source: trunk/third/firefox/jpeg/jdhuff.c @ 21695

Revision 21695, 20.4 KB checked in by rbasch, 20 years ago (diff)
This commit was generated by cvs2svn to compensate for changes in r21694, which included commits to RCS files with non-trunk default branches.
Line 
1/*
2 * jdhuff.c
3 *
4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains Huffman entropy decoding routines.
9 *
10 * Much of the complexity here has to do with supporting input suspension.
11 * If the data source module demands suspension, we want to be able to back
12 * up to the start of the current MCU.  To do this, we copy state variables
13 * into local working storage, and update them back to the permanent
14 * storage only upon successful completion of an MCU.
15 */
16
17#define JPEG_INTERNALS
18#include "jinclude.h"
19#include "jpeglib.h"
20#include "jdhuff.h"             /* Declarations shared with jdphuff.c */
21
22
23/*
24 * Expanded entropy decoder object for Huffman decoding.
25 *
26 * The savable_state subrecord contains fields that change within an MCU,
27 * but must not be updated permanently until we complete the MCU.
28 */
29
30typedef struct {
31  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
32} savable_state;
33
34/* This macro is to work around compilers with missing or broken
35 * structure assignment.  You'll need to fix this code if you have
36 * such a compiler and you change MAX_COMPS_IN_SCAN.
37 */
38
39#ifndef NO_STRUCT_ASSIGN
40#define ASSIGN_STATE(dest,src)  ((dest) = (src))
41#else
42#if MAX_COMPS_IN_SCAN == 4
43#define ASSIGN_STATE(dest,src)  \
44        ((dest).last_dc_val[0] = (src).last_dc_val[0], \
45         (dest).last_dc_val[1] = (src).last_dc_val[1], \
46         (dest).last_dc_val[2] = (src).last_dc_val[2], \
47         (dest).last_dc_val[3] = (src).last_dc_val[3])
48#endif
49#endif
50
51
52typedef struct {
53  struct jpeg_entropy_decoder pub; /* public fields */
54
55  /* These fields are loaded into local variables at start of each MCU.
56   * In case of suspension, we exit WITHOUT updating them.
57   */
58  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
59  savable_state saved;          /* Other state at start of MCU */
60
61  /* These fields are NOT loaded into local working state. */
62  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
63
64  /* Pointers to derived tables (these workspaces have image lifespan) */
65  d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
66  d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
67
68  /* Precalculated info set up by start_pass for use in decode_mcu: */
69
70  /* Pointers to derived tables to be used for each block within an MCU */
71  d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
72  d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
73  /* Whether we care about the DC and AC coefficient values for each block */
74  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
75  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
76} huff_entropy_decoder;
77
78typedef huff_entropy_decoder * huff_entropy_ptr;
79
80
81/*
82 * Initialize for a Huffman-compressed scan.
83 */
84
85METHODDEF(void)
86start_pass_huff_decoder (j_decompress_ptr cinfo)
87{
88  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
89  int ci, blkn, dctbl, actbl;
90  jpeg_component_info * compptr;
91
92  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
93   * This ought to be an error condition, but we make it a warning because
94   * there are some baseline files out there with all zeroes in these bytes.
95   */
96  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
97      cinfo->Ah != 0 || cinfo->Al != 0)
98    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
99
100  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
101    compptr = cinfo->cur_comp_info[ci];
102    dctbl = compptr->dc_tbl_no;
103    actbl = compptr->ac_tbl_no;
104    /* Compute derived values for Huffman tables */
105    /* We may do this more than once for a table, but it's not expensive */
106    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
107                            & entropy->dc_derived_tbls[dctbl]);
108    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
109                            & entropy->ac_derived_tbls[actbl]);
110    /* Initialize DC predictions to 0 */
111    entropy->saved.last_dc_val[ci] = 0;
112  }
113
114  /* Precalculate decoding info for each block in an MCU of this scan */
115  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
116    ci = cinfo->MCU_membership[blkn];
117    compptr = cinfo->cur_comp_info[ci];
118    /* Precalculate which table to use for each block */
119    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
120    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
121    /* Decide whether we really care about the coefficient values */
122    if (compptr->component_needed) {
123      entropy->dc_needed[blkn] = TRUE;
124      /* we don't need the ACs if producing a 1/8th-size image */
125      entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
126    } else {
127      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
128    }
129  }
130
131  /* Initialize bitread state variables */
132  entropy->bitstate.bits_left = 0;
133  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
134  entropy->pub.insufficient_data = FALSE;
135
136  /* Initialize restart counter */
137  entropy->restarts_to_go = cinfo->restart_interval;
138}
139
140
141/*
142 * Compute the derived values for a Huffman table.
143 * This routine also performs some validation checks on the table.
144 *
145 * Note this is also used by jdphuff.c.
146 */
147
148GLOBAL(void)
149jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
150                         d_derived_tbl ** pdtbl)
151{
152  JHUFF_TBL *htbl;
153  d_derived_tbl *dtbl;
154  int p, i, l, si, numsymbols;
155  int lookbits, ctr;
156  char huffsize[257];
157  unsigned int huffcode[257];
158  unsigned int code;
159
160  /* Note that huffsize[] and huffcode[] are filled in code-length order,
161   * paralleling the order of the symbols themselves in htbl->huffval[].
162   */
163
164  /* Find the input Huffman table */
165  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
166    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
167  htbl =
168    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
169  if (htbl == NULL)
170    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
171
172  /* Allocate a workspace if we haven't already done so. */
173  if (*pdtbl == NULL)
174    *pdtbl = (d_derived_tbl *)
175      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
176                                  SIZEOF(d_derived_tbl));
177  dtbl = *pdtbl;
178  dtbl->pub = htbl;             /* fill in back link */
179 
180  /* Figure C.1: make table of Huffman code length for each symbol */
181
182  p = 0;
183  for (l = 1; l <= 16; l++) {
184    i = (int) htbl->bits[l];
185    if (i < 0 || p + i > 256)   /* protect against table overrun */
186      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
187    while (i--)
188      huffsize[p++] = (char) l;
189  }
190  huffsize[p] = 0;
191  numsymbols = p;
192 
193  /* Figure C.2: generate the codes themselves */
194  /* We also validate that the counts represent a legal Huffman code tree. */
195 
196  code = 0;
197  si = huffsize[0];
198  p = 0;
199  while (huffsize[p]) {
200    while (((int) huffsize[p]) == si) {
201      huffcode[p++] = code;
202      code++;
203    }
204    /* code is now 1 more than the last code used for codelength si; but
205     * it must still fit in si bits, since no code is allowed to be all ones.
206     */
207    if (((INT32) code) >= (((INT32) 1) << si))
208      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
209    code <<= 1;
210    si++;
211  }
212
213  /* Figure F.15: generate decoding tables for bit-sequential decoding */
214
215  p = 0;
216  for (l = 1; l <= 16; l++) {
217    if (htbl->bits[l]) {
218      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
219       * minus the minimum code of length l
220       */
221      dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
222      p += htbl->bits[l];
223      dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
224    } else {
225      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
226    }
227  }
228  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
229
230  /* Compute lookahead tables to speed up decoding.
231   * First we set all the table entries to 0, indicating "too long";
232   * then we iterate through the Huffman codes that are short enough and
233   * fill in all the entries that correspond to bit sequences starting
234   * with that code.
235   */
236
237  MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
238
239  p = 0;
240  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
241    for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
242      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
243      /* Generate left-justified code followed by all possible bit sequences */
244      lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
245      for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
246        dtbl->look_nbits[lookbits] = l;
247        dtbl->look_sym[lookbits] = htbl->huffval[p];
248        lookbits++;
249      }
250    }
251  }
252
253  /* Validate symbols as being reasonable.
254   * For AC tables, we make no check, but accept all byte values 0..255.
255   * For DC tables, we require the symbols to be in range 0..15.
256   * (Tighter bounds could be applied depending on the data depth and mode,
257   * but this is sufficient to ensure safe decoding.)
258   */
259  if (isDC) {
260    for (i = 0; i < numsymbols; i++) {
261      int sym = htbl->huffval[i];
262      if (sym < 0 || sym > 15)
263        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
264    }
265  }
266}
267
268
269/*
270 * Out-of-line code for bit fetching (shared with jdphuff.c).
271 * See jdhuff.h for info about usage.
272 * Note: current values of get_buffer and bits_left are passed as parameters,
273 * but are returned in the corresponding fields of the state struct.
274 *
275 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
276 * of get_buffer to be used.  (On machines with wider words, an even larger
277 * buffer could be used.)  However, on some machines 32-bit shifts are
278 * quite slow and take time proportional to the number of places shifted.
279 * (This is true with most PC compilers, for instance.)  In this case it may
280 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
281 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
282 */
283
284#ifdef SLOW_SHIFT_32
285#define MIN_GET_BITS  15        /* minimum allowable value */
286#else
287#define MIN_GET_BITS  (BIT_BUF_SIZE-7)
288#endif
289
290
291GLOBAL(boolean)
292jpeg_fill_bit_buffer (bitread_working_state * state,
293                      register bit_buf_type get_buffer, register int bits_left,
294                      int nbits)
295/* Load up the bit buffer to a depth of at least nbits */
296{
297  /* Copy heavily used state fields into locals (hopefully registers) */
298  register const JOCTET * next_input_byte = state->next_input_byte;
299  register size_t bytes_in_buffer = state->bytes_in_buffer;
300  j_decompress_ptr cinfo = state->cinfo;
301
302  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
303  /* (It is assumed that no request will be for more than that many bits.) */
304  /* We fail to do so only if we hit a marker or are forced to suspend. */
305
306  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
307    while (bits_left < MIN_GET_BITS) {
308      register int c;
309
310      /* Attempt to read a byte */
311      if (bytes_in_buffer == 0) {
312        if (! (*cinfo->src->fill_input_buffer) (cinfo))
313          return FALSE;
314        next_input_byte = cinfo->src->next_input_byte;
315        bytes_in_buffer = cinfo->src->bytes_in_buffer;
316      }
317      bytes_in_buffer--;
318      c = GETJOCTET(*next_input_byte++);
319
320      /* If it's 0xFF, check and discard stuffed zero byte */
321      if (c == 0xFF) {
322        /* Loop here to discard any padding FF's on terminating marker,
323         * so that we can save a valid unread_marker value.  NOTE: we will
324         * accept multiple FF's followed by a 0 as meaning a single FF data
325         * byte.  This data pattern is not valid according to the standard.
326         */
327        do {
328          if (bytes_in_buffer == 0) {
329            if (! (*cinfo->src->fill_input_buffer) (cinfo))
330              return FALSE;
331            next_input_byte = cinfo->src->next_input_byte;
332            bytes_in_buffer = cinfo->src->bytes_in_buffer;
333          }
334          bytes_in_buffer--;
335          c = GETJOCTET(*next_input_byte++);
336        } while (c == 0xFF);
337
338        if (c == 0) {
339          /* Found FF/00, which represents an FF data byte */
340          c = 0xFF;
341        } else {
342          /* Oops, it's actually a marker indicating end of compressed data.
343           * Save the marker code for later use.
344           * Fine point: it might appear that we should save the marker into
345           * bitread working state, not straight into permanent state.  But
346           * once we have hit a marker, we cannot need to suspend within the
347           * current MCU, because we will read no more bytes from the data
348           * source.  So it is OK to update permanent state right away.
349           */
350          cinfo->unread_marker = c;
351          /* See if we need to insert some fake zero bits. */
352          goto no_more_bytes;
353        }
354      }
355
356      /* OK, load c into get_buffer */
357      get_buffer = (get_buffer << 8) | c;
358      bits_left += 8;
359    } /* end while */
360  } else {
361  no_more_bytes:
362    /* We get here if we've read the marker that terminates the compressed
363     * data segment.  There should be enough bits in the buffer register
364     * to satisfy the request; if so, no problem.
365     */
366    if (nbits > bits_left) {
367      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
368       * the data stream, so that we can produce some kind of image.
369       * We use a nonvolatile flag to ensure that only one warning message
370       * appears per data segment.
371       */
372      if (! cinfo->entropy->insufficient_data) {
373        WARNMS(cinfo, JWRN_HIT_MARKER);
374        cinfo->entropy->insufficient_data = TRUE;
375      }
376      /* Fill the buffer with zero bits */
377      get_buffer <<= MIN_GET_BITS - bits_left;
378      bits_left = MIN_GET_BITS;
379    }
380  }
381
382  /* Unload the local registers */
383  state->next_input_byte = next_input_byte;
384  state->bytes_in_buffer = bytes_in_buffer;
385  state->get_buffer = get_buffer;
386  state->bits_left = bits_left;
387
388  return TRUE;
389}
390
391
392/*
393 * Out-of-line code for Huffman code decoding.
394 * See jdhuff.h for info about usage.
395 */
396
397GLOBAL(int)
398jpeg_huff_decode (bitread_working_state * state,
399                  register bit_buf_type get_buffer, register int bits_left,
400                  d_derived_tbl * htbl, int min_bits)
401{
402  register int l = min_bits;
403  register INT32 code;
404
405  /* HUFF_DECODE has determined that the code is at least min_bits */
406  /* bits long, so fetch that many bits in one swoop. */
407
408  CHECK_BIT_BUFFER(*state, l, return -1);
409  code = GET_BITS(l);
410
411  /* Collect the rest of the Huffman code one bit at a time. */
412  /* This is per Figure F.16 in the JPEG spec. */
413
414  while (code > htbl->maxcode[l]) {
415    code <<= 1;
416    CHECK_BIT_BUFFER(*state, 1, return -1);
417    code |= GET_BITS(1);
418    l++;
419  }
420
421  /* Unload the local registers */
422  state->get_buffer = get_buffer;
423  state->bits_left = bits_left;
424
425  /* With garbage input we may reach the sentinel value l = 17. */
426
427  if (l > 16) {
428    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
429    return 0;                   /* fake a zero as the safest result */
430  }
431
432  return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
433}
434
435
436/*
437 * Figure F.12: extend sign bit.
438 * On some machines, a shift and add will be faster than a table lookup.
439 */
440
441#ifdef AVOID_TABLES
442
443#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
444
445#else
446
447#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
448
449static const int extend_test[16] =   /* entry n is 2**(n-1) */
450  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
451    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
452
453static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
454  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
455    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
456    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
457    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
458
459#endif /* AVOID_TABLES */
460
461
462/*
463 * Check for a restart marker & resynchronize decoder.
464 * Returns FALSE if must suspend.
465 */
466
467LOCAL(boolean)
468process_restart (j_decompress_ptr cinfo)
469{
470  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
471  int ci;
472
473  /* Throw away any unused bits remaining in bit buffer; */
474  /* include any full bytes in next_marker's count of discarded bytes */
475  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
476  entropy->bitstate.bits_left = 0;
477
478  /* Advance past the RSTn marker */
479  if (! (*cinfo->marker->read_restart_marker) (cinfo))
480    return FALSE;
481
482  /* Re-initialize DC predictions to 0 */
483  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
484    entropy->saved.last_dc_val[ci] = 0;
485
486  /* Reset restart counter */
487  entropy->restarts_to_go = cinfo->restart_interval;
488
489  /* Reset out-of-data flag, unless read_restart_marker left us smack up
490   * against a marker.  In that case we will end up treating the next data
491   * segment as empty, and we can avoid producing bogus output pixels by
492   * leaving the flag set.
493   */
494  if (cinfo->unread_marker == 0)
495    entropy->pub.insufficient_data = FALSE;
496
497  return TRUE;
498}
499
500
501/*
502 * Decode and return one MCU's worth of Huffman-compressed coefficients.
503 * The coefficients are reordered from zigzag order into natural array order,
504 * but are not dequantized.
505 *
506 * The i'th block of the MCU is stored into the block pointed to by
507 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
508 * (Wholesale zeroing is usually a little faster than retail...)
509 *
510 * Returns FALSE if data source requested suspension.  In that case no
511 * changes have been made to permanent state.  (Exception: some output
512 * coefficients may already have been assigned.  This is harmless for
513 * this module, since we'll just re-assign them on the next call.)
514 */
515
516METHODDEF(boolean)
517decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
518{
519  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
520  int blkn;
521  BITREAD_STATE_VARS;
522  savable_state state;
523
524  /* Process restart marker if needed; may have to suspend */
525  if (cinfo->restart_interval) {
526    if (entropy->restarts_to_go == 0)
527      if (! process_restart(cinfo))
528        return FALSE;
529  }
530
531  /* If we've run out of data, just leave the MCU set to zeroes.
532   * This way, we return uniform gray for the remainder of the segment.
533   */
534  if (! entropy->pub.insufficient_data) {
535
536    /* Load up working state */
537    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
538    ASSIGN_STATE(state, entropy->saved);
539
540    /* Outer loop handles each block in the MCU */
541
542    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
543      JBLOCKROW block = MCU_data[blkn];
544      d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
545      d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
546      register int s, k, r;
547
548      /* Decode a single block's worth of coefficients */
549
550      /* Section F.2.2.1: decode the DC coefficient difference */
551      HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
552      if (s) {
553        CHECK_BIT_BUFFER(br_state, s, return FALSE);
554        r = GET_BITS(s);
555        s = HUFF_EXTEND(r, s);
556      }
557
558      if (entropy->dc_needed[blkn]) {
559        /* Convert DC difference to actual value, update last_dc_val */
560        int ci = cinfo->MCU_membership[blkn];
561        s += state.last_dc_val[ci];
562        state.last_dc_val[ci] = s;
563        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
564        (*block)[0] = (JCOEF) s;
565      }
566
567      if (entropy->ac_needed[blkn]) {
568
569        /* Section F.2.2.2: decode the AC coefficients */
570        /* Since zeroes are skipped, output area must be cleared beforehand */
571        for (k = 1; k < DCTSIZE2; k++) {
572          HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
573     
574          r = s >> 4;
575          s &= 15;
576     
577          if (s) {
578            k += r;
579            CHECK_BIT_BUFFER(br_state, s, return FALSE);
580            r = GET_BITS(s);
581            s = HUFF_EXTEND(r, s);
582            /* Output coefficient in natural (dezigzagged) order.
583             * Note: the extra entries in jpeg_natural_order[] will save us
584             * if k >= DCTSIZE2, which could happen if the data is corrupted.
585             */
586            (*block)[jpeg_natural_order[k]] = (JCOEF) s;
587          } else {
588            if (r != 15)
589              break;
590            k += 15;
591          }
592        }
593
594      } else {
595
596        /* Section F.2.2.2: decode the AC coefficients */
597        /* In this path we just discard the values */
598        for (k = 1; k < DCTSIZE2; k++) {
599          HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
600     
601          r = s >> 4;
602          s &= 15;
603     
604          if (s) {
605            k += r;
606            CHECK_BIT_BUFFER(br_state, s, return FALSE);
607            DROP_BITS(s);
608          } else {
609            if (r != 15)
610              break;
611            k += 15;
612          }
613        }
614
615      }
616    }
617
618    /* Completed MCU, so update state */
619    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
620    ASSIGN_STATE(entropy->saved, state);
621  }
622
623  /* Account for restart interval (no-op if not using restarts) */
624  entropy->restarts_to_go--;
625
626  return TRUE;
627}
628
629
630/*
631 * Module initialization routine for Huffman entropy decoding.
632 */
633
634GLOBAL(void)
635jinit_huff_decoder (j_decompress_ptr cinfo)
636{
637  huff_entropy_ptr entropy;
638  int i;
639
640  entropy = (huff_entropy_ptr)
641    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
642                                SIZEOF(huff_entropy_decoder));
643  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
644  entropy->pub.start_pass = start_pass_huff_decoder;
645  entropy->pub.decode_mcu = decode_mcu;
646
647  /* Mark tables unallocated */
648  for (i = 0; i < NUM_HUFF_TBLS; i++) {
649    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
650  }
651}
Note: See TracBrowser for help on using the repository browser.