf page and |
---|
96 | * its parent, locked. We then split the leaf page and see if the new |
---|
97 | * internal key will fit into the parent page. If it will, we're done. |
---|
98 | * |
---|
99 | * If it won't, we discard our current locks and repeat the process, |
---|
100 | * only this time acquiring the parent page and its parent, locked. |
---|
101 | * This process repeats until we succeed in the split, splitting the |
---|
102 | * root page as the final resort. The entire process then repeats, |
---|
103 | * as necessary, until we split a leaf page. |
---|
104 | * |
---|
105 | * XXX |
---|
106 | * A traditional method of speeding this up is to maintain a stack of |
---|
107 | * the pages traversed in the original search. You can detect if the |
---|
108 | * stack is correct by storing the page's LSN when it was searched and |
---|
109 | * comparing that LSN with the current one when it's locked during the |
---|
110 | * split. This would be an easy change for this code, but I have no |
---|
111 | * numbers that indicate it's worthwhile. |
---|
112 | */ |
---|
113 | for (dir = UP, level = LEAFLEVEL;; dir == UP ? ++level : --level) { |
---|
114 | /* |
---|
115 | * Acquire a page and its parent, locked. |
---|
116 | */ |
---|
117 | if ((ret = (dbc->dbtype == DB_BTREE ? |
---|
118 | __bam_search(dbc, PGNO_INVALID, |
---|
119 | arg, S_WRPAIR, level, NULL, &exact) : |
---|
120 | __bam_rsearch(dbc, |
---|
121 | (db_recno_t *)arg, S_WRPAIR, level, &exact))) != 0) |
---|
122 | return (ret); |
---|
123 | |
---|
124 | if (root_pgnop != NULL) |
---|
125 | *root_pgnop = cp->csp[0].page->pgno == root_pgno ? |
---|
126 | root_pgno : cp->csp[-1].page->pgno; |
---|
127 | /* |
---|
128 | * Split the page if it still needs it (it's possible another |
---|
129 | * thread of control has already split the page). If we are |
---|
130 | * guaranteed that two items will fit on the page, the split |
---|
131 | * is no longer necessary. |
---|
132 | */ |
---|
133 | if (2 * B_MAXSIZEONPAGE(cp->ovflsize) |
---|
134 | <= (db_indx_t)P_FREESPACE(dbc->dbp, cp->csp[0].page)) { |
---|
135 | __bam_stkrel(dbc, STK_NOLOCK); |
---|
136 | return (0); |
---|
137 | } |
---|
138 | ret = cp->csp[0].page->pgno == root_pgno ? |
---|
139 | __bam_root(dbc, &cp->csp[0]) : |
---|
140 | __bam_page(dbc, &cp->csp[-1], &cp->csp[0]); |
---|
141 | BT_STK_CLR(cp); |
---|
142 | |
---|
143 | switch (ret) { |
---|
144 | case 0: |
---|
145 | /* Once we've split the leaf page, we're done. */ |
---|
146 | if (level == LEAFLEVEL) |
---|
147 | return (0); |
---|
148 | |
---|
149 | /* Switch directions. */ |
---|
150 | if (dir == UP) |
---|
151 | dir = DOWN; |
---|
152 | break; |
---|
153 | case DB_NEEDSPLIT: |
---|
154 | /* |
---|
155 | * It's possible to fail to split repeatedly, as other |
---|
156 | * threads may be modifying the tree, or the page usage |
---|
157 | * is sufficiently bad that we don't get enough space |
---|
158 | * the first time. |
---|
159 | */ |
---|
160 | if (dir == DOWN) |
---|
161 | dir = UP; |
---|
162 | break; |
---|
163 | default: |
---|
164 | return (ret); |
---|
165 | } |
---|
166 | } |
---|
167 | /* NOTREACHED */ |
---|
168 | } |
---|
169 | |
---|
170 | /* |
---|
171 | * __bam_root -- |
---|
172 | * Split the root page of a btree. |
---|
173 | */ |
---|
174 | static int |
---|
175 | __bam_root(dbc, cp) |
---|
176 | DBC *dbc; |
---|
177 | EPG *cp; |
---|
178 | { |
---|
179 | DB *dbp; |
---|
180 | DBT log_dbt; |
---|
181 | DB_LSN log_lsn; |
---|
182 | DB_MPOOLFILE *mpf; |
---|
183 | PAGE *lp, *rp; |
---|
184 | db_indx_t split; |
---|
185 | u_int32_t opflags; |
---|
186 | int ret; |
---|
187 | |
---|
188 | dbp = dbc->dbp; |
---|
189 | mpf = dbp->mpf; |
---|
190 | |
---|
191 | /* Yeah, right. */ |
---|
192 | if (cp->page->level >= MAXBTREELEVEL) { |
---|
193 | __db_err(dbp->dbenv, |
---|
194 | "Too many btree levels: %d", cp->page->level); |
---|
195 | ret = ENOSPC; |
---|
196 | goto err; |
---|
197 | } |
---|
198 | |
---|
199 | /* Create new left and right pages for the split. */ |
---|
200 | lp = rp = NULL; |
---|
201 | if ((ret = __db_new(dbc, TYPE(cp->page), &lp)) != 0 || |
---|
202 | (ret = __db_new(dbc, TYPE(cp->page), &rp)) != 0) |
---|
203 | goto err; |
---|
204 | P_INIT(lp, dbp->pgsize, lp->pgno, |
---|
205 | PGNO_INVALID, ISINTERNAL(cp->page) ? PGNO_INVALID : rp->pgno, |
---|
206 | cp->page->level, TYPE(cp->page)); |
---|
207 | P_INIT(rp, dbp->pgsize, rp->pgno, |
---|
208 | ISINTERNAL(cp->page) ? PGNO_INVALID : lp->pgno, PGNO_INVALID, |
---|
209 | cp->page->level, TYPE(cp->page)); |
---|
210 | |
---|
211 | /* Split the page. */ |
---|
212 | if ((ret = __bam_psplit(dbc, cp, lp, rp, &split)) != 0) |
---|
213 | goto err; |
---|
214 | |
---|
215 | /* Log the change. */ |
---|
216 | if (DBC_LOGGING(dbc)) { |
---|
217 | memset(&log_dbt, 0, sizeof(log_dbt)); |
---|
218 | log_dbt.data = cp->page; |
---|
219 | log_dbt.size = dbp->pgsize; |
---|
220 | ZERO_LSN(log_lsn); |
---|
221 | opflags = F_ISSET( |
---|
222 | (BTREE_CURSOR *)dbc->internal, C_RECNUM) ? SPL_NRECS : 0; |
---|
223 | if ((ret = __bam_split_log(dbp, |
---|
224 | dbc->txn, &LSN(cp->page), 0, PGNO(lp), &LSN(lp), PGNO(rp), |
---|
225 | &LSN(rp), (u_int32_t)NUM_ENT(lp), 0, &log_lsn, |
---|
226 | dbc->internal->root, &log_dbt, opflags)) != 0) |
---|
227 | goto err; |
---|
228 | } else |
---|
229 | LSN_NOT_LOGGED(LSN(cp->page)); |
---|
230 | LSN(lp) = LSN(cp->page); |
---|
231 | LSN(rp) = LSN(cp->page); |
---|
232 | |
---|
233 | /* Clean up the new root page. */ |
---|
234 | if ((ret = (dbc->dbtype == DB_RECNO ? |
---|
235 | __ram_root(dbc, cp->page, lp, rp) : |
---|
236 | __bam_broot(dbc, cp->page, lp, rp))) != 0) |
---|
237 | goto err; |
---|
238 | |
---|
239 | /* Adjust any cursors. */ |
---|
240 | if ((ret = __bam_ca_split(dbc, |
---|
241 | cp->page->pgno, lp->pgno, rp->pgno, split, 1)) != 0) |
---|
242 | goto err; |
---|
243 | |
---|
244 | /* Success -- write the real pages back to the store. */ |
---|
245 | (void)mpf->put(mpf, cp->page, DB_MPOOL_DIRTY); |
---|
246 | (void)__TLPUT(dbc, cp->lock); |
---|
247 | (void)mpf->put(mpf, lp, DB_MPOOL_DIRTY); |
---|
248 | (void)mpf->put(mpf, rp, DB_MPOOL_DIRTY); |
---|
249 | |
---|
250 | return (0); |
---|
251 | |
---|
252 | err: if (lp != NULL) |
---|
253 | (void)mpf->put(mpf, lp, 0); |
---|
254 | if (rp != NULL) |
---|
255 | (void)mpf->put(mpf, rp, 0); |
---|
256 | (void)mpf->put(mpf, cp->page, 0); |
---|
257 | (void)__TLPUT(dbc, cp->lock); |
---|
258 | return (ret); |
---|
259 | } |
---|
260 | |
---|
261 | /* |
---|
262 | * __bam_page -- |
---|
263 | * Split the non-root page of a btree. |
---|
264 | */ |
---|
265 | static int |
---|
266 | __bam_page(dbc, pp, cp) |
---|
267 | DBC *dbc; |
---|
268 | EPG *pp, *cp; |
---|
269 | { |
---|
270 | BTREE_CURSOR *bc; |
---|
271 | DBT log_dbt; |
---|
272 | DB_LSN log_lsn; |
---|
273 | DB *dbp; |
---|
274 | DB_LOCK rplock, tplock; |
---|
275 | DB_MPOOLFILE *mpf; |
---|
276 | DB_LSN save_lsn; |
---|
277 | PAGE *lp, *rp, *alloc_rp, *tp; |
---|
278 | db_indx_t split; |
---|
279 | u_int32_t opflags; |
---|
280 | int ret, t_ret; |
---|
281 | |
---|
282 | dbp = dbc->dbp; |
---|
283 | mpf = dbp->mpf; |
---|
284 | alloc_rp = lp = rp = tp = NULL; |
---|
285 | LOCK_INIT(rplock); |
---|
286 | LOCK_INIT(tplock); |
---|
287 | ret = -1; |
---|
288 | |
---|
289 | /* |
---|
290 | * Create a new right page for the split, and fill in everything |
---|
291 | * except its LSN and page number. |
---|
292 | * |
---|
293 | * We malloc space for both the left and right pages, so we don't get |
---|
294 | * a new page from the underlying buffer pool until we know the split |
---|
295 | * is going to succeed. The reason is that we can't release locks |
---|
296 | * acquired during the get-a-new-page process because metadata page |
---|
297 | * locks can't be discarded on failure since we may have modified the |
---|
298 | * free list. So, if you assume that we're holding a write lock on the |
---|
299 | * leaf page which ran out of space and started this split (e.g., we |
---|
300 | * have already written records to the page, or we retrieved a record |
---|
301 | * from it with the DB_RMW flag set), failing in a split with both a |
---|
302 | * leaf page locked and the metadata page locked can potentially lock |
---|
303 | * up the tree badly, because we've violated the rule of always locking |
---|
304 | * down the tree, and never up. |
---|
305 | */ |
---|
306 | if ((ret = __os_malloc(dbp->dbenv, dbp->pgsize, &rp)) != 0) |
---|
307 | goto err; |
---|
308 | P_INIT(rp, dbp->pgsize, 0, |
---|
309 | ISINTERNAL(cp->page) ? PGNO_INVALID : PGNO(cp->page), |
---|
310 | ISINTERNAL(cp->page) ? PGNO_INVALID : NEXT_PGNO(cp->page), |
---|
311 | cp->page->level, TYPE(cp->page)); |
---|
312 | |
---|
313 | /* |
---|
314 | * Create new left page for the split, and fill in everything |
---|
315 | * except its LSN and next-page page number. |
---|
316 | */ |
---|
317 | if ((ret = __os_malloc(dbp->dbenv, dbp->pgsize, &lp)) != 0) |
---|
318 | goto err; |
---|
319 | P_INIT(lp, dbp->pgsize, PGNO(cp->page), |
---|
320 | ISINTERNAL(cp->page) ? PGNO_INVALID : PREV_PGNO(cp->page), |
---|
321 | ISINTERNAL(cp->page) ? PGNO_INVALID : 0, |
---|
322 | cp->page->level, TYPE(cp->page)); |
---|
323 | |
---|
324 | /* |
---|
325 | * Split right. |
---|
326 | * |
---|
327 | * Only the indices are sorted on the page, i.e., the key/data pairs |
---|
328 | * aren't, so it's simpler to copy the data from the split page onto |
---|
329 | * two new pages instead of copying half the data to a new right page |
---|
330 | * and compacting the left page in place. Since the left page can't |
---|
331 | * change, we swap the original and the allocated left page after the |
---|
332 | * split. |
---|
333 | */ |
---|
334 | if ((ret = __bam_psplit(dbc, cp, lp, rp, &split)) != 0) |
---|
335 | goto err; |
---|
336 | |
---|
337 | /* |
---|
338 | * Test to see if we are going to be able to insert the new pages into |
---|
339 | * the parent page. The interesting failure here is that the parent |
---|
340 | * page can't hold the new keys, and has to be split in turn, in which |
---|
341 | * case we want to release all the locks we can. |
---|
342 | */ |
---|
343 | if ((ret = __bam_pinsert(dbc, pp, lp, rp, 1)) != 0) |
---|
344 | goto err; |
---|
345 | |
---|
346 | /* |
---|
347 | * Fix up the previous pointer of any leaf page following the split |
---|
348 | * page. |
---|
349 | * |
---|
350 | * There's interesting deadlock situations here as we try to write-lock |
---|
351 | * a page that's not in our direct ancestry. Consider a cursor walking |
---|
352 | * backward through the leaf pages, that has our following page locked, |
---|
353 | * and is waiting on a lock for the page we're splitting. In that case |
---|
354 | * we're going to deadlock here . It's probably OK, stepping backward |
---|
355 | * through the tree isn't a common operation. |
---|
356 | */ |
---|
357 | if (ISLEAF(cp->page) && NEXT_PGNO(cp->page) != PGNO_INVALID) { |
---|
358 | if ((ret = __db_lget(dbc, |
---|
359 | 0, NEXT_PGNO(cp->page), DB_LOCK_WRITE, 0, &tplock)) != 0) |
---|
360 | goto err; |
---|
361 | if ((ret = mpf->get(mpf, &NEXT_PGNO(cp->page), 0, &tp)) != 0) |
---|
362 | goto err; |
---|
363 | } |
---|
364 | |
---|
365 | /* |
---|
366 | * We've got everything locked down we need, and we know the split |
---|
367 | * is going to succeed. Go and get the additional page we'll need. |
---|
368 | */ |
---|
369 | if ((ret = __db_new(dbc, TYPE(cp->page), &alloc_rp)) != 0) |
---|
370 | goto err; |
---|
371 | |
---|
372 | /* |
---|
373 | * Lock the new page. We need to do this because someone |
---|
374 | * could get here through bt_lpgno if this page was recently |
---|
375 | * dealocated. They can't look at it before we commit. |
---|
376 | */ |
---|
377 | if ((ret = __db_lget(dbc, |
---|
378 | 0, PGNO(alloc_rp), DB_LOCK_WRITE, 0, &rplock)) != 0) |
---|
379 | goto err; |
---|
380 | |
---|
381 | /* |
---|
382 | * Fix up the page numbers we didn't have before. We have to do this |
---|
383 | * before calling __bam_pinsert because it may copy a page number onto |
---|
384 | * the parent page and it takes the page number from its page argument. |
---|
385 | */ |
---|
386 | PGNO(rp) = NEXT_PGNO(lp) = PGNO(alloc_rp); |
---|
387 | |
---|
388 | /* Actually update the parent page. */ |
---|
389 | if ((ret = __bam_pinsert(dbc, pp, lp, rp, 0)) != 0) |
---|
390 | goto err; |
---|
391 | |
---|
392 | bc = (BTREE_CURSOR *)dbc->internal; |
---|
393 | /* Log the change. */ |
---|
394 | if (DBC_LOGGING(dbc)) { |
---|
395 | memset(&log_dbt, 0, sizeof(log_dbt)); |
---|
396 | log_dbt.data = cp->page; |
---|
397 | log_dbt.size = dbp->pgsize; |
---|
398 | if (tp == NULL) |
---|
399 | ZERO_LSN(log_lsn); |
---|
400 | opflags = F_ISSET(bc, C_RECNUM) ? SPL_NRECS : 0; |
---|
401 | if ((ret = __bam_split_log(dbp, dbc->txn, &LSN(cp->page), 0, |
---|
402 | PGNO(cp->page), &LSN(cp->page), PGNO(alloc_rp), |
---|
403 | &LSN(alloc_rp), (u_int32_t)NUM_ENT(lp), |
---|
404 | tp == NULL ? 0 : PGNO(tp), |
---|
405 | tp == NULL ? &log_lsn : &LSN(tp), |
---|
406 | PGNO_INVALID, &log_dbt, opflags)) != 0) |
---|
407 | goto err; |
---|
408 | |
---|
409 | } else |
---|
410 | LSN_NOT_LOGGED(LSN(cp->page)); |
---|
411 | |
---|
412 | /* Update the LSNs for all involved pages. */ |
---|
413 | LSN(alloc_rp) = LSN(cp->page); |
---|
414 | LSN(lp) = LSN(cp->page); |
---|
415 | LSN(rp) = LSN(cp->page); |
---|
416 | if (tp != NULL) |
---|
417 | LSN(tp) = LSN(cp->page); |
---|
418 | |
---|
419 | /* |
---|
420 | * Copy the left and right pages into place. There are two paths |
---|
421 | * through here. Either we are logging and we set the LSNs in the |
---|
422 | * logging path. However, if we are not logging, then we do not |
---|
423 | * have valid LSNs on lp or rp. The correct LSNs to use are the |
---|
424 | * ones on the page we got from __db_new or the one that was |
---|
425 | * originally on cp->page. In both cases, we save the LSN from the |
---|
426 | * real database page (not a malloc'd one) and reapply it after we |
---|
427 | * do the copy. |
---|
428 | */ |
---|
429 | save_lsn = alloc_rp->lsn; |
---|
430 | memcpy(alloc_rp, rp, LOFFSET(dbp, rp)); |
---|
431 | memcpy((u_int8_t *)alloc_rp + HOFFSET(rp), |
---|
432 | (u_int8_t *)rp + HOFFSET(rp), dbp->pgsize - HOFFSET(rp)); |
---|
433 | alloc_rp->lsn = save_lsn; |
---|
434 | |
---|
435 | save_lsn = cp->page->lsn; |
---|
436 | memcpy(cp->page, lp, LOFFSET(dbp, lp)); |
---|
437 | memcpy((u_int8_t *)cp->page + HOFFSET(lp), |
---|
438 | (u_int8_t *)lp + HOFFSET(lp), dbp->pgsize - HOFFSET(lp)); |
---|
439 | cp->page->lsn = save_lsn; |
---|
440 | |
---|
441 | /* Fix up the next-page link. */ |
---|
442 | if (tp != NULL) |
---|
443 | PREV_PGNO(tp) = PGNO(rp); |
---|
444 | |
---|
445 | /* Adjust any cursors. */ |
---|
446 | if ((ret = __bam_ca_split(dbc, |
---|
447 | PGNO(cp->page), PGNO(cp->page), PGNO(rp), split, 0)) != 0) |
---|
448 | goto err; |
---|
449 | |
---|
450 | __os_free(dbp->dbenv, lp); |
---|
451 | __os_free(dbp->dbenv, rp); |
---|
452 | |
---|
453 | /* |
---|
454 | * Success -- write the real pages back to the store. As we never |
---|
455 | * acquired any sort of lock on the new page, we release it before |
---|
456 | * releasing locks on the pages that reference it. We're finished |
---|
457 | * modifying the page so it's not really necessary, but it's neater. |
---|
458 | */ |
---|
459 | if ((t_ret = mpf->put(mpf, alloc_rp, DB_MPOOL_DIRTY)) != 0 && ret == 0) |
---|
460 | ret = t_ret; |
---|
461 | (void)__TLPUT(dbc, rplock); |
---|
462 | if ((t_ret = mpf->put(mpf, pp->page, DB_MPOOL_DIRTY)) != 0 && ret == 0) |
---|
463 | ret = t_ret; |
---|
464 | (void)__TLPUT(dbc, pp->lock); |
---|
465 | if ((t_ret = mpf->put(mpf, cp->page, DB_MPOOL_DIRTY)) != 0 && ret == 0) |
---|
466 | ret = t_ret; |
---|
467 | (void)__TLPUT(dbc, cp->lock); |
---|
468 | if (tp != NULL) { |
---|
469 | if ((t_ret = |
---|
470 | mpf->put(mpf, tp, DB_MPOOL_DIRTY)) != 0 && ret == 0) |
---|
471 | ret = t_ret; |
---|
472 | (void)__TLPUT(dbc, tplock); |
---|
473 | } |
---|
474 | return (ret); |
---|
475 | |
---|
476 | err: if (lp != NULL) |
---|
477 | __os_free(dbp->dbenv, lp); |
---|
478 | if (rp != NULL) |
---|
479 | __os_free(dbp->dbenv, rp); |
---|
480 | if (alloc_rp != NULL) |
---|
481 | (void)mpf->put(mpf, alloc_rp, 0); |
---|
482 | if (tp != NULL) |
---|
483 | (void)mpf->put(mpf, tp, 0); |
---|
484 | |
---|
485 | /* We never updated the new or next pages, we can release them. */ |
---|
486 | (void)__LPUT(dbc, rplock); |
---|
487 | (void)__LPUT(dbc, tplock); |
---|
488 | |
---|
489 | (void)mpf->put(mpf, pp->page, 0); |
---|
490 | if (ret == DB_NEEDSPLIT) |
---|
491 | (void)__LPUT(dbc, pp->lock); |
---|
492 | else |
---|
493 | (void)__TLPUT(dbc, pp->lock); |
---|
494 | |
---|
495 | (void)mpf->put(mpf, cp->page, 0); |
---|
496 | if (ret == DB_NEEDSPLIT) |
---|
497 | (void)__LPUT(dbc, cp->lock); |
---|
498 | else |
---|
499 | (void)__TLPUT(dbc, cp->lock); |
---|
500 | |
---|
501 | return (ret); |
---|
502 | } |
---|
503 | |
---|
504 | /* |
---|
505 | * __bam_broot -- |
---|
506 | * Fix up the btree root page after it has been split. |
---|
507 | */ |
---|
508 | static int |
---|
509 | __bam_broot(dbc, rootp, lp, rp) |
---|
510 | DBC *dbc; |
---|
511 | PAGE *rootp, *lp, *rp; |
---|
512 | { |
---|
513 | BINTERNAL bi, *child_bi; |
---|
514 | BKEYDATA *child_bk; |
---|
515 | BTREE_CURSOR *cp; |
---|
516 | DB *dbp; |
---|
517 | DBT hdr, data; |
---|
518 | db_pgno_t root_pgno; |
---|
519 | int ret; |
---|
520 | |
---|
521 | dbp = dbc->dbp; |
---|
522 | cp = (BTREE_CURSOR *)dbc->internal; |
---|
523 | |
---|
524 | /* |
---|
525 | * If the root page was a leaf page, change it into an internal page. |
---|
526 | * We copy the key we split on (but not the key's data, in the case of |
---|
527 | * a leaf page) to the new root page. |
---|
528 | */ |
---|
529 | root_pgno = cp->root; |
---|
530 | P_INIT(rootp, dbp->pgsize, |
---|
531 | root_pgno, PGNO_INVALID, PGNO_INVALID, lp->level + 1, P_IBTREE); |
---|
532 | |
---|
533 | memset(&data, 0, sizeof(data)); |
---|
534 | memset(&hdr, 0, sizeof(hdr)); |
---|
535 | |
---|
536 | /* |
---|
537 | * The btree comparison code guarantees that the left-most key on any |
---|
538 | * internal btree page is never used, so it doesn't need to be filled |
---|
539 | * in. Set the record count if necessary. |
---|
540 | */ |
---|
541 | memset(&bi, 0, sizeof(bi)); |
---|
542 | bi.len = 0; |
---|
543 | B_TSET(bi.type, B_KEYDATA, 0); |
---|
544 | bi.pgno = lp->pgno; |
---|
545 | if (F_ISSET(cp, C_RECNUM)) { |
---|
546 | bi.nrecs = __bam_total(dbp, lp); |
---|
547 | RE_NREC_SET(rootp, bi.nrecs); |
---|
548 | } |
---|
549 | hdr.data = &bi; |
---|
550 | hdr.size = SSZA(BINTERNAL, data); |
---|
551 | if ((ret = |
---|
552 | __db_pitem(dbc, rootp, 0, BINTERNAL_SIZE(0), &hdr, NULL)) != 0) |
---|
553 | return (ret); |
---|
554 | |
---|
555 | switch (TYPE(rp)) { |
---|
556 | case P_IBTREE: |
---|
557 | /* Copy the first key of the child page onto the root page. */ |
---|
558 | child_bi = GET_BINTERNAL(dbp, rp, 0); |
---|
559 | |
---|
560 | bi.len = child_bi->len; |
---|
561 | B_TSET(bi.type, child_bi->type, 0); |
---|
562 | bi.pgno = rp->pgno; |
---|
563 | if (F_ISSET(cp, C_RECNUM)) { |
---|
564 | bi.nrecs = __bam_total(dbp, rp); |
---|
565 | RE_NREC_ADJ(rootp, bi.nrecs); |
---|
566 | } |
---|
567 | hdr.data = &bi; |
---|
568 | hdr.size = SSZA(BINTERNAL, data); |
---|
569 | data.data = child_bi->data; |
---|
570 | data.size = child_bi->len; |
---|
571 | if ((ret = __db_pitem(dbc, rootp, 1, |
---|
572 | BINTERNAL_SIZE(child_bi->len), &hdr, &data)) != 0) |
---|
573 | return (ret); |
---|
574 | |
---|
575 | /* Increment the overflow ref count. */ |
---|
576 | if (B_TYPE(child_bi->type) == B_OVERFLOW) |
---|
577 | if ((ret = __db_ovref(dbc, |
---|
578 | ((BOVERFLOW *)(child_bi->data))->pgno, 1)) != 0) |
---|
579 | return (ret); |
---|
580 | break; |
---|
581 | case P_LDUP: |
---|
582 | case P_LBTREE: |
---|
583 | /* Copy the first key of the child page onto the root page. */ |
---|
584 | child_bk = GET_BKEYDATA(dbp, rp, 0); |
---|
585 | switch (B_TYPE(child_bk->type)) { |
---|
586 | case B_KEYDATA: |
---|
587 | bi.len = child_bk->len; |
---|
588 | B_TSET(bi.type, child_bk->type, 0); |
---|
589 | bi.pgno = rp->pgno; |
---|
590 | if (F_ISSET(cp, C_RECNUM)) { |
---|
591 | bi.nrecs = __bam_total(dbp, rp); |
---|
592 | RE_NREC_ADJ(rootp, bi.nrecs); |
---|
593 | } |
---|
594 | hdr.data = &bi; |
---|
595 | hdr.size = SSZA(BINTERNAL, data); |
---|
596 | data.data = child_bk->data; |
---|
597 | data.size = child_bk->len; |
---|
598 | if ((ret = __db_pitem(dbc, rootp, 1, |
---|
599 | BINTERNAL_SIZE(child_bk->len), &hdr, &data)) != 0) |
---|
600 | return (ret); |
---|
601 | break; |
---|
602 | case B_DUPLICATE: |
---|
603 | case B_OVERFLOW: |
---|
604 | bi.len = BOVERFLOW_SIZE; |
---|
605 | B_TSET(bi.type, child_bk->type, 0); |
---|
606 | bi.pgno = rp->pgno; |
---|
607 | if (F_ISSET(cp, C_RECNUM)) { |
---|
608 | bi.nrecs = __bam_total(dbp, rp); |
---|
609 | RE_NREC_ADJ(rootp, bi.nrecs); |
---|
610 | } |
---|
611 | hdr.data = &bi; |
---|
612 | hdr.size = SSZA(BINTERNAL, data); |
---|
613 | data.data = child_bk; |
---|
614 | data.size = BOVERFLOW_SIZE; |
---|
615 | if ((ret = __db_pitem(dbc, rootp, 1, |
---|
616 | BINTERNAL_SIZE(BOVERFLOW_SIZE), &hdr, &data)) != 0) |
---|
617 | return (ret); |
---|
618 | |
---|
619 | /* Increment the overflow ref count. */ |
---|
620 | if (B_TYPE(child_bk->type) == B_OVERFLOW) |
---|
621 | if ((ret = __db_ovref(dbc, |
---|
622 | ((BOVERFLOW *)child_bk)->pgno, 1)) != 0) |
---|
623 | return (ret); |
---|
624 | break; |
---|
625 | default: |
---|
626 | return (__db_pgfmt(dbp->dbenv, rp->pgno)); |
---|
627 | } |
---|
628 | break; |
---|
629 | default: |
---|
630 | return (__db_pgfmt(dbp->dbenv, rp->pgno)); |
---|
631 | } |
---|
632 | return (0); |
---|
633 | } |
---|
634 | |
---|
635 | /* |
---|
636 | * __ram_root -- |
---|
637 | * Fix up the recno root page after it has been split. |
---|
638 | */ |
---|
639 | static int |
---|
640 | __ram_root(dbc, rootp, lp, rp) |
---|
641 | DBC *dbc; |
---|
642 | PAGE *rootp, *lp, *rp; |
---|
643 | { |
---|
644 | DB *dbp; |
---|
645 | DBT hdr; |
---|
646 | RINTERNAL ri; |
---|
647 | db_pgno_t root_pgno; |
---|
648 | int ret; |
---|
649 | |
---|
650 | dbp = dbc->dbp; |
---|
651 | root_pgno = dbc->internal->root; |
---|
652 | |
---|
653 | /* Initialize the page. */ |
---|
654 | P_INIT(rootp, dbp->pgsize, |
---|
655 | root_pgno, PGNO_INVALID, PGNO_INVALID, lp->level + 1, P_IRECNO); |
---|
656 | |
---|
657 | /* Initialize the header. */ |
---|
658 | memset(&hdr, 0, sizeof(hdr)); |
---|
659 | hdr.data = &ri; |
---|
660 | hdr.size = RINTERNAL_SIZE; |
---|
661 | |
---|
662 | /* Insert the left and right keys, set the header information. */ |
---|
663 | ri.pgno = lp->pgno; |
---|
664 | ri.nrecs = __bam_total(dbp, lp); |
---|
665 | if ((ret = __db_pitem(dbc, rootp, 0, RINTERNAL_SIZE, &hdr, NULL)) != 0) |
---|
666 | return (ret); |
---|
667 | RE_NREC_SET(rootp, ri.nrecs); |
---|
668 | ri.pgno = rp->pgno; |
---|
669 | ri.nrecs = __bam_total(dbp, rp); |
---|
670 | if ((ret = __db_pitem(dbc, rootp, 1, RINTERNAL_SIZE, &hdr, NULL)) != 0) |
---|
671 | return (ret); |
---|
672 | RE_NREC_ADJ(rootp, ri.nrecs); |
---|
673 | return (0); |
---|
674 | } |
---|
675 | |
---|
676 | /* |
---|
677 | * __bam_pinsert -- |
---|
678 | * Insert a new key into a parent page, completing the split. |
---|
679 | */ |
---|
680 | static int |
---|
681 | __bam_pinsert(dbc, parent, lchild, rchild, space_check) |
---|
682 | DBC *dbc; |
---|
683 | EPG *parent; |
---|
684 | PAGE *lchild, *rchild; |
---|
685 | int space_check; |
---|
686 | { |
---|
687 | BINTERNAL bi, *child_bi; |
---|
688 | BKEYDATA *child_bk, *tmp_bk; |
---|
689 | BTREE *t; |
---|
690 | BTREE_CURSOR *cp; |
---|
691 | DB *dbp; |
---|
692 | DBT a, b, hdr, data; |
---|
693 | PAGE *ppage; |
---|
694 | RINTERNAL ri; |
---|
695 | db_indx_t off; |
---|
696 | db_recno_t nrecs; |
---|
697 | size_t (*func) __P((DB *, const DBT *, const DBT *)); |
---|
698 | u_int32_t n, nbytes, nksize; |
---|
699 | int ret; |
---|
700 | |
---|
701 | dbp = dbc->dbp; |
---|
702 | cp = (BTREE_CURSOR *)dbc->internal; |
---|
703 | t = dbp->bt_internal; |
---|
704 | ppage = parent->page; |
---|
705 | |
---|
706 | /* If handling record numbers, count records split to the right page. */ |
---|
707 | nrecs = F_ISSET(cp, C_RECNUM) && |
---|
708 | !space_check ? __bam_total(dbp, rchild) : 0; |
---|
709 | |
---|
710 | /* |
---|
711 | * Now we insert the new page's first key into the parent page, which |
---|
712 | * completes the split. The parent points to a PAGE and a page index |
---|
713 | * offset, where the new key goes ONE AFTER the index, because we split |
---|
714 | * to the right. |
---|
715 | * |
---|
716 | * XXX |
---|
717 | * Some btree algorithms replace the key for the old page as well as |
---|
718 | * the new page. We don't, as there's no reason to believe that the |
---|
719 | * first key on the old page is any better than the key we have, and, |
---|
720 | * in the case of a key being placed at index 0 causing the split, the |
---|
721 | * key is unavailable. |
---|
722 | */ |
---|
723 | off = parent->indx + O_INDX; |
---|
724 | |
---|
725 | /* |
---|
726 | * Calculate the space needed on the parent page. |
---|
727 | * |
---|
728 | * Prefix trees: space hack used when inserting into BINTERNAL pages. |
---|
729 | * Retain only what's needed to distinguish between the new entry and |
---|
730 | * the LAST entry on the page to its left. If the keys compare equal, |
---|
731 | * retain the entire key. We ignore overflow keys, and the entire key |
---|
732 | * must be retained for the next-to-leftmost key on the leftmost page |
---|
733 | * of each level, or the search will fail. Applicable ONLY to internal |
---|
734 | * pages that have leaf pages as children. Further reduction of the |
---|
735 | * key between pairs of internal pages loses too much information. |
---|
736 | */ |
---|
737 | switch (TYPE(rchild)) { |
---|
738 | case P_IBTREE: |
---|
739 | child_bi = GET_BINTERNAL(dbp, rchild, 0); |
---|
740 | nbytes = BINTERNAL_PSIZE(child_bi->len); |
---|
741 | |
---|
742 | if (P_FREESPACE(dbp, ppage) < nbytes) |
---|
743 | return (DB_NEEDSPLIT); |
---|
744 | if (space_check) |
---|
745 | return (0); |
---|
746 | |
---|
747 | /* Add a new record for the right page. */ |
---|
748 | memset(&bi, 0, sizeof(bi)); |
---|
749 | bi.len = child_bi->len; |
---|
750 | B_TSET(bi.type, child_bi->type, 0); |
---|
751 | bi.pgno = rchild->pgno; |
---|
752 | bi.nrecs = nrecs; |
---|
753 | memset(&hdr, 0, sizeof(hdr)); |
---|
754 | hdr.data = &bi; |
---|
755 | hdr.size = SSZA(BINTERNAL, data); |
---|
756 | memset(&data, 0, sizeof(data)); |
---|
757 | data.data = child_bi->data; |
---|
758 | data.size = child_bi->len; |
---|
759 | if ((ret = __db_pitem(dbc, ppage, off, |
---|
760 | BINTERNAL_SIZE(child_bi->len), &hdr, &data)) != 0) |
---|
761 | return (ret); |
---|
762 | |
---|
763 | /* Increment the overflow ref count. */ |
---|
764 | if (B_TYPE(child_bi->type) == B_OVERFLOW) |
---|
765 | if ((ret = __db_ovref(dbc, |
---|
766 | ((BOVERFLOW *)(child_bi->data))->pgno, 1)) != 0) |
---|
767 | return (ret); |
---|
768 | break; |
---|
769 | case P_LDUP: |
---|
770 | case P_LBTREE: |
---|
771 | child_bk = GET_BKEYDATA(dbp, rchild, 0); |
---|
772 | switch (B_TYPE(child_bk->type)) { |
---|
773 | case B_KEYDATA: |
---|
774 | /* |
---|
775 | * We set t->bt_prefix to NULL if we have a comparison |
---|
776 | * callback but no prefix compression callback. But, |
---|
777 | * if we're splitting in an off-page duplicates tree, |
---|
778 | * we still have to do some checking. If using the |
---|
779 | * default off-page duplicates comparison routine we |
---|
780 | * can use the default prefix compression callback. If |
---|
781 | * not using the default off-page duplicates comparison |
---|
782 | * routine, we can't do any kind of prefix compression |
---|
783 | * as there's no way for an application to specify a |
---|
784 | * prefix compression callback that corresponds to its |
---|
785 | * comparison callback. |
---|
786 | */ |
---|
787 | if (F_ISSET(dbc, DBC_OPD)) { |
---|
788 | if (dbp->dup_compare == __bam_defcmp) |
---|
789 | func = __bam_defpfx; |
---|
790 | else |
---|
791 | func = NULL; |
---|
792 | } else |
---|
793 | func = t->bt_prefix; |
---|
794 | |
---|
795 | nbytes = BINTERNAL_PSIZE(child_bk->len); |
---|
796 | nksize = child_bk->len; |
---|
797 | if (func == NULL) |
---|
798 | goto noprefix; |
---|
799 | if (ppage->prev_pgno == PGNO_INVALID && off <= 1) |
---|
800 | goto noprefix; |
---|
801 | tmp_bk = GET_BKEYDATA(dbp, lchild, NUM_ENT(lchild) - |
---|
802 | (TYPE(lchild) == P_LDUP ? O_INDX : P_INDX)); |
---|
803 | if (B_TYPE(tmp_bk->type) != B_KEYDATA) |
---|
804 | goto noprefix; |
---|
805 | memset(&a, 0, sizeof(a)); |
---|
806 | a.size = tmp_bk->len; |
---|
807 | a.data = tmp_bk->data; |
---|
808 | memset(&b, 0, sizeof(b)); |
---|
809 | b.size = child_bk->len; |
---|
810 | b.data = child_bk->data; |
---|
811 | nksize = (u_int32_t)func(dbp, &a, &b); |
---|
812 | if ((n = BINTERNAL_PSIZE(nksize)) < nbytes) |
---|
813 | nbytes = n; |
---|
814 | else |
---|
815 | noprefix: nksize = child_bk->len; |
---|
816 | |
---|
817 | if (P_FREESPACE(dbp, ppage) < nbytes) |
---|
818 | return (DB_NEEDSPLIT); |
---|
819 | if (space_check) |
---|
820 | return (0); |
---|
821 | |
---|
822 | memset(&bi, 0, sizeof(bi)); |
---|
823 | bi.len = nksize; |
---|
824 | B_TSET(bi.type, child_bk->type, 0); |
---|
825 | bi.pgno = rchild->pgno; |
---|
826 | bi.nrecs = nrecs; |
---|
827 | memset(&hdr, 0, sizeof(hdr)); |
---|
828 | hdr.data = &bi; |
---|
829 | hdr.size = SSZA(BINTERNAL, data); |
---|
830 | memset(&data, 0, sizeof(data)); |
---|
831 | data.data = child_bk->data; |
---|
832 | data.size = nksize; |
---|
833 | if ((ret = __db_pitem(dbc, ppage, off, |
---|
834 | BINTERNAL_SIZE(nksize), &hdr, &data)) != 0) |
---|
835 | return (ret); |
---|
836 | break; |
---|
837 | case B_DUPLICATE: |
---|
838 | case B_OVERFLOW: |
---|
839 | nbytes = BINTERNAL_PSIZE(BOVERFLOW_SIZE); |
---|
840 | |
---|
841 | if (P_FREESPACE(dbp, ppage) < nbytes) |
---|
842 | return (DB_NEEDSPLIT); |
---|
843 | if (space_check) |
---|
844 | return (0); |
---|
845 | |
---|
846 | memset(&bi, 0, sizeof(bi)); |
---|
847 | bi.len = BOVERFLOW_SIZE; |
---|
848 | B_TSET(bi.type, child_bk->type, 0); |
---|
849 | bi.pgno = rchild->pgno; |
---|
850 | bi.nrecs = nrecs; |
---|
851 | memset(&hdr, 0, sizeof(hdr)); |
---|
852 | hdr.data = &bi; |
---|
853 | hdr.size = SSZA(BINTERNAL, data); |
---|
854 | memset(&data, 0, sizeof(data)); |
---|
855 | data.data = child_bk; |
---|
856 | data.size = BOVERFLOW_SIZE; |
---|
857 | if ((ret = __db_pitem(dbc, ppage, off, |
---|
858 | BINTERNAL_SIZE(BOVERFLOW_SIZE), &hdr, &data)) != 0) |
---|
859 | return (ret); |
---|
860 | |
---|
861 | /* Increment the overflow ref count. */ |
---|
862 | if (B_TYPE(child_bk->type) == B_OVERFLOW) |
---|
863 | if ((ret = __db_ovref(dbc, |
---|
864 | ((BOVERFLOW *)child_bk)->pgno, 1)) != 0) |
---|
865 | return (ret); |
---|
866 | break; |
---|
867 | default: |
---|
868 | return (__db_pgfmt(dbp->dbenv, rchild->pgno)); |
---|
869 | } |
---|
870 | break; |
---|
871 | case P_IRECNO: |
---|
872 | case P_LRECNO: |
---|
873 | nbytes = RINTERNAL_PSIZE; |
---|
874 | |
---|
875 | if (P_FREESPACE(dbp, ppage) < nbytes) |
---|
876 | return (DB_NEEDSPLIT); |
---|
877 | if (space_check) |
---|
878 | return (0); |
---|
879 | |
---|
880 | /* Add a new record for the right page. */ |
---|
881 | memset(&hdr, 0, sizeof(hdr)); |
---|
882 | hdr.data = &ri; |
---|
883 | hdr.size = RINTERNAL_SIZE; |
---|
884 | ri.pgno = rchild->pgno; |
---|
885 | ri.nrecs = nrecs; |
---|
886 | if ((ret = __db_pitem(dbc, |
---|
887 | ppage, off, RINTERNAL_SIZE, &hdr, NULL)) != 0) |
---|
888 | return (ret); |
---|
889 | break; |
---|
890 | default: |
---|
891 | return (__db_pgfmt(dbp->dbenv, rchild->pgno)); |
---|
892 | } |
---|
893 | |
---|
894 | /* |
---|
895 | * If a Recno or Btree with record numbers AM page, or an off-page |
---|
896 | * duplicates tree, adjust the parent page's left page record count. |
---|
897 | */ |
---|
898 | if (F_ISSET(cp, C_RECNUM)) { |
---|
899 | /* Log the change. */ |
---|
900 | if (DBC_LOGGING(dbc)) { |
---|
901 | if ((ret = __bam_cadjust_log(dbp, dbc->txn, |
---|
902 | &LSN(ppage), 0, PGNO(ppage), |
---|
903 | &LSN(ppage), parent->indx, -(int32_t)nrecs, 0)) != 0) |
---|
904 | return (ret); |
---|
905 | } else |
---|
906 | LSN_NOT_LOGGED(LSN(ppage)); |
---|
907 | |
---|
908 | /* Update the left page count. */ |
---|
909 | if (dbc->dbtype == DB_RECNO) |
---|
910 | GET_RINTERNAL(dbp, ppage, parent->indx)->nrecs -= nrecs; |
---|
911 | else |
---|
912 | GET_BINTERNAL(dbp, ppage, parent->indx)->nrecs -= nrecs; |
---|
913 | } |
---|
914 | |
---|
915 | return (0); |
---|
916 | } |
---|
917 | |
---|
918 | /* |
---|
919 | * __bam_psplit -- |
---|
920 | * Do the real work of splitting the page. |
---|
921 | */ |
---|
922 | static int |
---|
923 | __bam_psplit(dbc, cp, lp, rp, splitret) |
---|
924 | DBC *dbc; |
---|
925 | EPG *cp; |
---|
926 | PAGE *lp, *rp; |
---|
927 | db_indx_t *splitret; |
---|
928 | { |
---|
929 | DB *dbp; |
---|
930 | PAGE *pp; |
---|
931 | db_indx_t half, *inp, nbytes, off, splitp, top; |
---|
932 | int adjust, cnt, iflag, isbigkey, ret; |
---|
933 | |
---|
934 | dbp = dbc->dbp; |
---|
935 | pp = cp->page; |
---|
936 | inp = P_INP(dbp, pp); |
---|
937 | adjust = TYPE(pp) == P_LBTREE ? P_INDX : O_INDX; |
---|
938 | |
---|
939 | /* |
---|
940 | * If we're splitting the first (last) page on a level because we're |
---|
941 | * inserting (appending) a key to it, it's likely that the data is |
---|
942 | * sorted. Moving a single item to the new page is less work and can |
---|
943 | * push the fill factor higher than normal. This is trivial when we |
---|
944 | * are splitting a new page before the beginning of the tree, all of |
---|
945 | * the interesting tests are against values of 0. |
---|
946 | * |
---|
947 | * Catching appends to the tree is harder. In a simple append, we're |
---|
948 | * inserting an item that sorts past the end of the tree; the cursor |
---|
949 | * will point past the last element on the page. But, in trees with |
---|
950 | * duplicates, the cursor may point to the last entry on the page -- |
---|
951 | * in this case, the entry will also be the last element of a duplicate |
---|
952 | * set (the last because the search call specified the S_DUPLAST flag). |
---|
953 | * The only way to differentiate between an insert immediately before |
---|
954 | * the last item in a tree or an append after a duplicate set which is |
---|
955 | * also the last item in the tree is to call the comparison function. |
---|
956 | * When splitting internal pages during an append, the search code |
---|
957 | * guarantees the cursor always points to the largest page item less |
---|
958 | * than the new internal entry. To summarize, we want to catch three |
---|
959 | * possible index values: |
---|
960 | * |
---|
961 | * NUM_ENT(page) Btree/Recno leaf insert past end-of-tree |
---|
962 | * NUM_ENT(page) - O_INDX Btree or Recno internal insert past EOT |
---|
963 | * NUM_ENT(page) - P_INDX Btree leaf insert past EOT after a set |
---|
964 | * of duplicates |
---|
965 | * |
---|
966 | * two of which, (NUM_ENT(page) - O_INDX or P_INDX) might be an insert |
---|
967 | * near the end of the tree, and not after the end of the tree at all. |
---|
968 | * Do a simple test which might be wrong because calling the comparison |
---|
969 | * functions is expensive. Regardless, it's not a big deal if we're |
---|
970 | * wrong, we'll do the split the right way next time. |
---|
971 | */ |
---|
972 | off = 0; |
---|
973 | if (NEXT_PGNO(pp) == PGNO_INVALID && cp->indx >= NUM_ENT(pp) - adjust) |
---|
974 | off = NUM_ENT(pp) - adjust; |
---|
975 | else if (PREV_PGNO(pp) == PGNO_INVALID && cp->indx == 0) |
---|
976 | off = adjust; |
---|
977 | if (off != 0) |
---|
978 | goto sort; |
---|
979 | |
---|
980 | /* |
---|
981 | * Split the data to the left and right pages. Try not to split on |
---|
982 | * an overflow key. (Overflow keys on internal pages will slow down |
---|
983 | * searches.) Refuse to split in the middle of a set of duplicates. |
---|
984 | * |
---|
985 | * First, find the optimum place to split. |
---|
986 | * |
---|
987 | * It's possible to try and split past the last record on the page if |
---|
988 | * there's a very large record at the end of the page. Make sure this |
---|
989 | * doesn't happen by bounding the check at the next-to-last entry on |
---|
990 | * the page. |
---|
991 | * |
---|
992 | * Note, we try and split half the data present on the page. This is |
---|
993 | * because another process may have already split the page and left |
---|
994 | * it half empty. We don't try and skip the split -- we don't know |
---|
995 | * how much space we're going to need on the page, and we may need up |
---|
996 | * to half the page for a big item, so there's no easy test to decide |
---|
997 | * if we need to split or not. Besides, if two threads are inserting |
---|
998 | * data into the same place in the database, we're probably going to |
---|
999 | * need more space soon anyway. |
---|
1000 | */ |
---|
1001 | top = NUM_ENT(pp) - adjust; |
---|
1002 | half = (dbp->pgsize - HOFFSET(pp)) / 2; |
---|
1003 | for (nbytes = 0, off = 0; off < top && nbytes < half; ++off) |
---|
1004 | switch (TYPE(pp)) { |
---|
1005 | case P_IBTREE: |
---|
1006 | if (B_TYPE( |
---|
1007 | GET_BINTERNAL(dbp, pp, off)->type) == B_KEYDATA) |
---|
1008 | nbytes += BINTERNAL_SIZE( |
---|
1009 | GET_BINTERNAL(dbp, pp, off)->len); |
---|
1010 | else |
---|
1011 | nbytes += BINTERNAL_SIZE(BOVERFLOW_SIZE); |
---|
1012 | break; |
---|
1013 | case P_LBTREE: |
---|
1014 | if (B_TYPE(GET_BKEYDATA(dbp, pp, off)->type) == |
---|
1015 | B_KEYDATA) |
---|
1016 | nbytes += BKEYDATA_SIZE(GET_BKEYDATA(dbp, |
---|
1017 | pp, off)->len); |
---|
1018 | else |
---|
1019 | nbytes += BOVERFLOW_SIZE; |
---|
1020 | |
---|
1021 | ++off; |
---|
1022 | /* FALLTHROUGH */ |
---|
1023 | case P_LDUP: |
---|
1024 | case P_LRECNO: |
---|
1025 | if (B_TYPE(GET_BKEYDATA(dbp, pp, off)->type) == |
---|
1026 | B_KEYDATA) |
---|
1027 | nbytes += BKEYDATA_SIZE(GET_BKEYDATA(dbp, |
---|
1028 | pp, off)->len); |
---|
1029 | else |
---|
1030 | nbytes += BOVERFLOW_SIZE; |
---|
1031 | break; |
---|
1032 | case P_IRECNO: |
---|
1033 | nbytes += RINTERNAL_SIZE; |
---|
1034 | break; |
---|
1035 | default: |
---|
1036 | return (__db_pgfmt(dbp->dbenv, pp->pgno)); |
---|
1037 | } |
---|
1038 | sort: splitp = off; |
---|
1039 | |
---|
1040 | /* |
---|
1041 | * Splitp is either at or just past the optimum split point. If the |
---|
1042 | * tree type is such that we're going to promote a key to an internal |
---|
1043 | * page, and our current choice is an overflow key, look for something |
---|
1044 | * close by that's smaller. |
---|
1045 | */ |
---|
1046 | switch (TYPE(pp)) { |
---|
1047 | case P_IBTREE: |
---|
1048 | iflag = 1; |
---|
1049 | isbigkey = |
---|
1050 | B_TYPE(GET_BINTERNAL(dbp, pp, off)->type) != B_KEYDATA; |
---|
1051 | break; |
---|
1052 | case P_LBTREE: |
---|
1053 | case P_LDUP: |
---|
1054 | iflag = 0; |
---|
1055 | isbigkey = B_TYPE(GET_BKEYDATA(dbp, pp, off)->type) != |
---|
1056 | B_KEYDATA; |
---|
1057 | break; |
---|
1058 | default: |
---|
1059 | iflag = isbigkey = 0; |
---|
1060 | } |
---|
1061 | if (isbigkey) |
---|
1062 | for (cnt = 1; cnt <= 3; ++cnt) { |
---|
1063 | off = splitp + cnt * adjust; |
---|
1064 | if (off < (db_indx_t)NUM_ENT(pp) && |
---|
1065 | ((iflag && B_TYPE( |
---|
1066 | GET_BINTERNAL(dbp, pp,off)->type) == B_KEYDATA) || |
---|
1067 | B_TYPE(GET_BKEYDATA(dbp, pp, off)->type) == |
---|
1068 | B_KEYDATA)) { |
---|
1069 | splitp = off; |
---|
1070 | break; |
---|
1071 | } |
---|
1072 | if (splitp <= (db_indx_t)(cnt * adjust)) |
---|
1073 | continue; |
---|
1074 | off = splitp - cnt * adjust; |
---|
1075 | if (iflag ? B_TYPE( |
---|
1076 | GET_BINTERNAL(dbp, pp, off)->type) == B_KEYDATA : |
---|
1077 | B_TYPE(GET_BKEYDATA(dbp, pp, off)->type) == |
---|
1078 | B_KEYDATA) { |
---|
1079 | splitp = off; |
---|
1080 | break; |
---|
1081 | } |
---|
1082 | } |
---|
1083 | |
---|
1084 | /* |
---|
1085 | * We can't split in the middle a set of duplicates. We know that |
---|
1086 | * no duplicate set can take up more than about 25% of the page, |
---|
1087 | * because that's the point where we push it off onto a duplicate |
---|
1088 | * page set. So, this loop can't be unbounded. |
---|
1089 | */ |
---|
1090 | if (TYPE(pp) == P_LBTREE && |
---|
1091 | inp[splitp] == inp[splitp - adjust]) |
---|
1092 | for (cnt = 1;; ++cnt) { |
---|
1093 | off = splitp + cnt * adjust; |
---|
1094 | if (off < NUM_ENT(pp) && |
---|
1095 | inp[splitp] != inp[off]) { |
---|
1096 | splitp = off; |
---|
1097 | break; |
---|
1098 | } |
---|
1099 | if (splitp <= (db_indx_t)(cnt * adjust)) |
---|
1100 | continue; |
---|
1101 | off = splitp - cnt * adjust; |
---|
1102 | if (inp[splitp] != inp[off]) { |
---|
1103 | splitp = off + adjust; |
---|
1104 | break; |
---|
1105 | } |
---|
1106 | } |
---|
1107 | |
---|
1108 | /* We're going to split at splitp. */ |
---|
1109 | if ((ret = __bam_copy(dbp, pp, lp, 0, splitp)) != 0) |
---|
1110 | return (ret); |
---|
1111 | if ((ret = __bam_copy(dbp, pp, rp, splitp, NUM_ENT(pp))) != 0) |
---|
1112 | return (ret); |
---|
1113 | |
---|
1114 | *splitret = splitp; |
---|
1115 | return (0); |
---|
1116 | } |
---|
1117 | |
---|
1118 | /* |
---|
1119 | * __bam_copy -- |
---|
1120 | * Copy a set of records from one page to another. |
---|
1121 | * |
---|
1122 | * PUBLIC: int __bam_copy __P((DB *, PAGE *, PAGE *, u_int32_t, u_int32_t)); |
---|
1123 | */ |
---|
1124 | int |
---|
1125 | __bam_copy(dbp, pp, cp, nxt, stop) |
---|
1126 | DB *dbp; |
---|
1127 | PAGE *pp, *cp; |
---|
1128 | u_int32_t nxt, stop; |
---|
1129 | { |
---|
1130 | db_indx_t *cinp, nbytes, off, *pinp; |
---|
1131 | |
---|
1132 | cinp = P_INP(dbp, cp); |
---|
1133 | pinp = P_INP(dbp, pp); |
---|
1134 | /* |
---|
1135 | * Nxt is the offset of the next record to be placed on the target page. |
---|
1136 | */ |
---|
1137 | for (off = 0; nxt < stop; ++nxt, ++NUM_ENT(cp), ++off) { |
---|
1138 | switch (TYPE(pp)) { |
---|
1139 | case P_IBTREE: |
---|
1140 | if (B_TYPE( |
---|
1141 | GET_BINTERNAL(dbp, pp, nxt)->type) == B_KEYDATA) |
---|
1142 | nbytes = BINTERNAL_SIZE( |
---|
1143 | GET_BINTERNAL(dbp, pp, nxt)->len); |
---|
1144 | else |
---|
1145 | nbytes = BINTERNAL_SIZE(BOVERFLOW_SIZE); |
---|
1146 | break; |
---|
1147 | case P_LBTREE: |
---|
1148 | /* |
---|
1149 | * If we're on a key and it's a duplicate, just copy |
---|
1150 | * the offset. |
---|
1151 | */ |
---|
1152 | if (off != 0 && (nxt % P_INDX) == 0 && |
---|
1153 | pinp[nxt] == pinp[nxt - P_INDX]) { |
---|
1154 | cinp[off] = cinp[off - P_INDX]; |
---|
1155 | continue; |
---|
1156 | } |
---|
1157 | /* FALLTHROUGH */ |
---|
1158 | case P_LDUP: |
---|
1159 | case P_LRECNO: |
---|
1160 | if (B_TYPE(GET_BKEYDATA(dbp, pp, nxt)->type) == |
---|
1161 | B_KEYDATA) |
---|
1162 | nbytes = BKEYDATA_SIZE(GET_BKEYDATA(dbp, |
---|
1163 | pp, nxt)->len); |
---|
1164 | else |
---|
1165 | nbytes = BOVERFLOW_SIZE; |
---|
1166 | break; |
---|
1167 | case P_IRECNO: |
---|
1168 | nbytes = RINTERNAL_SIZE; |
---|
1169 | break; |
---|
1170 | default: |
---|
1171 | return (__db_pgfmt(dbp->dbenv, pp->pgno)); |
---|
1172 | } |
---|
1173 | cinp[off] = HOFFSET(cp) -= nbytes; |
---|
1174 | memcpy(P_ENTRY(dbp, cp, off), P_ENTRY(dbp, pp, nxt), nbytes); |
---|
1175 | } |
---|
1176 | return (0); |
---|
1177 | } |
---|