1 | /* |
---|
2 | * jcphuff.c |
---|
3 | * |
---|
4 | * Copyright (C) 1995-1997, Thomas G. Lane. |
---|
5 | * This file is part of the Independent JPEG Group's software. |
---|
6 | * For conditions of distribution and use, see the accompanying README file. |
---|
7 | * |
---|
8 | * This file contains Huffman entropy encoding routines for progressive JPEG. |
---|
9 | * |
---|
10 | * We do not support output suspension in this module, since the library |
---|
11 | * currently does not allow multiple-scan files to be written with output |
---|
12 | * suspension. |
---|
13 | */ |
---|
14 | |
---|
15 | #define JPEG_INTERNALS |
---|
16 | #include "jinclude.h" |
---|
17 | #include "jpeglib.h" |
---|
18 | #include "jchuff.h" /* Declarations shared with jchuff.c */ |
---|
19 | |
---|
20 | #ifdef C_PROGRESSIVE_SUPPORTED |
---|
21 | |
---|
22 | /* Expanded entropy encoder object for progressive Huffman encoding. */ |
---|
23 | |
---|
24 | typedef struct { |
---|
25 | struct jpeg_entropy_encoder pub; /* public fields */ |
---|
26 | |
---|
27 | /* Mode flag: TRUE for optimization, FALSE for actual data output */ |
---|
28 | boolean gather_statistics; |
---|
29 | |
---|
30 | /* Bit-level coding status. |
---|
31 | * next_output_byte/free_in_buffer are local copies of cinfo->dest fields. |
---|
32 | */ |
---|
33 | JOCTET * next_output_byte; /* => next byte to write in buffer */ |
---|
34 | size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
---|
35 | INT32 put_buffer; /* current bit-accumulation buffer */ |
---|
36 | int put_bits; /* # of bits now in it */ |
---|
37 | j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ |
---|
38 | |
---|
39 | /* Coding status for DC components */ |
---|
40 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
---|
41 | |
---|
42 | /* Coding status for AC components */ |
---|
43 | int ac_tbl_no; /* the table number of the single component */ |
---|
44 | unsigned int EOBRUN; /* run length of EOBs */ |
---|
45 | unsigned int BE; /* # of buffered correction bits before MCU */ |
---|
46 | char * bit_buffer; /* buffer for correction bits (1 per char) */ |
---|
47 | /* packing correction bits tightly would save some space but cost time... */ |
---|
48 | |
---|
49 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
---|
50 | int next_restart_num; /* next restart number to write (0-7) */ |
---|
51 | |
---|
52 | /* Pointers to derived tables (these workspaces have image lifespan). |
---|
53 | * Since any one scan codes only DC or only AC, we only need one set |
---|
54 | * of tables, not one for DC and one for AC. |
---|
55 | */ |
---|
56 | c_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; |
---|
57 | |
---|
58 | /* Statistics tables for optimization; again, one set is enough */ |
---|
59 | long * count_ptrs[NUM_HUFF_TBLS]; |
---|
60 | } phuff_entropy_encoder; |
---|
61 | |
---|
62 | typedef phuff_entropy_encoder * phuff_entropy_ptr; |
---|
63 | |
---|
64 | /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit |
---|
65 | * buffer can hold. Larger sizes may slightly improve compression, but |
---|
66 | * 1000 is already well into the realm of overkill. |
---|
67 | * The minimum safe size is 64 bits. |
---|
68 | */ |
---|
69 | |
---|
70 | #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ |
---|
71 | |
---|
72 | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. |
---|
73 | * We assume that int right shift is unsigned if INT32 right shift is, |
---|
74 | * which should be safe. |
---|
75 | */ |
---|
76 | |
---|
77 | #ifdef RIGHT_SHIFT_IS_UNSIGNED |
---|
78 | #define ISHIFT_TEMPS int ishift_temp; |
---|
79 | #define IRIGHT_SHIFT(x,shft) \ |
---|
80 | ((ishift_temp = (x)) < 0 ? \ |
---|
81 | (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ |
---|
82 | (ishift_temp >> (shft))) |
---|
83 | #else |
---|
84 | #define ISHIFT_TEMPS |
---|
85 | #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
---|
86 | #endif |
---|
87 | |
---|
88 | /* Forward declarations */ |
---|
89 | METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo, |
---|
90 | JBLOCKROW *MCU_data)); |
---|
91 | METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo, |
---|
92 | JBLOCKROW *MCU_data)); |
---|
93 | METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo, |
---|
94 | JBLOCKROW *MCU_data)); |
---|
95 | METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo, |
---|
96 | JBLOCKROW *MCU_data)); |
---|
97 | METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo)); |
---|
98 | METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo)); |
---|
99 | |
---|
100 | |
---|
101 | /* |
---|
102 | * Initialize for a Huffman-compressed scan using progressive JPEG. |
---|
103 | */ |
---|
104 | |
---|
105 | METHODDEF(void) |
---|
106 | start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics) |
---|
107 | { |
---|
108 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
---|
109 | boolean is_DC_band; |
---|
110 | int ci, tbl; |
---|
111 | jpeg_component_info * compptr; |
---|
112 | |
---|
113 | entropy->cinfo = cinfo; |
---|
114 | entropy->gather_statistics = gather_statistics; |
---|
115 | |
---|
116 | is_DC_band = (cinfo->Ss == 0); |
---|
117 | |
---|
118 | /* We assume jcmaster.c already validated the scan parameters. */ |
---|
119 | |
---|
120 | /* Select execution routines */ |
---|
121 | if (cinfo->Ah == 0) { |
---|
122 | if (is_DC_band) |
---|
123 | entropy->pub.encode_mcu = encode_mcu_DC_first; |
---|
124 | else |
---|
125 | entropy->pub.encode_mcu = encode_mcu_AC_first; |
---|
126 | } else { |
---|
127 | if (is_DC_band) |
---|
128 | entropy->pub.encode_mcu = encode_mcu_DC_refine; |
---|
129 | else { |
---|
130 | entropy->pub.encode_mcu = encode_mcu_AC_refine; |
---|
131 | /* AC refinement needs a correction bit buffer */ |
---|
132 | if (entropy->bit_buffer == NULL) |
---|
133 | entropy->bit_buffer = (char *) |
---|
134 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
---|
135 | MAX_CORR_BITS * SIZEOF(char)); |
---|
136 | } |
---|
137 | } |
---|
138 | if (gather_statistics) |
---|
139 | entropy->pub.finish_pass = finish_pass_gather_phuff; |
---|
140 | else |
---|
141 | entropy->pub.finish_pass = finish_pass_phuff; |
---|
142 | |
---|
143 | /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1 |
---|
144 | * for AC coefficients. |
---|
145 | */ |
---|
146 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
---|
147 | compptr = cinfo->cur_comp_info[ci]; |
---|
148 | /* Initialize DC predictions to 0 */ |
---|
149 | entropy->last_dc_val[ci] = 0; |
---|
150 | /* Get table index */ |
---|
151 | if (is_DC_band) { |
---|
152 | if (cinfo->Ah != 0) /* DC refinement needs no table */ |
---|
153 | continue; |
---|
154 | tbl = compptr->dc_tbl_no; |
---|
155 | } else { |
---|
156 | entropy->ac_tbl_no = tbl = compptr->ac_tbl_no; |
---|
157 | } |
---|
158 | if (gather_statistics) { |
---|
159 | /* Check for invalid table index */ |
---|
160 | /* (make_c_derived_tbl does this in the other path) */ |
---|
161 | if (tbl < 0 || tbl >= NUM_HUFF_TBLS) |
---|
162 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); |
---|
163 | /* Allocate and zero the statistics tables */ |
---|
164 | /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
---|
165 | if (entropy->count_ptrs[tbl] == NULL) |
---|
166 | entropy->count_ptrs[tbl] = (long *) |
---|
167 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
---|
168 | 257 * SIZEOF(long)); |
---|
169 | MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long)); |
---|
170 | } else { |
---|
171 | /* Compute derived values for Huffman table */ |
---|
172 | /* We may do this more than once for a table, but it's not expensive */ |
---|
173 | jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl, |
---|
174 | & entropy->derived_tbls[tbl]); |
---|
175 | } |
---|
176 | } |
---|
177 | |
---|
178 | /* Initialize AC stuff */ |
---|
179 | entropy->EOBRUN = 0; |
---|
180 | entropy->BE = 0; |
---|
181 | |
---|
182 | /* Initialize bit buffer to empty */ |
---|
183 | entropy->put_buffer = 0; |
---|
184 | entropy->put_bits = 0; |
---|
185 | |
---|
186 | /* Initialize restart stuff */ |
---|
187 | entropy->restarts_to_go = cinfo->restart_interval; |
---|
188 | entropy->next_restart_num = 0; |
---|
189 | } |
---|
190 | |
---|
191 | |
---|
192 | /* Outputting bytes to the file. |
---|
193 | * NB: these must be called only when actually outputting, |
---|
194 | * that is, entropy->gather_statistics == FALSE. |
---|
195 | */ |
---|
196 | |
---|
197 | /* Emit a byte */ |
---|
198 | #define emit_byte(entropy,val) \ |
---|
199 | { *(entropy)->next_output_byte++ = (JOCTET) (val); \ |
---|
200 | if (--(entropy)->free_in_buffer == 0) \ |
---|
201 | dump_buffer(entropy); } |
---|
202 | |
---|
203 | |
---|
204 | LOCAL(void) |
---|
205 | dump_buffer (phuff_entropy_ptr entropy) |
---|
206 | /* Empty the output buffer; we do not support suspension in this module. */ |
---|
207 | { |
---|
208 | struct jpeg_destination_mgr * dest = entropy->cinfo->dest; |
---|
209 | |
---|
210 | if (! (*dest->empty_output_buffer) (entropy->cinfo)) |
---|
211 | ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); |
---|
212 | /* After a successful buffer dump, must reset buffer pointers */ |
---|
213 | entropy->next_output_byte = dest->next_output_byte; |
---|
214 | entropy->free_in_buffer = dest->free_in_buffer; |
---|
215 | } |
---|
216 | |
---|
217 | |
---|
218 | /* Outputting bits to the file */ |
---|
219 | |
---|
220 | /* Only the right 24 bits of put_buffer are used; the valid bits are |
---|
221 | * left-justified in this part. At most 16 bits can be passed to emit_bits |
---|
222 | * in one call, and we never retain more than 7 bits in put_buffer |
---|
223 | * between calls, so 24 bits are sufficient. |
---|
224 | */ |
---|
225 | |
---|
226 | INLINE |
---|
227 | LOCAL(void) |
---|
228 | emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size) |
---|
229 | /* Emit some bits, unless we are in gather mode */ |
---|
230 | { |
---|
231 | /* This routine is heavily used, so it's worth coding tightly. */ |
---|
232 | register INT32 put_buffer = (INT32) code; |
---|
233 | register int put_bits = entropy->put_bits; |
---|
234 | |
---|
235 | /* if size is 0, caller used an invalid Huffman table entry */ |
---|
236 | if (size == 0) |
---|
237 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
---|
238 | |
---|
239 | if (entropy->gather_statistics) |
---|
240 | return; /* do nothing if we're only getting stats */ |
---|
241 | |
---|
242 | put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ |
---|
243 | |
---|
244 | put_bits += size; /* new number of bits in buffer */ |
---|
245 | |
---|
246 | put_buffer <<= 24 - put_bits; /* align incoming bits */ |
---|
247 | |
---|
248 | put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */ |
---|
249 | |
---|
250 | while (put_bits >= 8) { |
---|
251 | int c = (int) ((put_buffer >> 16) & 0xFF); |
---|
252 | |
---|
253 | emit_byte(entropy, c); |
---|
254 | if (c == 0xFF) { /* need to stuff a zero byte? */ |
---|
255 | emit_byte(entropy, 0); |
---|
256 | } |
---|
257 | put_buffer <<= 8; |
---|
258 | put_bits -= 8; |
---|
259 | } |
---|
260 | |
---|
261 | entropy->put_buffer = put_buffer; /* update variables */ |
---|
262 | entropy->put_bits = put_bits; |
---|
263 | } |
---|
264 | |
---|
265 | |
---|
266 | LOCAL(void) |
---|
267 | flush_bits (phuff_entropy_ptr entropy) |
---|
268 | { |
---|
269 | emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */ |
---|
270 | entropy->put_buffer = 0; /* and reset bit-buffer to empty */ |
---|
271 | entropy->put_bits = 0; |
---|
272 | } |
---|
273 | |
---|
274 | |
---|
275 | /* |
---|
276 | * Emit (or just count) a Huffman symbol. |
---|
277 | */ |
---|
278 | |
---|
279 | INLINE |
---|
280 | LOCAL(void) |
---|
281 | emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol) |
---|
282 | { |
---|
283 | if (entropy->gather_statistics) |
---|
284 | entropy->count_ptrs[tbl_no][symbol]++; |
---|
285 | else { |
---|
286 | c_derived_tbl * tbl = entropy->derived_tbls[tbl_no]; |
---|
287 | emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); |
---|
288 | } |
---|
289 | } |
---|
290 | |
---|
291 | |
---|
292 | /* |
---|
293 | * Emit bits from a correction bit buffer. |
---|
294 | */ |
---|
295 | |
---|
296 | LOCAL(void) |
---|
297 | emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart, |
---|
298 | unsigned int nbits) |
---|
299 | { |
---|
300 | if (entropy->gather_statistics) |
---|
301 | return; /* no real work */ |
---|
302 | |
---|
303 | while (nbits > 0) { |
---|
304 | emit_bits(entropy, (unsigned int) (*bufstart), 1); |
---|
305 | bufstart++; |
---|
306 | nbits--; |
---|
307 | } |
---|
308 | } |
---|
309 | |
---|
310 | |
---|
311 | /* |
---|
312 | * Emit any pending EOBRUN symbol. |
---|
313 | */ |
---|
314 | |
---|
315 | LOCAL(void) |
---|
316 | emit_eobrun (phuff_entropy_ptr entropy) |
---|
317 | { |
---|
318 | register int temp, nbits; |
---|
319 | |
---|
320 | if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ |
---|
321 | temp = entropy->EOBRUN; |
---|
322 | nbits = 0; |
---|
323 | while ((temp >>= 1)) |
---|
324 | nbits++; |
---|
325 | /* safety check: shouldn't happen given limited correction-bit buffer */ |
---|
326 | if (nbits > 14) |
---|
327 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
---|
328 | |
---|
329 | emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4); |
---|
330 | if (nbits) |
---|
331 | emit_bits(entropy, entropy->EOBRUN, nbits); |
---|
332 | |
---|
333 | entropy->EOBRUN = 0; |
---|
334 | |
---|
335 | /* Emit any buffered correction bits */ |
---|
336 | emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); |
---|
337 | entropy->BE = 0; |
---|
338 | } |
---|
339 | } |
---|
340 | |
---|
341 | |
---|
342 | /* |
---|
343 | * Emit a restart marker & resynchronize predictions. |
---|
344 | */ |
---|
345 | |
---|
346 | LOCAL(void) |
---|
347 | emit_restart (phuff_entropy_ptr entropy, int restart_num) |
---|
348 | { |
---|
349 | int ci; |
---|
350 | |
---|
351 | emit_eobrun(entropy); |
---|
352 | |
---|
353 | if (! entropy->gather_statistics) { |
---|
354 | flush_bits(entropy); |
---|
355 | emit_byte(entropy, 0xFF); |
---|
356 | emit_byte(entropy, JPEG_RST0 + restart_num); |
---|
357 | } |
---|
358 | |
---|
359 | if (entropy->cinfo->Ss == 0) { |
---|
360 | /* Re-initialize DC predictions to 0 */ |
---|
361 | for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) |
---|
362 | entropy->last_dc_val[ci] = 0; |
---|
363 | } else { |
---|
364 | /* Re-initialize all AC-related fields to 0 */ |
---|
365 | entropy->EOBRUN = 0; |
---|
366 | entropy->BE = 0; |
---|
367 | } |
---|
368 | } |
---|
369 | |
---|
370 | |
---|
371 | /* |
---|
372 | * MCU encoding for DC initial scan (either spectral selection, |
---|
373 | * or first pass of successive approximation). |
---|
374 | */ |
---|
375 | |
---|
376 | METHODDEF(boolean) |
---|
377 | encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
---|
378 | { |
---|
379 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
---|
380 | register int temp, temp2; |
---|
381 | register int nbits; |
---|
382 | int blkn, ci; |
---|
383 | int Al = cinfo->Al; |
---|
384 | JBLOCKROW block; |
---|
385 | jpeg_component_info * compptr; |
---|
386 | ISHIFT_TEMPS |
---|
387 | |
---|
388 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
---|
389 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
---|
390 | |
---|
391 | /* Emit restart marker if needed */ |
---|
392 | if (cinfo->restart_interval) |
---|
393 | if (entropy->restarts_to_go == 0) |
---|
394 | emit_restart(entropy, entropy->next_restart_num); |
---|
395 | |
---|
396 | /* Encode the MCU data blocks */ |
---|
397 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
---|
398 | block = MCU_data[blkn]; |
---|
399 | ci = cinfo->MCU_membership[blkn]; |
---|
400 | compptr = cinfo->cur_comp_info[ci]; |
---|
401 | |
---|
402 | /* Compute the DC value after the required point transform by Al. |
---|
403 | * This is simply an arithmetic right shift. |
---|
404 | */ |
---|
405 | temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); |
---|
406 | |
---|
407 | /* DC differences are figured on the point-transformed values. */ |
---|
408 | temp = temp2 - entropy->last_dc_val[ci]; |
---|
409 | entropy->last_dc_val[ci] = temp2; |
---|
410 | |
---|
411 | /* Encode the DC coefficient difference per section G.1.2.1 */ |
---|
412 | temp2 = temp; |
---|
413 | if (temp < 0) { |
---|
414 | temp = -temp; /* temp is abs value of input */ |
---|
415 | /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
---|
416 | /* This code assumes we are on a two's complement machine */ |
---|
417 | temp2--; |
---|
418 | } |
---|
419 | |
---|
420 | /* Find the number of bits needed for the magnitude of the coefficient */ |
---|
421 | nbits = 0; |
---|
422 | while (temp) { |
---|
423 | nbits++; |
---|
424 | temp >>= 1; |
---|
425 | } |
---|
426 | /* Check for out-of-range coefficient values. |
---|
427 | * Since we're encoding a difference, the range limit is twice as much. |
---|
428 | */ |
---|
429 | if (nbits > MAX_COEF_BITS+1) |
---|
430 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
---|
431 | |
---|
432 | /* Count/emit the Huffman-coded symbol for the number of bits */ |
---|
433 | emit_symbol(entropy, compptr->dc_tbl_no, nbits); |
---|
434 | |
---|
435 | /* Emit that number of bits of the value, if positive, */ |
---|
436 | /* or the complement of its magnitude, if negative. */ |
---|
437 | if (nbits) /* emit_bits rejects calls with size 0 */ |
---|
438 | emit_bits(entropy, (unsigned int) temp2, nbits); |
---|
439 | } |
---|
440 | |
---|
441 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
---|
442 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
---|
443 | |
---|
444 | /* Update restart-interval state too */ |
---|
445 | if (cinfo->restart_interval) { |
---|
446 | if (entropy->restarts_to_go == 0) { |
---|
447 | entropy->restarts_to_go = cinfo->restart_interval; |
---|
448 | entropy->next_restart_num++; |
---|
449 | entropy->next_restart_num &= 7; |
---|
450 | } |
---|
451 | entropy->restarts_to_go--; |
---|
452 | } |
---|
453 | |
---|
454 | return TRUE; |
---|
455 | } |
---|
456 | |
---|
457 | |
---|
458 | /* |
---|
459 | * MCU encoding for AC initial scan (either spectral selection, |
---|
460 | * or first pass of successive approximation). |
---|
461 | */ |
---|
462 | |
---|
463 | METHODDEF(boolean) |
---|
464 | encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
---|
465 | { |
---|
466 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
---|
467 | register int temp, temp2; |
---|
468 | register int nbits; |
---|
469 | register int r, k; |
---|
470 | int Se = cinfo->Se; |
---|
471 | int Al = cinfo->Al; |
---|
472 | JBLOCKROW block; |
---|
473 | |
---|
474 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
---|
475 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
---|
476 | |
---|
477 | /* Emit restart marker if needed */ |
---|
478 | if (cinfo->restart_interval) |
---|
479 | if (entropy->restarts_to_go == 0) |
---|
480 | emit_restart(entropy, entropy->next_restart_num); |
---|
481 | |
---|
482 | /* Encode the MCU data block */ |
---|
483 | block = MCU_data[0]; |
---|
484 | |
---|
485 | /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ |
---|
486 | |
---|
487 | r = 0; /* r = run length of zeros */ |
---|
488 | |
---|
489 | for (k = cinfo->Ss; k <= Se; k++) { |
---|
490 | if ((temp = (*block)[jpeg_natural_order[k]]) == 0) { |
---|
491 | r++; |
---|
492 | continue; |
---|
493 | } |
---|
494 | /* We must apply the point transform by Al. For AC coefficients this |
---|
495 | * is an integer division with rounding towards 0. To do this portably |
---|
496 | * in C, we shift after obtaining the absolute value; so the code is |
---|
497 | * interwoven with finding the abs value (temp) and output bits (temp2). |
---|
498 | */ |
---|
499 | if (temp < 0) { |
---|
500 | temp = -temp; /* temp is abs value of input */ |
---|
501 | temp >>= Al; /* apply the point transform */ |
---|
502 | /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ |
---|
503 | temp2 = ~temp; |
---|
504 | } else { |
---|
505 | temp >>= Al; /* apply the point transform */ |
---|
506 | temp2 = temp; |
---|
507 | } |
---|
508 | /* Watch out for case that nonzero coef is zero after point transform */ |
---|
509 | if (temp == 0) { |
---|
510 | r++; |
---|
511 | continue; |
---|
512 | } |
---|
513 | |
---|
514 | /* Emit any pending EOBRUN */ |
---|
515 | if (entropy->EOBRUN > 0) |
---|
516 | emit_eobrun(entropy); |
---|
517 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
---|
518 | while (r > 15) { |
---|
519 | emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
---|
520 | r -= 16; |
---|
521 | } |
---|
522 | |
---|
523 | /* Find the number of bits needed for the magnitude of the coefficient */ |
---|
524 | nbits = 1; /* there must be at least one 1 bit */ |
---|
525 | while ((temp >>= 1)) |
---|
526 | nbits++; |
---|
527 | /* Check for out-of-range coefficient values */ |
---|
528 | if (nbits > MAX_COEF_BITS) |
---|
529 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
---|
530 | |
---|
531 | /* Count/emit Huffman symbol for run length / number of bits */ |
---|
532 | emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); |
---|
533 | |
---|
534 | /* Emit that number of bits of the value, if positive, */ |
---|
535 | /* or the complement of its magnitude, if negative. */ |
---|
536 | emit_bits(entropy, (unsigned int) temp2, nbits); |
---|
537 | |
---|
538 | r = 0; /* reset zero run length */ |
---|
539 | } |
---|
540 | |
---|
541 | if (r > 0) { /* If there are trailing zeroes, */ |
---|
542 | entropy->EOBRUN++; /* count an EOB */ |
---|
543 | if (entropy->EOBRUN == 0x7FFF) |
---|
544 | emit_eobrun(entropy); /* force it out to avoid overflow */ |
---|
545 | } |
---|
546 | |
---|
547 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
---|
548 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
---|
549 | |
---|
550 | /* Update restart-interval state too */ |
---|
551 | if (cinfo->restart_interval) { |
---|
552 | if (entropy->restarts_to_go == 0) { |
---|
553 | entropy->restarts_to_go = cinfo->restart_interval; |
---|
554 | entropy->next_restart_num++; |
---|
555 | entropy->next_restart_num &= 7; |
---|
556 | } |
---|
557 | entropy->restarts_to_go--; |
---|
558 | } |
---|
559 | |
---|
560 | return TRUE; |
---|
561 | } |
---|
562 | |
---|
563 | |
---|
564 | /* |
---|
565 | * MCU encoding for DC successive approximation refinement scan. |
---|
566 | * Note: we assume such scans can be multi-component, although the spec |
---|
567 | * is not very clear on the point. |
---|
568 | */ |
---|
569 | |
---|
570 | METHODDEF(boolean) |
---|
571 | encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
---|
572 | { |
---|
573 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
---|
574 | register int temp; |
---|
575 | int blkn; |
---|
576 | int Al = cinfo->Al; |
---|
577 | JBLOCKROW block; |
---|
578 | |
---|
579 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
---|
580 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
---|
581 | |
---|
582 | /* Emit restart marker if needed */ |
---|
583 | if (cinfo->restart_interval) |
---|
584 | if (entropy->restarts_to_go == 0) |
---|
585 | emit_restart(entropy, entropy->next_restart_num); |
---|
586 | |
---|
587 | /* Encode the MCU data blocks */ |
---|
588 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
---|
589 | block = MCU_data[blkn]; |
---|
590 | |
---|
591 | /* We simply emit the Al'th bit of the DC coefficient value. */ |
---|
592 | temp = (*block)[0]; |
---|
593 | emit_bits(entropy, (unsigned int) (temp >> Al), 1); |
---|
594 | } |
---|
595 | |
---|
596 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
---|
597 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
---|
598 | |
---|
599 | /* Update restart-interval state too */ |
---|
600 | if (cinfo->restart_interval) { |
---|
601 | if (entropy->restarts_to_go == 0) { |
---|
602 | entropy->restarts_to_go = cinfo->restart_interval; |
---|
603 | entropy->next_restart_num++; |
---|
604 | entropy->next_restart_num &= 7; |
---|
605 | } |
---|
606 | entropy->restarts_to_go--; |
---|
607 | } |
---|
608 | |
---|
609 | return TRUE; |
---|
610 | } |
---|
611 | |
---|
612 | |
---|
613 | /* |
---|
614 | * MCU encoding for AC successive approximation refinement scan. |
---|
615 | */ |
---|
616 | |
---|
617 | METHODDEF(boolean) |
---|
618 | encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
---|
619 | { |
---|
620 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
---|
621 | register int temp; |
---|
622 | register int r, k; |
---|
623 | int EOB; |
---|
624 | char *BR_buffer; |
---|
625 | unsigned int BR; |
---|
626 | int Se = cinfo->Se; |
---|
627 | int Al = cinfo->Al; |
---|
628 | JBLOCKROW block; |
---|
629 | int absvalues[DCTSIZE2]; |
---|
630 | |
---|
631 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
---|
632 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
---|
633 | |
---|
634 | /* Emit restart marker if needed */ |
---|
635 | if (cinfo->restart_interval) |
---|
636 | if (entropy->restarts_to_go == 0) |
---|
637 | emit_restart(entropy, entropy->next_restart_num); |
---|
638 | |
---|
639 | /* Encode the MCU data block */ |
---|
640 | block = MCU_data[0]; |
---|
641 | |
---|
642 | /* It is convenient to make a pre-pass to determine the transformed |
---|
643 | * coefficients' absolute values and the EOB position. |
---|
644 | */ |
---|
645 | EOB = 0; |
---|
646 | for (k = cinfo->Ss; k <= Se; k++) { |
---|
647 | temp = (*block)[jpeg_natural_order[k]]; |
---|
648 | /* We must apply the point transform by Al. For AC coefficients this |
---|
649 | * is an integer division with rounding towards 0. To do this portably |
---|
650 | * in C, we shift after obtaining the absolute value. |
---|
651 | */ |
---|
652 | if (temp < 0) |
---|
653 | temp = -temp; /* temp is abs value of input */ |
---|
654 | temp >>= Al; /* apply the point transform */ |
---|
655 | absvalues[k] = temp; /* save abs value for main pass */ |
---|
656 | if (temp == 1) |
---|
657 | EOB = k; /* EOB = index of last newly-nonzero coef */ |
---|
658 | } |
---|
659 | |
---|
660 | /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ |
---|
661 | |
---|
662 | r = 0; /* r = run length of zeros */ |
---|
663 | BR = 0; /* BR = count of buffered bits added now */ |
---|
664 | BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ |
---|
665 | |
---|
666 | for (k = cinfo->Ss; k <= Se; k++) { |
---|
667 | if ((temp = absvalues[k]) == 0) { |
---|
668 | r++; |
---|
669 | continue; |
---|
670 | } |
---|
671 | |
---|
672 | /* Emit any required ZRLs, but not if they can be folded into EOB */ |
---|
673 | while (r > 15 && k <= EOB) { |
---|
674 | /* emit any pending EOBRUN and the BE correction bits */ |
---|
675 | emit_eobrun(entropy); |
---|
676 | /* Emit ZRL */ |
---|
677 | emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
---|
678 | r -= 16; |
---|
679 | /* Emit buffered correction bits that must be associated with ZRL */ |
---|
680 | emit_buffered_bits(entropy, BR_buffer, BR); |
---|
681 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
---|
682 | BR = 0; |
---|
683 | } |
---|
684 | |
---|
685 | /* If the coef was previously nonzero, it only needs a correction bit. |
---|
686 | * NOTE: a straight translation of the spec's figure G.7 would suggest |
---|
687 | * that we also need to test r > 15. But if r > 15, we can only get here |
---|
688 | * if k > EOB, which implies that this coefficient is not 1. |
---|
689 | */ |
---|
690 | if (temp > 1) { |
---|
691 | /* The correction bit is the next bit of the absolute value. */ |
---|
692 | BR_buffer[BR++] = (char) (temp & 1); |
---|
693 | continue; |
---|
694 | } |
---|
695 | |
---|
696 | /* Emit any pending EOBRUN and the BE correction bits */ |
---|
697 | emit_eobrun(entropy); |
---|
698 | |
---|
699 | /* Count/emit Huffman symbol for run length / number of bits */ |
---|
700 | emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); |
---|
701 | |
---|
702 | /* Emit output bit for newly-nonzero coef */ |
---|
703 | temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1; |
---|
704 | emit_bits(entropy, (unsigned int) temp, 1); |
---|
705 | |
---|
706 | /* Emit buffered correction bits that must be associated with this code */ |
---|
707 | emit_buffered_bits(entropy, BR_buffer, BR); |
---|
708 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
---|
709 | BR = 0; |
---|
710 | r = 0; /* reset zero run length */ |
---|
711 | } |
---|
712 | |
---|
713 | if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ |
---|
714 | entropy->EOBRUN++; /* count an EOB */ |
---|
715 | entropy->BE += BR; /* concat my correction bits to older ones */ |
---|
716 | /* We force out the EOB if we risk either: |
---|
717 | * 1. overflow of the EOB counter; |
---|
718 | * 2. overflow of the correction bit buffer during the next MCU. |
---|
719 | */ |
---|
720 | if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) |
---|
721 | emit_eobrun(entropy); |
---|
722 | } |
---|
723 | |
---|
724 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
---|
725 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
---|
726 | |
---|
727 | /* Update restart-interval state too */ |
---|
728 | if (cinfo->restart_interval) { |
---|
729 | if (entropy->restarts_to_go == 0) { |
---|
730 | entropy->restarts_to_go = cinfo->restart_interval; |
---|
731 | entropy->next_restart_num++; |
---|
732 | entropy->next_restart_num &= 7; |
---|
733 | } |
---|
734 | entropy->restarts_to_go--; |
---|
735 | } |
---|
736 | |
---|
737 | return TRUE; |
---|
738 | } |
---|
739 | |
---|
740 | |
---|
741 | /* |
---|
742 | * Finish up at the end of a Huffman-compressed progressive scan. |
---|
743 | */ |
---|
744 | |
---|
745 | METHODDEF(void) |
---|
746 | finish_pass_phuff (j_compress_ptr cinfo) |
---|
747 | { |
---|
748 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
---|
749 | |
---|
750 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
---|
751 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
---|
752 | |
---|
753 | /* Flush out any buffered data */ |
---|
754 | emit_eobrun(entropy); |
---|
755 | flush_bits(entropy); |
---|
756 | |
---|
757 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
---|
758 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
---|
759 | } |
---|
760 | |
---|
761 | |
---|
762 | /* |
---|
763 | * Finish up a statistics-gathering pass and create the new Huffman tables. |
---|
764 | */ |
---|
765 | |
---|
766 | METHODDEF(void) |
---|
767 | finish_pass_gather_phuff (j_compress_ptr cinfo) |
---|
768 | { |
---|
769 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
---|
770 | boolean is_DC_band; |
---|
771 | int ci, tbl; |
---|
772 | jpeg_component_info * compptr; |
---|
773 | JHUFF_TBL **htblptr; |
---|
774 | boolean did[NUM_HUFF_TBLS]; |
---|
775 | |
---|
776 | /* Flush out buffered data (all we care about is counting the EOB symbol) */ |
---|
777 | emit_eobrun(entropy); |
---|
778 | |
---|
779 | is_DC_band = (cinfo->Ss == 0); |
---|
780 | |
---|
781 | /* It's important not to apply jpeg_gen_optimal_table more than once |
---|
782 | * per table, because it clobbers the input frequency counts! |
---|
783 | */ |
---|
784 | MEMZERO(did, SIZEOF(did)); |
---|
785 | |
---|
786 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
---|
787 | compptr = cinfo->cur_comp_info[ci]; |
---|
788 | if (is_DC_band) { |
---|
789 | if (cinfo->Ah != 0) /* DC refinement needs no table */ |
---|
790 | continue; |
---|
791 | tbl = compptr->dc_tbl_no; |
---|
792 | } else { |
---|
793 | tbl = compptr->ac_tbl_no; |
---|
794 | } |
---|
795 | if (! did[tbl]) { |
---|
796 | if (is_DC_band) |
---|
797 | htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; |
---|
798 | else |
---|
799 | htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; |
---|
800 | if (*htblptr == NULL) |
---|
801 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
---|
802 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]); |
---|
803 | did[tbl] = TRUE; |
---|
804 | } |
---|
805 | } |
---|
806 | } |
---|
807 | |
---|
808 | |
---|
809 | /* |
---|
810 | * Module initialization routine for progressive Huffman entropy encoding. |
---|
811 | */ |
---|
812 | |
---|
813 | GLOBAL(void) |
---|
814 | jinit_phuff_encoder (j_compress_ptr cinfo) |
---|
815 | { |
---|
816 | phuff_entropy_ptr entropy; |
---|
817 | int i; |
---|
818 | |
---|
819 | entropy = (phuff_entropy_ptr) |
---|
820 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
---|
821 | SIZEOF(phuff_entropy_encoder)); |
---|
822 | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
---|
823 | entropy->pub.start_pass = start_pass_phuff; |
---|
824 | |
---|
825 | /* Mark tables unallocated */ |
---|
826 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
---|
827 | entropy->derived_tbls[i] = NULL; |
---|
828 | entropy->count_ptrs[i] = NULL; |
---|
829 | } |
---|
830 | entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ |
---|
831 | } |
---|
832 | |
---|
833 | #endif /* C_PROGRESSIVE_SUPPORTED */ |
---|