source: trunk/third/firefox/jpeg/jmemmgr.c @ 21695

Revision 21695, 40.0 KB checked in by rbasch, 20 years ago (diff)
This commit was generated by cvs2svn to compensate for changes in r21694, which included commits to RCS files with non-trunk default branches.
Line 
1/*
2 * jmemmgr.c
3 *
4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains the JPEG system-independent memory management
9 * routines.  This code is usable across a wide variety of machines; most
10 * of the system dependencies have been isolated in a separate file.
11 * The major functions provided here are:
12 *   * pool-based allocation and freeing of memory;
13 *   * policy decisions about how to divide available memory among the
14 *     virtual arrays;
15 *   * control logic for swapping virtual arrays between main memory and
16 *     backing storage.
17 * The separate system-dependent file provides the actual backing-storage
18 * access code, and it contains the policy decision about how much total
19 * main memory to use.
20 * This file is system-dependent in the sense that some of its functions
21 * are unnecessary in some systems.  For example, if there is enough virtual
22 * memory so that backing storage will never be used, much of the virtual
23 * array control logic could be removed.  (Of course, if you have that much
24 * memory then you shouldn't care about a little bit of unused code...)
25 */
26
27#define JPEG_INTERNALS
28#define AM_MEMORY_MANAGER       /* we define jvirt_Xarray_control structs */
29#include "jinclude.h"
30#include "jpeglib.h"
31#include "jmemsys.h"            /* import the system-dependent declarations */
32
33#ifndef NO_GETENV
34#ifndef HAVE_STDLIB_H           /* <stdlib.h> should declare getenv() */
35extern char * getenv JPP((const char * name));
36#endif
37#endif
38
39
40/*
41 * Some important notes:
42 *   The allocation routines provided here must never return NULL.
43 *   They should exit to error_exit if unsuccessful.
44 *
45 *   It's not a good idea to try to merge the sarray and barray routines,
46 *   even though they are textually almost the same, because samples are
47 *   usually stored as bytes while coefficients are shorts or ints.  Thus,
48 *   in machines where byte pointers have a different representation from
49 *   word pointers, the resulting machine code could not be the same.
50 */
51
52
53/*
54 * Many machines require storage alignment: longs must start on 4-byte
55 * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
56 * always returns pointers that are multiples of the worst-case alignment
57 * requirement, and we had better do so too.
58 * There isn't any really portable way to determine the worst-case alignment
59 * requirement.  This module assumes that the alignment requirement is
60 * multiples of sizeof(ALIGN_TYPE).
61 * By default, we define ALIGN_TYPE as double.  This is necessary on some
62 * workstations (where doubles really do need 8-byte alignment) and will work
63 * fine on nearly everything.  If your machine has lesser alignment needs,
64 * you can save a few bytes by making ALIGN_TYPE smaller.
65 * The only place I know of where this will NOT work is certain Macintosh
66 * 680x0 compilers that define double as a 10-byte IEEE extended float.
67 * Doing 10-byte alignment is counterproductive because longwords won't be
68 * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
69 * such a compiler.
70 */
71
72#ifndef ALIGN_TYPE              /* so can override from jconfig.h */
73#define ALIGN_TYPE  double
74#endif
75
76
77/*
78 * We allocate objects from "pools", where each pool is gotten with a single
79 * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
80 * overhead within a pool, except for alignment padding.  Each pool has a
81 * header with a link to the next pool of the same class.
82 * Small and large pool headers are identical except that the latter's
83 * link pointer must be FAR on 80x86 machines.
84 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
85 * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
86 * of the alignment requirement of ALIGN_TYPE.
87 */
88
89typedef union small_pool_struct * small_pool_ptr;
90
91typedef union small_pool_struct {
92  struct {
93    small_pool_ptr next;        /* next in list of pools */
94    size_t bytes_used;          /* how many bytes already used within pool */
95    size_t bytes_left;          /* bytes still available in this pool */
96  } hdr;
97  ALIGN_TYPE dummy;             /* included in union to ensure alignment */
98} small_pool_hdr;
99
100typedef union large_pool_struct FAR * large_pool_ptr;
101
102typedef union large_pool_struct {
103  struct {
104    large_pool_ptr next;        /* next in list of pools */
105    size_t bytes_used;          /* how many bytes already used within pool */
106    size_t bytes_left;          /* bytes still available in this pool */
107  } hdr;
108  ALIGN_TYPE dummy;             /* included in union to ensure alignment */
109} large_pool_hdr;
110
111
112/*
113 * Here is the full definition of a memory manager object.
114 */
115
116typedef struct {
117  struct jpeg_memory_mgr pub;   /* public fields */
118
119  /* Each pool identifier (lifetime class) names a linked list of pools. */
120  small_pool_ptr small_list[JPOOL_NUMPOOLS];
121  large_pool_ptr large_list[JPOOL_NUMPOOLS];
122
123  /* Since we only have one lifetime class of virtual arrays, only one
124   * linked list is necessary (for each datatype).  Note that the virtual
125   * array control blocks being linked together are actually stored somewhere
126   * in the small-pool list.
127   */
128  jvirt_sarray_ptr virt_sarray_list;
129  jvirt_barray_ptr virt_barray_list;
130
131  /* This counts total space obtained from jpeg_get_small/large */
132  long total_space_allocated;
133
134  /* alloc_sarray and alloc_barray set this value for use by virtual
135   * array routines.
136   */
137  JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
138} my_memory_mgr;
139
140typedef my_memory_mgr * my_mem_ptr;
141
142
143/*
144 * The control blocks for virtual arrays.
145 * Note that these blocks are allocated in the "small" pool area.
146 * System-dependent info for the associated backing store (if any) is hidden
147 * inside the backing_store_info struct.
148 */
149
150struct jvirt_sarray_control {
151  JSAMPARRAY mem_buffer;        /* => the in-memory buffer */
152  JDIMENSION rows_in_array;     /* total virtual array height */
153  JDIMENSION samplesperrow;     /* width of array (and of memory buffer) */
154  JDIMENSION maxaccess;         /* max rows accessed by access_virt_sarray */
155  JDIMENSION rows_in_mem;       /* height of memory buffer */
156  JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
157  JDIMENSION cur_start_row;     /* first logical row # in the buffer */
158  JDIMENSION first_undef_row;   /* row # of first uninitialized row */
159  boolean pre_zero;             /* pre-zero mode requested? */
160  boolean dirty;                /* do current buffer contents need written? */
161  boolean b_s_open;             /* is backing-store data valid? */
162  jvirt_sarray_ptr next;        /* link to next virtual sarray control block */
163  backing_store_info b_s_info;  /* System-dependent control info */
164};
165
166struct jvirt_barray_control {
167  JBLOCKARRAY mem_buffer;       /* => the in-memory buffer */
168  JDIMENSION rows_in_array;     /* total virtual array height */
169  JDIMENSION blocksperrow;      /* width of array (and of memory buffer) */
170  JDIMENSION maxaccess;         /* max rows accessed by access_virt_barray */
171  JDIMENSION rows_in_mem;       /* height of memory buffer */
172  JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
173  JDIMENSION cur_start_row;     /* first logical row # in the buffer */
174  JDIMENSION first_undef_row;   /* row # of first uninitialized row */
175  boolean pre_zero;             /* pre-zero mode requested? */
176  boolean dirty;                /* do current buffer contents need written? */
177  boolean b_s_open;             /* is backing-store data valid? */
178  jvirt_barray_ptr next;        /* link to next virtual barray control block */
179  backing_store_info b_s_info;  /* System-dependent control info */
180};
181
182
183#ifdef MEM_STATS                /* optional extra stuff for statistics */
184
185LOCAL(void)
186print_mem_stats (j_common_ptr cinfo, int pool_id)
187{
188  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
189  small_pool_ptr shdr_ptr;
190  large_pool_ptr lhdr_ptr;
191
192  /* Since this is only a debugging stub, we can cheat a little by using
193   * fprintf directly rather than going through the trace message code.
194   * This is helpful because message parm array can't handle longs.
195   */
196  fprintf(stderr, "Freeing pool %d, total space = %ld\n",
197          pool_id, mem->total_space_allocated);
198
199  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
200       lhdr_ptr = lhdr_ptr->hdr.next) {
201    fprintf(stderr, "  Large chunk used %ld\n",
202            (long) lhdr_ptr->hdr.bytes_used);
203  }
204
205  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
206       shdr_ptr = shdr_ptr->hdr.next) {
207    fprintf(stderr, "  Small chunk used %ld free %ld\n",
208            (long) shdr_ptr->hdr.bytes_used,
209            (long) shdr_ptr->hdr.bytes_left);
210  }
211}
212
213#endif /* MEM_STATS */
214
215
216LOCAL(void)
217out_of_memory (j_common_ptr cinfo, int which)
218/* Report an out-of-memory error and stop execution */
219/* If we compiled MEM_STATS support, report alloc requests before dying */
220{
221#ifdef MEM_STATS
222  cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
223#endif
224  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
225}
226
227
228/*
229 * Allocation of "small" objects.
230 *
231 * For these, we use pooled storage.  When a new pool must be created,
232 * we try to get enough space for the current request plus a "slop" factor,
233 * where the slop will be the amount of leftover space in the new pool.
234 * The speed vs. space tradeoff is largely determined by the slop values.
235 * A different slop value is provided for each pool class (lifetime),
236 * and we also distinguish the first pool of a class from later ones.
237 * NOTE: the values given work fairly well on both 16- and 32-bit-int
238 * machines, but may be too small if longs are 64 bits or more.
239 */
240
241static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
242{
243        1600,                   /* first PERMANENT pool */
244        16000                   /* first IMAGE pool */
245};
246
247static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
248{
249        0,                      /* additional PERMANENT pools */
250        5000                    /* additional IMAGE pools */
251};
252
253#define MIN_SLOP  50            /* greater than 0 to avoid futile looping */
254
255
256METHODDEF(void *)
257alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
258/* Allocate a "small" object */
259{
260  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
261  small_pool_ptr hdr_ptr, prev_hdr_ptr;
262  char * data_ptr;
263  size_t odd_bytes, min_request, slop;
264
265  /* Check for unsatisfiable request (do now to ensure no overflow below) */
266  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
267    out_of_memory(cinfo, 1);    /* request exceeds malloc's ability */
268
269  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
270  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
271  if (odd_bytes > 0)
272    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
273
274  /* See if space is available in any existing pool */
275  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
276    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
277  prev_hdr_ptr = NULL;
278  hdr_ptr = mem->small_list[pool_id];
279  while (hdr_ptr != NULL) {
280    if (hdr_ptr->hdr.bytes_left >= sizeofobject)
281      break;                    /* found pool with enough space */
282    prev_hdr_ptr = hdr_ptr;
283    hdr_ptr = hdr_ptr->hdr.next;
284  }
285
286  /* Time to make a new pool? */
287  if (hdr_ptr == NULL) {
288    /* min_request is what we need now, slop is what will be leftover */
289    min_request = sizeofobject + SIZEOF(small_pool_hdr);
290    if (prev_hdr_ptr == NULL)   /* first pool in class? */
291      slop = first_pool_slop[pool_id];
292    else
293      slop = extra_pool_slop[pool_id];
294    /* Don't ask for more than MAX_ALLOC_CHUNK */
295    if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
296      slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
297    /* Try to get space, if fail reduce slop and try again */
298    for (;;) {
299      hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
300      if (hdr_ptr != NULL)
301        break;
302      slop /= 2;
303      if (slop < MIN_SLOP)      /* give up when it gets real small */
304        out_of_memory(cinfo, 2); /* jpeg_get_small failed */
305    }
306    mem->total_space_allocated += min_request + slop;
307    /* Success, initialize the new pool header and add to end of list */
308    hdr_ptr->hdr.next = NULL;
309    hdr_ptr->hdr.bytes_used = 0;
310    hdr_ptr->hdr.bytes_left = sizeofobject + slop;
311    if (prev_hdr_ptr == NULL)   /* first pool in class? */
312      mem->small_list[pool_id] = hdr_ptr;
313    else
314      prev_hdr_ptr->hdr.next = hdr_ptr;
315  }
316
317  /* OK, allocate the object from the current pool */
318  data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
319  data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
320  hdr_ptr->hdr.bytes_used += sizeofobject;
321  hdr_ptr->hdr.bytes_left -= sizeofobject;
322
323  return (void *) data_ptr;
324}
325
326
327/*
328 * Allocation of "large" objects.
329 *
330 * The external semantics of these are the same as "small" objects,
331 * except that FAR pointers are used on 80x86.  However the pool
332 * management heuristics are quite different.  We assume that each
333 * request is large enough that it may as well be passed directly to
334 * jpeg_get_large; the pool management just links everything together
335 * so that we can free it all on demand.
336 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
337 * structures.  The routines that create these structures (see below)
338 * deliberately bunch rows together to ensure a large request size.
339 */
340
341METHODDEF(void FAR *)
342alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
343/* Allocate a "large" object */
344{
345  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
346  large_pool_ptr hdr_ptr;
347  size_t odd_bytes;
348
349  /* Check for unsatisfiable request (do now to ensure no overflow below) */
350  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
351    out_of_memory(cinfo, 3);    /* request exceeds malloc's ability */
352
353  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
354  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
355  if (odd_bytes > 0)
356    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
357
358  /* Always make a new pool */
359  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
360    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
361
362  hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
363                                            SIZEOF(large_pool_hdr));
364  if (hdr_ptr == NULL)
365    out_of_memory(cinfo, 4);    /* jpeg_get_large failed */
366  mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
367
368  /* Success, initialize the new pool header and add to list */
369  hdr_ptr->hdr.next = mem->large_list[pool_id];
370  /* We maintain space counts in each pool header for statistical purposes,
371   * even though they are not needed for allocation.
372   */
373  hdr_ptr->hdr.bytes_used = sizeofobject;
374  hdr_ptr->hdr.bytes_left = 0;
375  mem->large_list[pool_id] = hdr_ptr;
376
377  return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
378}
379
380
381/*
382 * Creation of 2-D sample arrays.
383 * The pointers are in near heap, the samples themselves in FAR heap.
384 *
385 * To minimize allocation overhead and to allow I/O of large contiguous
386 * blocks, we allocate the sample rows in groups of as many rows as possible
387 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
388 * NB: the virtual array control routines, later in this file, know about
389 * this chunking of rows.  The rowsperchunk value is left in the mem manager
390 * object so that it can be saved away if this sarray is the workspace for
391 * a virtual array.
392 */
393
394METHODDEF(JSAMPARRAY)
395alloc_sarray (j_common_ptr cinfo, int pool_id,
396              JDIMENSION samplesperrow, JDIMENSION numrows)
397/* Allocate a 2-D sample array */
398{
399  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
400  JSAMPARRAY result;
401  JSAMPROW workspace;
402  JDIMENSION rowsperchunk, currow, i;
403  long ltemp;
404
405  /* Calculate max # of rows allowed in one allocation chunk */
406  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
407          ((long) samplesperrow * SIZEOF(JSAMPLE));
408  if (ltemp <= 0)
409    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
410  if (ltemp < (long) numrows)
411    rowsperchunk = (JDIMENSION) ltemp;
412  else
413    rowsperchunk = numrows;
414  mem->last_rowsperchunk = rowsperchunk;
415
416  /* Get space for row pointers (small object) */
417  result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
418                                    (size_t) (numrows * SIZEOF(JSAMPROW)));
419
420  /* Get the rows themselves (large objects) */
421  currow = 0;
422  while (currow < numrows) {
423    rowsperchunk = MIN(rowsperchunk, numrows - currow);
424    workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
425        (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
426                  * SIZEOF(JSAMPLE)));
427    for (i = rowsperchunk; i > 0; i--) {
428      result[currow++] = workspace;
429      workspace += samplesperrow;
430    }
431  }
432
433  return result;
434}
435
436
437/*
438 * Creation of 2-D coefficient-block arrays.
439 * This is essentially the same as the code for sample arrays, above.
440 */
441
442METHODDEF(JBLOCKARRAY)
443alloc_barray (j_common_ptr cinfo, int pool_id,
444              JDIMENSION blocksperrow, JDIMENSION numrows)
445/* Allocate a 2-D coefficient-block array */
446{
447  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
448  JBLOCKARRAY result;
449  JBLOCKROW workspace;
450  JDIMENSION rowsperchunk, currow, i;
451  long ltemp;
452
453  /* Calculate max # of rows allowed in one allocation chunk */
454  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
455          ((long) blocksperrow * SIZEOF(JBLOCK));
456  if (ltemp <= 0)
457    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
458  if (ltemp < (long) numrows)
459    rowsperchunk = (JDIMENSION) ltemp;
460  else
461    rowsperchunk = numrows;
462  mem->last_rowsperchunk = rowsperchunk;
463
464  /* Get space for row pointers (small object) */
465  result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
466                                     (size_t) (numrows * SIZEOF(JBLOCKROW)));
467
468  /* Get the rows themselves (large objects) */
469  currow = 0;
470  while (currow < numrows) {
471    rowsperchunk = MIN(rowsperchunk, numrows - currow);
472    workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
473        (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
474                  * SIZEOF(JBLOCK)));
475    for (i = rowsperchunk; i > 0; i--) {
476      result[currow++] = workspace;
477      workspace += blocksperrow;
478    }
479  }
480
481  return result;
482}
483
484
485/*
486 * About virtual array management:
487 *
488 * The above "normal" array routines are only used to allocate strip buffers
489 * (as wide as the image, but just a few rows high).  Full-image-sized buffers
490 * are handled as "virtual" arrays.  The array is still accessed a strip at a
491 * time, but the memory manager must save the whole array for repeated
492 * accesses.  The intended implementation is that there is a strip buffer in
493 * memory (as high as is possible given the desired memory limit), plus a
494 * backing file that holds the rest of the array.
495 *
496 * The request_virt_array routines are told the total size of the image and
497 * the maximum number of rows that will be accessed at once.  The in-memory
498 * buffer must be at least as large as the maxaccess value.
499 *
500 * The request routines create control blocks but not the in-memory buffers.
501 * That is postponed until realize_virt_arrays is called.  At that time the
502 * total amount of space needed is known (approximately, anyway), so free
503 * memory can be divided up fairly.
504 *
505 * The access_virt_array routines are responsible for making a specific strip
506 * area accessible (after reading or writing the backing file, if necessary).
507 * Note that the access routines are told whether the caller intends to modify
508 * the accessed strip; during a read-only pass this saves having to rewrite
509 * data to disk.  The access routines are also responsible for pre-zeroing
510 * any newly accessed rows, if pre-zeroing was requested.
511 *
512 * In current usage, the access requests are usually for nonoverlapping
513 * strips; that is, successive access start_row numbers differ by exactly
514 * num_rows = maxaccess.  This means we can get good performance with simple
515 * buffer dump/reload logic, by making the in-memory buffer be a multiple
516 * of the access height; then there will never be accesses across bufferload
517 * boundaries.  The code will still work with overlapping access requests,
518 * but it doesn't handle bufferload overlaps very efficiently.
519 */
520
521
522METHODDEF(jvirt_sarray_ptr)
523request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
524                     JDIMENSION samplesperrow, JDIMENSION numrows,
525                     JDIMENSION maxaccess)
526/* Request a virtual 2-D sample array */
527{
528  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
529  jvirt_sarray_ptr result;
530
531  /* Only IMAGE-lifetime virtual arrays are currently supported */
532  if (pool_id != JPOOL_IMAGE)
533    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
534
535  /* get control block */
536  result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
537                                          SIZEOF(struct jvirt_sarray_control));
538
539  result->mem_buffer = NULL;    /* marks array not yet realized */
540  result->rows_in_array = numrows;
541  result->samplesperrow = samplesperrow;
542  result->maxaccess = maxaccess;
543  result->pre_zero = pre_zero;
544  result->b_s_open = FALSE;     /* no associated backing-store object */
545  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
546  mem->virt_sarray_list = result;
547
548  return result;
549}
550
551
552METHODDEF(jvirt_barray_ptr)
553request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
554                     JDIMENSION blocksperrow, JDIMENSION numrows,
555                     JDIMENSION maxaccess)
556/* Request a virtual 2-D coefficient-block array */
557{
558  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
559  jvirt_barray_ptr result;
560
561  /* Only IMAGE-lifetime virtual arrays are currently supported */
562  if (pool_id != JPOOL_IMAGE)
563    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
564
565  /* get control block */
566  result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
567                                          SIZEOF(struct jvirt_barray_control));
568
569  result->mem_buffer = NULL;    /* marks array not yet realized */
570  result->rows_in_array = numrows;
571  result->blocksperrow = blocksperrow;
572  result->maxaccess = maxaccess;
573  result->pre_zero = pre_zero;
574  result->b_s_open = FALSE;     /* no associated backing-store object */
575  result->next = mem->virt_barray_list; /* add to list of virtual arrays */
576  mem->virt_barray_list = result;
577
578  return result;
579}
580
581
582METHODDEF(void)
583realize_virt_arrays (j_common_ptr cinfo)
584/* Allocate the in-memory buffers for any unrealized virtual arrays */
585{
586  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
587  long space_per_minheight, maximum_space, avail_mem;
588  long minheights, max_minheights;
589  jvirt_sarray_ptr sptr;
590  jvirt_barray_ptr bptr;
591
592  /* Compute the minimum space needed (maxaccess rows in each buffer)
593   * and the maximum space needed (full image height in each buffer).
594   * These may be of use to the system-dependent jpeg_mem_available routine.
595   */
596  space_per_minheight = 0;
597  maximum_space = 0;
598  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
599    if (sptr->mem_buffer == NULL) { /* if not realized yet */
600      space_per_minheight += (long) sptr->maxaccess *
601                             (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
602      maximum_space += (long) sptr->rows_in_array *
603                       (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
604    }
605  }
606  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
607    if (bptr->mem_buffer == NULL) { /* if not realized yet */
608      space_per_minheight += (long) bptr->maxaccess *
609                             (long) bptr->blocksperrow * SIZEOF(JBLOCK);
610      maximum_space += (long) bptr->rows_in_array *
611                       (long) bptr->blocksperrow * SIZEOF(JBLOCK);
612    }
613  }
614
615  if (space_per_minheight <= 0)
616    return;                     /* no unrealized arrays, no work */
617
618  /* Determine amount of memory to actually use; this is system-dependent. */
619  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
620                                 mem->total_space_allocated);
621
622  /* If the maximum space needed is available, make all the buffers full
623   * height; otherwise parcel it out with the same number of minheights
624   * in each buffer.
625   */
626  if (avail_mem >= maximum_space)
627    max_minheights = 1000000000L;
628  else {
629    max_minheights = avail_mem / space_per_minheight;
630    /* If there doesn't seem to be enough space, try to get the minimum
631     * anyway.  This allows a "stub" implementation of jpeg_mem_available().
632     */
633    if (max_minheights <= 0)
634      max_minheights = 1;
635  }
636
637  /* Allocate the in-memory buffers and initialize backing store as needed. */
638
639  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
640    if (sptr->mem_buffer == NULL) { /* if not realized yet */
641      minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
642      if (minheights <= max_minheights) {
643        /* This buffer fits in memory */
644        sptr->rows_in_mem = sptr->rows_in_array;
645      } else {
646        /* It doesn't fit in memory, create backing store. */
647        sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
648        jpeg_open_backing_store(cinfo, & sptr->b_s_info,
649                                (long) sptr->rows_in_array *
650                                (long) sptr->samplesperrow *
651                                (long) SIZEOF(JSAMPLE));
652        sptr->b_s_open = TRUE;
653      }
654      sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
655                                      sptr->samplesperrow, sptr->rows_in_mem);
656      sptr->rowsperchunk = mem->last_rowsperchunk;
657      sptr->cur_start_row = 0;
658      sptr->first_undef_row = 0;
659      sptr->dirty = FALSE;
660    }
661  }
662
663  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
664    if (bptr->mem_buffer == NULL) { /* if not realized yet */
665      minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
666      if (minheights <= max_minheights) {
667        /* This buffer fits in memory */
668        bptr->rows_in_mem = bptr->rows_in_array;
669      } else {
670        /* It doesn't fit in memory, create backing store. */
671        bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
672        jpeg_open_backing_store(cinfo, & bptr->b_s_info,
673                                (long) bptr->rows_in_array *
674                                (long) bptr->blocksperrow *
675                                (long) SIZEOF(JBLOCK));
676        bptr->b_s_open = TRUE;
677      }
678      bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
679                                      bptr->blocksperrow, bptr->rows_in_mem);
680      bptr->rowsperchunk = mem->last_rowsperchunk;
681      bptr->cur_start_row = 0;
682      bptr->first_undef_row = 0;
683      bptr->dirty = FALSE;
684    }
685  }
686}
687
688
689LOCAL(void)
690do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
691/* Do backing store read or write of a virtual sample array */
692{
693  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
694
695  bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
696  file_offset = ptr->cur_start_row * bytesperrow;
697  /* Loop to read or write each allocation chunk in mem_buffer */
698  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
699    /* One chunk, but check for short chunk at end of buffer */
700    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
701    /* Transfer no more than is currently defined */
702    thisrow = (long) ptr->cur_start_row + i;
703    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
704    /* Transfer no more than fits in file */
705    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
706    if (rows <= 0)              /* this chunk might be past end of file! */
707      break;
708    byte_count = rows * bytesperrow;
709    if (writing)
710      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
711                                            (void FAR *) ptr->mem_buffer[i],
712                                            file_offset, byte_count);
713    else
714      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
715                                           (void FAR *) ptr->mem_buffer[i],
716                                           file_offset, byte_count);
717    file_offset += byte_count;
718  }
719}
720
721
722LOCAL(void)
723do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
724/* Do backing store read or write of a virtual coefficient-block array */
725{
726  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
727
728  bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
729  file_offset = ptr->cur_start_row * bytesperrow;
730  /* Loop to read or write each allocation chunk in mem_buffer */
731  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
732    /* One chunk, but check for short chunk at end of buffer */
733    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
734    /* Transfer no more than is currently defined */
735    thisrow = (long) ptr->cur_start_row + i;
736    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
737    /* Transfer no more than fits in file */
738    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
739    if (rows <= 0)              /* this chunk might be past end of file! */
740      break;
741    byte_count = rows * bytesperrow;
742    if (writing)
743      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
744                                            (void FAR *) ptr->mem_buffer[i],
745                                            file_offset, byte_count);
746    else
747      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
748                                           (void FAR *) ptr->mem_buffer[i],
749                                           file_offset, byte_count);
750    file_offset += byte_count;
751  }
752}
753
754
755METHODDEF(JSAMPARRAY)
756access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
757                    JDIMENSION start_row, JDIMENSION num_rows,
758                    boolean writable)
759/* Access the part of a virtual sample array starting at start_row */
760/* and extending for num_rows rows.  writable is true if  */
761/* caller intends to modify the accessed area. */
762{
763  JDIMENSION end_row = start_row + num_rows;
764  JDIMENSION undef_row;
765
766  /* debugging check */
767  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
768      ptr->mem_buffer == NULL)
769    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
770
771  /* Make the desired part of the virtual array accessible */
772  if (start_row < ptr->cur_start_row ||
773      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
774    if (! ptr->b_s_open)
775      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
776    /* Flush old buffer contents if necessary */
777    if (ptr->dirty) {
778      do_sarray_io(cinfo, ptr, TRUE);
779      ptr->dirty = FALSE;
780    }
781    /* Decide what part of virtual array to access.
782     * Algorithm: if target address > current window, assume forward scan,
783     * load starting at target address.  If target address < current window,
784     * assume backward scan, load so that target area is top of window.
785     * Note that when switching from forward write to forward read, will have
786     * start_row = 0, so the limiting case applies and we load from 0 anyway.
787     */
788    if (start_row > ptr->cur_start_row) {
789      ptr->cur_start_row = start_row;
790    } else {
791      /* use long arithmetic here to avoid overflow & unsigned problems */
792      long ltemp;
793
794      ltemp = (long) end_row - (long) ptr->rows_in_mem;
795      if (ltemp < 0)
796        ltemp = 0;              /* don't fall off front end of file */
797      ptr->cur_start_row = (JDIMENSION) ltemp;
798    }
799    /* Read in the selected part of the array.
800     * During the initial write pass, we will do no actual read
801     * because the selected part is all undefined.
802     */
803    do_sarray_io(cinfo, ptr, FALSE);
804  }
805  /* Ensure the accessed part of the array is defined; prezero if needed.
806   * To improve locality of access, we only prezero the part of the array
807   * that the caller is about to access, not the entire in-memory array.
808   */
809  if (ptr->first_undef_row < end_row) {
810    if (ptr->first_undef_row < start_row) {
811      if (writable)             /* writer skipped over a section of array */
812        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
813      undef_row = start_row;    /* but reader is allowed to read ahead */
814    } else {
815      undef_row = ptr->first_undef_row;
816    }
817    if (writable)
818      ptr->first_undef_row = end_row;
819    if (ptr->pre_zero) {
820      size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
821      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
822      end_row -= ptr->cur_start_row;
823      while (undef_row < end_row) {
824        jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
825        undef_row++;
826      }
827    } else {
828      if (! writable)           /* reader looking at undefined data */
829        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
830    }
831  }
832  /* Flag the buffer dirty if caller will write in it */
833  if (writable)
834    ptr->dirty = TRUE;
835  /* Return address of proper part of the buffer */
836  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
837}
838
839
840METHODDEF(JBLOCKARRAY)
841access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
842                    JDIMENSION start_row, JDIMENSION num_rows,
843                    boolean writable)
844/* Access the part of a virtual block array starting at start_row */
845/* and extending for num_rows rows.  writable is true if  */
846/* caller intends to modify the accessed area. */
847{
848  JDIMENSION end_row = start_row + num_rows;
849  JDIMENSION undef_row;
850
851  /* debugging check */
852  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
853      ptr->mem_buffer == NULL)
854    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
855
856  /* Make the desired part of the virtual array accessible */
857  if (start_row < ptr->cur_start_row ||
858      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
859    if (! ptr->b_s_open)
860      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
861    /* Flush old buffer contents if necessary */
862    if (ptr->dirty) {
863      do_barray_io(cinfo, ptr, TRUE);
864      ptr->dirty = FALSE;
865    }
866    /* Decide what part of virtual array to access.
867     * Algorithm: if target address > current window, assume forward scan,
868     * load starting at target address.  If target address < current window,
869     * assume backward scan, load so that target area is top of window.
870     * Note that when switching from forward write to forward read, will have
871     * start_row = 0, so the limiting case applies and we load from 0 anyway.
872     */
873    if (start_row > ptr->cur_start_row) {
874      ptr->cur_start_row = start_row;
875    } else {
876      /* use long arithmetic here to avoid overflow & unsigned problems */
877      long ltemp;
878
879      ltemp = (long) end_row - (long) ptr->rows_in_mem;
880      if (ltemp < 0)
881        ltemp = 0;              /* don't fall off front end of file */
882      ptr->cur_start_row = (JDIMENSION) ltemp;
883    }
884    /* Read in the selected part of the array.
885     * During the initial write pass, we will do no actual read
886     * because the selected part is all undefined.
887     */
888    do_barray_io(cinfo, ptr, FALSE);
889  }
890  /* Ensure the accessed part of the array is defined; prezero if needed.
891   * To improve locality of access, we only prezero the part of the array
892   * that the caller is about to access, not the entire in-memory array.
893   */
894  if (ptr->first_undef_row < end_row) {
895    if (ptr->first_undef_row < start_row) {
896      if (writable)             /* writer skipped over a section of array */
897        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
898      undef_row = start_row;    /* but reader is allowed to read ahead */
899    } else {
900      undef_row = ptr->first_undef_row;
901    }
902    if (writable)
903      ptr->first_undef_row = end_row;
904    if (ptr->pre_zero) {
905      size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
906      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
907      end_row -= ptr->cur_start_row;
908      while (undef_row < end_row) {
909        jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
910        undef_row++;
911      }
912    } else {
913      if (! writable)           /* reader looking at undefined data */
914        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
915    }
916  }
917  /* Flag the buffer dirty if caller will write in it */
918  if (writable)
919    ptr->dirty = TRUE;
920  /* Return address of proper part of the buffer */
921  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
922}
923
924
925/*
926 * Release all objects belonging to a specified pool.
927 */
928
929METHODDEF(void)
930free_pool (j_common_ptr cinfo, int pool_id)
931{
932  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
933  small_pool_ptr shdr_ptr;
934  large_pool_ptr lhdr_ptr;
935  size_t space_freed;
936
937  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
938    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
939
940#ifdef MEM_STATS
941  if (cinfo->err->trace_level > 1)
942    print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
943#endif
944
945  /* If freeing IMAGE pool, close any virtual arrays first */
946  if (pool_id == JPOOL_IMAGE) {
947    jvirt_sarray_ptr sptr;
948    jvirt_barray_ptr bptr;
949
950    for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
951      if (sptr->b_s_open) {     /* there may be no backing store */
952        sptr->b_s_open = FALSE; /* prevent recursive close if error */
953        (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
954      }
955    }
956    mem->virt_sarray_list = NULL;
957    for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
958      if (bptr->b_s_open) {     /* there may be no backing store */
959        bptr->b_s_open = FALSE; /* prevent recursive close if error */
960        (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
961      }
962    }
963    mem->virt_barray_list = NULL;
964  }
965
966  /* Release large objects */
967  lhdr_ptr = mem->large_list[pool_id];
968  mem->large_list[pool_id] = NULL;
969
970  while (lhdr_ptr != NULL) {
971    large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
972    space_freed = lhdr_ptr->hdr.bytes_used +
973                  lhdr_ptr->hdr.bytes_left +
974                  SIZEOF(large_pool_hdr);
975    jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
976    mem->total_space_allocated -= space_freed;
977    lhdr_ptr = next_lhdr_ptr;
978  }
979
980  /* Release small objects */
981  shdr_ptr = mem->small_list[pool_id];
982  mem->small_list[pool_id] = NULL;
983
984  while (shdr_ptr != NULL) {
985    small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
986    space_freed = shdr_ptr->hdr.bytes_used +
987                  shdr_ptr->hdr.bytes_left +
988                  SIZEOF(small_pool_hdr);
989    jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
990    mem->total_space_allocated -= space_freed;
991    shdr_ptr = next_shdr_ptr;
992  }
993}
994
995
996/*
997 * Close up shop entirely.
998 * Note that this cannot be called unless cinfo->mem is non-NULL.
999 */
1000
1001METHODDEF(void)
1002self_destruct (j_common_ptr cinfo)
1003{
1004  int pool;
1005
1006  /* Close all backing store, release all memory.
1007   * Releasing pools in reverse order might help avoid fragmentation
1008   * with some (brain-damaged) malloc libraries.
1009   */
1010  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1011    free_pool(cinfo, pool);
1012  }
1013
1014  /* Release the memory manager control block too. */
1015  jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1016  cinfo->mem = NULL;            /* ensures I will be called only once */
1017
1018  jpeg_mem_term(cinfo);         /* system-dependent cleanup */
1019}
1020
1021
1022/*
1023 * Memory manager initialization.
1024 * When this is called, only the error manager pointer is valid in cinfo!
1025 */
1026
1027GLOBAL(void)
1028jinit_memory_mgr (j_common_ptr cinfo)
1029{
1030  my_mem_ptr mem;
1031  long max_to_use;
1032  int pool;
1033  size_t test_mac;
1034
1035  cinfo->mem = NULL;            /* for safety if init fails */
1036
1037  /* Check for configuration errors.
1038   * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1039   * doesn't reflect any real hardware alignment requirement.
1040   * The test is a little tricky: for X>0, X and X-1 have no one-bits
1041   * in common if and only if X is a power of 2, ie has only one one-bit.
1042   * Some compilers may give an "unreachable code" warning here; ignore it.
1043   */
1044  if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1045    ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1046  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1047   * a multiple of SIZEOF(ALIGN_TYPE).
1048   * Again, an "unreachable code" warning may be ignored here.
1049   * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1050   */
1051  test_mac = (size_t) MAX_ALLOC_CHUNK;
1052  if ((long) test_mac != MAX_ALLOC_CHUNK ||
1053      (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1054    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1055
1056  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1057
1058  /* Attempt to allocate memory manager's control block */
1059  mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1060
1061  if (mem == NULL) {
1062    jpeg_mem_term(cinfo);       /* system-dependent cleanup */
1063    ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1064  }
1065
1066  /* OK, fill in the method pointers */
1067  mem->pub.alloc_small = alloc_small;
1068  mem->pub.alloc_large = alloc_large;
1069  mem->pub.alloc_sarray = alloc_sarray;
1070  mem->pub.alloc_barray = alloc_barray;
1071  mem->pub.request_virt_sarray = request_virt_sarray;
1072  mem->pub.request_virt_barray = request_virt_barray;
1073  mem->pub.realize_virt_arrays = realize_virt_arrays;
1074  mem->pub.access_virt_sarray = access_virt_sarray;
1075  mem->pub.access_virt_barray = access_virt_barray;
1076  mem->pub.free_pool = free_pool;
1077  mem->pub.self_destruct = self_destruct;
1078
1079  /* Make MAX_ALLOC_CHUNK accessible to other modules */
1080  mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1081
1082  /* Initialize working state */
1083  mem->pub.max_memory_to_use = max_to_use;
1084
1085  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1086    mem->small_list[pool] = NULL;
1087    mem->large_list[pool] = NULL;
1088  }
1089  mem->virt_sarray_list = NULL;
1090  mem->virt_barray_list = NULL;
1091
1092  mem->total_space_allocated = SIZEOF(my_memory_mgr);
1093
1094  /* Declare ourselves open for business */
1095  cinfo->mem = & mem->pub;
1096
1097  /* Check for an environment variable JPEGMEM; if found, override the
1098   * default max_memory setting from jpeg_mem_init.  Note that the
1099   * surrounding application may again override this value.
1100   * If your system doesn't support getenv(), define NO_GETENV to disable
1101   * this feature.
1102   */
1103#ifndef NO_GETENV
1104  { char * memenv;
1105
1106    if ((memenv = getenv("JPEGMEM")) != NULL) {
1107      char ch = 'x';
1108
1109      if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1110        if (ch == 'm' || ch == 'M')
1111          max_to_use *= 1000L;
1112        mem->pub.max_memory_to_use = max_to_use * 1000L;
1113      }
1114    }
1115  }
1116#endif
1117
1118}
Note: See TracBrowser for help on using the repository browser.