1 | /* |
---|
2 | * jdhuff.c |
---|
3 | * |
---|
4 | * Copyright (C) 1991-1997, Thomas G. Lane. |
---|
5 | * This file is part of the Independent JPEG Group's software. |
---|
6 | * For conditions of distribution and use, see the accompanying README file. |
---|
7 | * |
---|
8 | * This file contains Huffman entropy decoding routines. |
---|
9 | * |
---|
10 | * Much of the complexity here has to do with supporting input suspension. |
---|
11 | * If the data source module demands suspension, we want to be able to back |
---|
12 | * up to the start of the current MCU. To do this, we copy state variables |
---|
13 | * into local working storage, and update them back to the permanent |
---|
14 | * storage only upon successful completion of an MCU. |
---|
15 | */ |
---|
16 | |
---|
17 | #define JPEG_INTERNALS |
---|
18 | #include "jinclude.h" |
---|
19 | #include "jpeglib.h" |
---|
20 | #include "jdhuff.h" /* Declarations shared with jdphuff.c */ |
---|
21 | |
---|
22 | |
---|
23 | /* |
---|
24 | * Expanded entropy decoder object for Huffman decoding. |
---|
25 | * |
---|
26 | * The savable_state subrecord contains fields that change within an MCU, |
---|
27 | * but must not be updated permanently until we complete the MCU. |
---|
28 | */ |
---|
29 | |
---|
30 | typedef struct { |
---|
31 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
---|
32 | } savable_state; |
---|
33 | |
---|
34 | /* This macro is to work around compilers with missing or broken |
---|
35 | * structure assignment. You'll need to fix this code if you have |
---|
36 | * such a compiler and you change MAX_COMPS_IN_SCAN. |
---|
37 | */ |
---|
38 | |
---|
39 | #ifndef NO_STRUCT_ASSIGN |
---|
40 | #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
---|
41 | #else |
---|
42 | #if MAX_COMPS_IN_SCAN == 4 |
---|
43 | #define ASSIGN_STATE(dest,src) \ |
---|
44 | ((dest).last_dc_val[0] = (src).last_dc_val[0], \ |
---|
45 | (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
---|
46 | (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
---|
47 | (dest).last_dc_val[3] = (src).last_dc_val[3]) |
---|
48 | #endif |
---|
49 | #endif |
---|
50 | |
---|
51 | |
---|
52 | typedef struct { |
---|
53 | struct jpeg_entropy_decoder pub; /* public fields */ |
---|
54 | |
---|
55 | /* These fields are loaded into local variables at start of each MCU. |
---|
56 | * In case of suspension, we exit WITHOUT updating them. |
---|
57 | */ |
---|
58 | bitread_perm_state bitstate; /* Bit buffer at start of MCU */ |
---|
59 | savable_state saved; /* Other state at start of MCU */ |
---|
60 | |
---|
61 | /* These fields are NOT loaded into local working state. */ |
---|
62 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
---|
63 | |
---|
64 | /* Pointers to derived tables (these workspaces have image lifespan) */ |
---|
65 | d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; |
---|
66 | d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; |
---|
67 | |
---|
68 | /* Precalculated info set up by start_pass for use in decode_mcu: */ |
---|
69 | |
---|
70 | /* Pointers to derived tables to be used for each block within an MCU */ |
---|
71 | d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
---|
72 | d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
---|
73 | /* Whether we care about the DC and AC coefficient values for each block */ |
---|
74 | boolean dc_needed[D_MAX_BLOCKS_IN_MCU]; |
---|
75 | boolean ac_needed[D_MAX_BLOCKS_IN_MCU]; |
---|
76 | } huff_entropy_decoder; |
---|
77 | |
---|
78 | typedef huff_entropy_decoder * huff_entropy_ptr; |
---|
79 | |
---|
80 | |
---|
81 | /* |
---|
82 | * Initialize for a Huffman-compressed scan. |
---|
83 | */ |
---|
84 | |
---|
85 | METHODDEF(void) |
---|
86 | start_pass_huff_decoder (j_decompress_ptr cinfo) |
---|
87 | { |
---|
88 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
---|
89 | int ci, blkn, dctbl, actbl; |
---|
90 | jpeg_component_info * compptr; |
---|
91 | |
---|
92 | /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. |
---|
93 | * This ought to be an error condition, but we make it a warning because |
---|
94 | * there are some baseline files out there with all zeroes in these bytes. |
---|
95 | */ |
---|
96 | if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 || |
---|
97 | cinfo->Ah != 0 || cinfo->Al != 0) |
---|
98 | WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); |
---|
99 | |
---|
100 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
---|
101 | compptr = cinfo->cur_comp_info[ci]; |
---|
102 | dctbl = compptr->dc_tbl_no; |
---|
103 | actbl = compptr->ac_tbl_no; |
---|
104 | /* Compute derived values for Huffman tables */ |
---|
105 | /* We may do this more than once for a table, but it's not expensive */ |
---|
106 | jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, |
---|
107 | & entropy->dc_derived_tbls[dctbl]); |
---|
108 | jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, |
---|
109 | & entropy->ac_derived_tbls[actbl]); |
---|
110 | /* Initialize DC predictions to 0 */ |
---|
111 | entropy->saved.last_dc_val[ci] = 0; |
---|
112 | } |
---|
113 | |
---|
114 | /* Precalculate decoding info for each block in an MCU of this scan */ |
---|
115 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
---|
116 | ci = cinfo->MCU_membership[blkn]; |
---|
117 | compptr = cinfo->cur_comp_info[ci]; |
---|
118 | /* Precalculate which table to use for each block */ |
---|
119 | entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; |
---|
120 | entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; |
---|
121 | /* Decide whether we really care about the coefficient values */ |
---|
122 | if (compptr->component_needed) { |
---|
123 | entropy->dc_needed[blkn] = TRUE; |
---|
124 | /* we don't need the ACs if producing a 1/8th-size image */ |
---|
125 | entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1); |
---|
126 | } else { |
---|
127 | entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE; |
---|
128 | } |
---|
129 | } |
---|
130 | |
---|
131 | /* Initialize bitread state variables */ |
---|
132 | entropy->bitstate.bits_left = 0; |
---|
133 | entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ |
---|
134 | entropy->pub.insufficient_data = FALSE; |
---|
135 | |
---|
136 | /* Initialize restart counter */ |
---|
137 | entropy->restarts_to_go = cinfo->restart_interval; |
---|
138 | } |
---|
139 | |
---|
140 | |
---|
141 | /* |
---|
142 | * Compute the derived values for a Huffman table. |
---|
143 | * This routine also performs some validation checks on the table. |
---|
144 | * |
---|
145 | * Note this is also used by jdphuff.c. |
---|
146 | */ |
---|
147 | |
---|
148 | GLOBAL(void) |
---|
149 | jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, |
---|
150 | d_derived_tbl ** pdtbl) |
---|
151 | { |
---|
152 | JHUFF_TBL *htbl; |
---|
153 | d_derived_tbl *dtbl; |
---|
154 | int p, i, l, si, numsymbols; |
---|
155 | int lookbits, ctr; |
---|
156 | char huffsize[257]; |
---|
157 | unsigned int huffcode[257]; |
---|
158 | unsigned int code; |
---|
159 | |
---|
160 | /* Note that huffsize[] and huffcode[] are filled in code-length order, |
---|
161 | * paralleling the order of the symbols themselves in htbl->huffval[]. |
---|
162 | */ |
---|
163 | |
---|
164 | /* Find the input Huffman table */ |
---|
165 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
---|
166 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
---|
167 | htbl = |
---|
168 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
---|
169 | if (htbl == NULL) |
---|
170 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
---|
171 | |
---|
172 | /* Allocate a workspace if we haven't already done so. */ |
---|
173 | if (*pdtbl == NULL) |
---|
174 | *pdtbl = (d_derived_tbl *) |
---|
175 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
---|
176 | SIZEOF(d_derived_tbl)); |
---|
177 | dtbl = *pdtbl; |
---|
178 | dtbl->pub = htbl; /* fill in back link */ |
---|
179 | |
---|
180 | /* Figure C.1: make table of Huffman code length for each symbol */ |
---|
181 | |
---|
182 | p = 0; |
---|
183 | for (l = 1; l <= 16; l++) { |
---|
184 | i = (int) htbl->bits[l]; |
---|
185 | if (i < 0 || p + i > 256) /* protect against table overrun */ |
---|
186 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
---|
187 | while (i--) |
---|
188 | huffsize[p++] = (char) l; |
---|
189 | } |
---|
190 | huffsize[p] = 0; |
---|
191 | numsymbols = p; |
---|
192 | |
---|
193 | /* Figure C.2: generate the codes themselves */ |
---|
194 | /* We also validate that the counts represent a legal Huffman code tree. */ |
---|
195 | |
---|
196 | code = 0; |
---|
197 | si = huffsize[0]; |
---|
198 | p = 0; |
---|
199 | while (huffsize[p]) { |
---|
200 | while (((int) huffsize[p]) == si) { |
---|
201 | huffcode[p++] = code; |
---|
202 | code++; |
---|
203 | } |
---|
204 | /* code is now 1 more than the last code used for codelength si; but |
---|
205 | * it must still fit in si bits, since no code is allowed to be all ones. |
---|
206 | */ |
---|
207 | if (((INT32) code) >= (((INT32) 1) << si)) |
---|
208 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
---|
209 | code <<= 1; |
---|
210 | si++; |
---|
211 | } |
---|
212 | |
---|
213 | /* Figure F.15: generate decoding tables for bit-sequential decoding */ |
---|
214 | |
---|
215 | p = 0; |
---|
216 | for (l = 1; l <= 16; l++) { |
---|
217 | if (htbl->bits[l]) { |
---|
218 | /* valoffset[l] = huffval[] index of 1st symbol of code length l, |
---|
219 | * minus the minimum code of length l |
---|
220 | */ |
---|
221 | dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; |
---|
222 | p += htbl->bits[l]; |
---|
223 | dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ |
---|
224 | } else { |
---|
225 | dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ |
---|
226 | } |
---|
227 | } |
---|
228 | dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ |
---|
229 | |
---|
230 | /* Compute lookahead tables to speed up decoding. |
---|
231 | * First we set all the table entries to 0, indicating "too long"; |
---|
232 | * then we iterate through the Huffman codes that are short enough and |
---|
233 | * fill in all the entries that correspond to bit sequences starting |
---|
234 | * with that code. |
---|
235 | */ |
---|
236 | |
---|
237 | MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); |
---|
238 | |
---|
239 | p = 0; |
---|
240 | for (l = 1; l <= HUFF_LOOKAHEAD; l++) { |
---|
241 | for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { |
---|
242 | /* l = current code's length, p = its index in huffcode[] & huffval[]. */ |
---|
243 | /* Generate left-justified code followed by all possible bit sequences */ |
---|
244 | lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); |
---|
245 | for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { |
---|
246 | dtbl->look_nbits[lookbits] = l; |
---|
247 | dtbl->look_sym[lookbits] = htbl->huffval[p]; |
---|
248 | lookbits++; |
---|
249 | } |
---|
250 | } |
---|
251 | } |
---|
252 | |
---|
253 | /* Validate symbols as being reasonable. |
---|
254 | * For AC tables, we make no check, but accept all byte values 0..255. |
---|
255 | * For DC tables, we require the symbols to be in range 0..15. |
---|
256 | * (Tighter bounds could be applied depending on the data depth and mode, |
---|
257 | * but this is sufficient to ensure safe decoding.) |
---|
258 | */ |
---|
259 | if (isDC) { |
---|
260 | for (i = 0; i < numsymbols; i++) { |
---|
261 | int sym = htbl->huffval[i]; |
---|
262 | if (sym < 0 || sym > 15) |
---|
263 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
---|
264 | } |
---|
265 | } |
---|
266 | } |
---|
267 | |
---|
268 | |
---|
269 | /* |
---|
270 | * Out-of-line code for bit fetching (shared with jdphuff.c). |
---|
271 | * See jdhuff.h for info about usage. |
---|
272 | * Note: current values of get_buffer and bits_left are passed as parameters, |
---|
273 | * but are returned in the corresponding fields of the state struct. |
---|
274 | * |
---|
275 | * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width |
---|
276 | * of get_buffer to be used. (On machines with wider words, an even larger |
---|
277 | * buffer could be used.) However, on some machines 32-bit shifts are |
---|
278 | * quite slow and take time proportional to the number of places shifted. |
---|
279 | * (This is true with most PC compilers, for instance.) In this case it may |
---|
280 | * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the |
---|
281 | * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. |
---|
282 | */ |
---|
283 | |
---|
284 | #ifdef SLOW_SHIFT_32 |
---|
285 | #define MIN_GET_BITS 15 /* minimum allowable value */ |
---|
286 | #else |
---|
287 | #define MIN_GET_BITS (BIT_BUF_SIZE-7) |
---|
288 | #endif |
---|
289 | |
---|
290 | |
---|
291 | GLOBAL(boolean) |
---|
292 | jpeg_fill_bit_buffer (bitread_working_state * state, |
---|
293 | register bit_buf_type get_buffer, register int bits_left, |
---|
294 | int nbits) |
---|
295 | /* Load up the bit buffer to a depth of at least nbits */ |
---|
296 | { |
---|
297 | /* Copy heavily used state fields into locals (hopefully registers) */ |
---|
298 | register const JOCTET * next_input_byte = state->next_input_byte; |
---|
299 | register size_t bytes_in_buffer = state->bytes_in_buffer; |
---|
300 | j_decompress_ptr cinfo = state->cinfo; |
---|
301 | |
---|
302 | /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ |
---|
303 | /* (It is assumed that no request will be for more than that many bits.) */ |
---|
304 | /* We fail to do so only if we hit a marker or are forced to suspend. */ |
---|
305 | |
---|
306 | if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ |
---|
307 | while (bits_left < MIN_GET_BITS) { |
---|
308 | register int c; |
---|
309 | |
---|
310 | /* Attempt to read a byte */ |
---|
311 | if (bytes_in_buffer == 0) { |
---|
312 | if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
---|
313 | return FALSE; |
---|
314 | next_input_byte = cinfo->src->next_input_byte; |
---|
315 | bytes_in_buffer = cinfo->src->bytes_in_buffer; |
---|
316 | } |
---|
317 | bytes_in_buffer--; |
---|
318 | c = GETJOCTET(*next_input_byte++); |
---|
319 | |
---|
320 | /* If it's 0xFF, check and discard stuffed zero byte */ |
---|
321 | if (c == 0xFF) { |
---|
322 | /* Loop here to discard any padding FF's on terminating marker, |
---|
323 | * so that we can save a valid unread_marker value. NOTE: we will |
---|
324 | * accept multiple FF's followed by a 0 as meaning a single FF data |
---|
325 | * byte. This data pattern is not valid according to the standard. |
---|
326 | */ |
---|
327 | do { |
---|
328 | if (bytes_in_buffer == 0) { |
---|
329 | if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
---|
330 | return FALSE; |
---|
331 | next_input_byte = cinfo->src->next_input_byte; |
---|
332 | bytes_in_buffer = cinfo->src->bytes_in_buffer; |
---|
333 | } |
---|
334 | bytes_in_buffer--; |
---|
335 | c = GETJOCTET(*next_input_byte++); |
---|
336 | } while (c == 0xFF); |
---|
337 | |
---|
338 | if (c == 0) { |
---|
339 | /* Found FF/00, which represents an FF data byte */ |
---|
340 | c = 0xFF; |
---|
341 | } else { |
---|
342 | /* Oops, it's actually a marker indicating end of compressed data. |
---|
343 | * Save the marker code for later use. |
---|
344 | * Fine point: it might appear that we should save the marker into |
---|
345 | * bitread working state, not straight into permanent state. But |
---|
346 | * once we have hit a marker, we cannot need to suspend within the |
---|
347 | * current MCU, because we will read no more bytes from the data |
---|
348 | * source. So it is OK to update permanent state right away. |
---|
349 | */ |
---|
350 | cinfo->unread_marker = c; |
---|
351 | /* See if we need to insert some fake zero bits. */ |
---|
352 | goto no_more_bytes; |
---|
353 | } |
---|
354 | } |
---|
355 | |
---|
356 | /* OK, load c into get_buffer */ |
---|
357 | get_buffer = (get_buffer << 8) | c; |
---|
358 | bits_left += 8; |
---|
359 | } /* end while */ |
---|
360 | } else { |
---|
361 | no_more_bytes: |
---|
362 | /* We get here if we've read the marker that terminates the compressed |
---|
363 | * data segment. There should be enough bits in the buffer register |
---|
364 | * to satisfy the request; if so, no problem. |
---|
365 | */ |
---|
366 | if (nbits > bits_left) { |
---|
367 | /* Uh-oh. Report corrupted data to user and stuff zeroes into |
---|
368 | * the data stream, so that we can produce some kind of image. |
---|
369 | * We use a nonvolatile flag to ensure that only one warning message |
---|
370 | * appears per data segment. |
---|
371 | */ |
---|
372 | if (! cinfo->entropy->insufficient_data) { |
---|
373 | WARNMS(cinfo, JWRN_HIT_MARKER); |
---|
374 | cinfo->entropy->insufficient_data = TRUE; |
---|
375 | } |
---|
376 | /* Fill the buffer with zero bits */ |
---|
377 | get_buffer <<= MIN_GET_BITS - bits_left; |
---|
378 | bits_left = MIN_GET_BITS; |
---|
379 | } |
---|
380 | } |
---|
381 | |
---|
382 | /* Unload the local registers */ |
---|
383 | state->next_input_byte = next_input_byte; |
---|
384 | state->bytes_in_buffer = bytes_in_buffer; |
---|
385 | state->get_buffer = get_buffer; |
---|
386 | state->bits_left = bits_left; |
---|
387 | |
---|
388 | return TRUE; |
---|
389 | } |
---|
390 | |
---|
391 | |
---|
392 | /* |
---|
393 | * Out-of-line code for Huffman code decoding. |
---|
394 | * See jdhuff.h for info about usage. |
---|
395 | */ |
---|
396 | |
---|
397 | GLOBAL(int) |
---|
398 | jpeg_huff_decode (bitread_working_state * state, |
---|
399 | register bit_buf_type get_buffer, register int bits_left, |
---|
400 | d_derived_tbl * htbl, int min_bits) |
---|
401 | { |
---|
402 | register int l = min_bits; |
---|
403 | register INT32 code; |
---|
404 | |
---|
405 | /* HUFF_DECODE has determined that the code is at least min_bits */ |
---|
406 | /* bits long, so fetch that many bits in one swoop. */ |
---|
407 | |
---|
408 | CHECK_BIT_BUFFER(*state, l, return -1); |
---|
409 | code = GET_BITS(l); |
---|
410 | |
---|
411 | /* Collect the rest of the Huffman code one bit at a time. */ |
---|
412 | /* This is per Figure F.16 in the JPEG spec. */ |
---|
413 | |
---|
414 | while (code > htbl->maxcode[l]) { |
---|
415 | code <<= 1; |
---|
416 | CHECK_BIT_BUFFER(*state, 1, return -1); |
---|
417 | code |= GET_BITS(1); |
---|
418 | l++; |
---|
419 | } |
---|
420 | |
---|
421 | /* Unload the local registers */ |
---|
422 | state->get_buffer = get_buffer; |
---|
423 | state->bits_left = bits_left; |
---|
424 | |
---|
425 | /* With garbage input we may reach the sentinel value l = 17. */ |
---|
426 | |
---|
427 | if (l > 16) { |
---|
428 | WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); |
---|
429 | return 0; /* fake a zero as the safest result */ |
---|
430 | } |
---|
431 | |
---|
432 | return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; |
---|
433 | } |
---|
434 | |
---|
435 | |
---|
436 | /* |
---|
437 | * Figure F.12: extend sign bit. |
---|
438 | * On some machines, a shift and add will be faster than a table lookup. |
---|
439 | */ |
---|
440 | |
---|
441 | #ifdef AVOID_TABLES |
---|
442 | |
---|
443 | #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x)) |
---|
444 | |
---|
445 | #else |
---|
446 | |
---|
447 | #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) |
---|
448 | |
---|
449 | static const int extend_test[16] = /* entry n is 2**(n-1) */ |
---|
450 | { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, |
---|
451 | 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; |
---|
452 | |
---|
453 | static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ |
---|
454 | { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, |
---|
455 | ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, |
---|
456 | ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, |
---|
457 | ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; |
---|
458 | |
---|
459 | #endif /* AVOID_TABLES */ |
---|
460 | |
---|
461 | |
---|
462 | /* |
---|
463 | * Check for a restart marker & resynchronize decoder. |
---|
464 | * Returns FALSE if must suspend. |
---|
465 | */ |
---|
466 | |
---|
467 | LOCAL(boolean) |
---|
468 | process_restart (j_decompress_ptr cinfo) |
---|
469 | { |
---|
470 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
---|
471 | int ci; |
---|
472 | |
---|
473 | /* Throw away any unused bits remaining in bit buffer; */ |
---|
474 | /* include any full bytes in next_marker's count of discarded bytes */ |
---|
475 | cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; |
---|
476 | entropy->bitstate.bits_left = 0; |
---|
477 | |
---|
478 | /* Advance past the RSTn marker */ |
---|
479 | if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
---|
480 | return FALSE; |
---|
481 | |
---|
482 | /* Re-initialize DC predictions to 0 */ |
---|
483 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
---|
484 | entropy->saved.last_dc_val[ci] = 0; |
---|
485 | |
---|
486 | /* Reset restart counter */ |
---|
487 | entropy->restarts_to_go = cinfo->restart_interval; |
---|
488 | |
---|
489 | /* Reset out-of-data flag, unless read_restart_marker left us smack up |
---|
490 | * against a marker. In that case we will end up treating the next data |
---|
491 | * segment as empty, and we can avoid producing bogus output pixels by |
---|
492 | * leaving the flag set. |
---|
493 | */ |
---|
494 | if (cinfo->unread_marker == 0) |
---|
495 | entropy->pub.insufficient_data = FALSE; |
---|
496 | |
---|
497 | return TRUE; |
---|
498 | } |
---|
499 | |
---|
500 | |
---|
501 | /* |
---|
502 | * Decode and return one MCU's worth of Huffman-compressed coefficients. |
---|
503 | * The coefficients are reordered from zigzag order into natural array order, |
---|
504 | * but are not dequantized. |
---|
505 | * |
---|
506 | * The i'th block of the MCU is stored into the block pointed to by |
---|
507 | * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. |
---|
508 | * (Wholesale zeroing is usually a little faster than retail...) |
---|
509 | * |
---|
510 | * Returns FALSE if data source requested suspension. In that case no |
---|
511 | * changes have been made to permanent state. (Exception: some output |
---|
512 | * coefficients may already have been assigned. This is harmless for |
---|
513 | * this module, since we'll just re-assign them on the next call.) |
---|
514 | */ |
---|
515 | |
---|
516 | METHODDEF(boolean) |
---|
517 | decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
---|
518 | { |
---|
519 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
---|
520 | int blkn; |
---|
521 | BITREAD_STATE_VARS; |
---|
522 | savable_state state; |
---|
523 | |
---|
524 | /* Process restart marker if needed; may have to suspend */ |
---|
525 | if (cinfo->restart_interval) { |
---|
526 | if (entropy->restarts_to_go == 0) |
---|
527 | if (! process_restart(cinfo)) |
---|
528 | return FALSE; |
---|
529 | } |
---|
530 | |
---|
531 | /* If we've run out of data, just leave the MCU set to zeroes. |
---|
532 | * This way, we return uniform gray for the remainder of the segment. |
---|
533 | */ |
---|
534 | if (! entropy->pub.insufficient_data) { |
---|
535 | |
---|
536 | /* Load up working state */ |
---|
537 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
---|
538 | ASSIGN_STATE(state, entropy->saved); |
---|
539 | |
---|
540 | /* Outer loop handles each block in the MCU */ |
---|
541 | |
---|
542 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
---|
543 | JBLOCKROW block = MCU_data[blkn]; |
---|
544 | d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn]; |
---|
545 | d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn]; |
---|
546 | register int s, k, r; |
---|
547 | |
---|
548 | /* Decode a single block's worth of coefficients */ |
---|
549 | |
---|
550 | /* Section F.2.2.1: decode the DC coefficient difference */ |
---|
551 | HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); |
---|
552 | if (s) { |
---|
553 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
---|
554 | r = GET_BITS(s); |
---|
555 | s = HUFF_EXTEND(r, s); |
---|
556 | } |
---|
557 | |
---|
558 | if (entropy->dc_needed[blkn]) { |
---|
559 | /* Convert DC difference to actual value, update last_dc_val */ |
---|
560 | int ci = cinfo->MCU_membership[blkn]; |
---|
561 | s += state.last_dc_val[ci]; |
---|
562 | state.last_dc_val[ci] = s; |
---|
563 | /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ |
---|
564 | (*block)[0] = (JCOEF) s; |
---|
565 | } |
---|
566 | |
---|
567 | if (entropy->ac_needed[blkn]) { |
---|
568 | |
---|
569 | /* Section F.2.2.2: decode the AC coefficients */ |
---|
570 | /* Since zeroes are skipped, output area must be cleared beforehand */ |
---|
571 | for (k = 1; k < DCTSIZE2; k++) { |
---|
572 | HUFF_DECODE(s, br_state, actbl, return FALSE, label2); |
---|
573 | |
---|
574 | r = s >> 4; |
---|
575 | s &= 15; |
---|
576 | |
---|
577 | if (s) { |
---|
578 | k += r; |
---|
579 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
---|
580 | r = GET_BITS(s); |
---|
581 | s = HUFF_EXTEND(r, s); |
---|
582 | /* Output coefficient in natural (dezigzagged) order. |
---|
583 | * Note: the extra entries in jpeg_natural_order[] will save us |
---|
584 | * if k >= DCTSIZE2, which could happen if the data is corrupted. |
---|
585 | */ |
---|
586 | (*block)[jpeg_natural_order[k]] = (JCOEF) s; |
---|
587 | } else { |
---|
588 | if (r != 15) |
---|
589 | break; |
---|
590 | k += 15; |
---|
591 | } |
---|
592 | } |
---|
593 | |
---|
594 | } else { |
---|
595 | |
---|
596 | /* Section F.2.2.2: decode the AC coefficients */ |
---|
597 | /* In this path we just discard the values */ |
---|
598 | for (k = 1; k < DCTSIZE2; k++) { |
---|
599 | HUFF_DECODE(s, br_state, actbl, return FALSE, label3); |
---|
600 | |
---|
601 | r = s >> 4; |
---|
602 | s &= 15; |
---|
603 | |
---|
604 | if (s) { |
---|
605 | k += r; |
---|
606 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
---|
607 | DROP_BITS(s); |
---|
608 | } else { |
---|
609 | if (r != 15) |
---|
610 | break; |
---|
611 | k += 15; |
---|
612 | } |
---|
613 | } |
---|
614 | |
---|
615 | } |
---|
616 | } |
---|
617 | |
---|
618 | /* Completed MCU, so update state */ |
---|
619 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
---|
620 | ASSIGN_STATE(entropy->saved, state); |
---|
621 | } |
---|
622 | |
---|
623 | /* Account for restart interval (no-op if not using restarts) */ |
---|
624 | entropy->restarts_to_go--; |
---|
625 | |
---|
626 | return TRUE; |
---|
627 | } |
---|
628 | |
---|
629 | |
---|
630 | /* |
---|
631 | * Module initialization routine for Huffman entropy decoding. |
---|
632 | */ |
---|
633 | |
---|
634 | GLOBAL(void) |
---|
635 | jinit_huff_decoder (j_decompress_ptr cinfo) |
---|
636 | { |
---|
637 | huff_entropy_ptr entropy; |
---|
638 | int i; |
---|
639 | |
---|
640 | entropy = (huff_entropy_ptr) |
---|
641 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
---|
642 | SIZEOF(huff_entropy_decoder)); |
---|
643 | cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; |
---|
644 | entropy->pub.start_pass = start_pass_huff_decoder; |
---|
645 | entropy->pub.decode_mcu = decode_mcu; |
---|
646 | |
---|
647 | /* Mark tables unallocated */ |
---|
648 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
---|
649 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
---|
650 | } |
---|
651 | } |
---|