source: trunk/third/firefox/jpeg/jquant2.c @ 21695

Revision 21695, 47.3 KB checked in by rbasch, 20 years ago (diff)
This commit was generated by cvs2svn to compensate for changes in r21694, which included commits to RCS files with non-trunk default branches.
Line 
1/*
2 * jquant2.c
3 *
4 * Copyright (C) 1991-1996, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains 2-pass color quantization (color mapping) routines.
9 * These routines provide selection of a custom color map for an image,
10 * followed by mapping of the image to that color map, with optional
11 * Floyd-Steinberg dithering.
12 * It is also possible to use just the second pass to map to an arbitrary
13 * externally-given color map.
14 *
15 * Note: ordered dithering is not supported, since there isn't any fast
16 * way to compute intercolor distances; it's unclear that ordered dither's
17 * fundamental assumptions even hold with an irregularly spaced color map.
18 */
19
20#define JPEG_INTERNALS
21#include "jinclude.h"
22#include "jpeglib.h"
23
24#ifdef QUANT_2PASS_SUPPORTED
25
26
27/*
28 * This module implements the well-known Heckbert paradigm for color
29 * quantization.  Most of the ideas used here can be traced back to
30 * Heckbert's seminal paper
31 *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
32 *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
33 *
34 * In the first pass over the image, we accumulate a histogram showing the
35 * usage count of each possible color.  To keep the histogram to a reasonable
36 * size, we reduce the precision of the input; typical practice is to retain
37 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
38 * in the same histogram cell.
39 *
40 * Next, the color-selection step begins with a box representing the whole
41 * color space, and repeatedly splits the "largest" remaining box until we
42 * have as many boxes as desired colors.  Then the mean color in each
43 * remaining box becomes one of the possible output colors.
44 *
45 * The second pass over the image maps each input pixel to the closest output
46 * color (optionally after applying a Floyd-Steinberg dithering correction).
47 * This mapping is logically trivial, but making it go fast enough requires
48 * considerable care.
49 *
50 * Heckbert-style quantizers vary a good deal in their policies for choosing
51 * the "largest" box and deciding where to cut it.  The particular policies
52 * used here have proved out well in experimental comparisons, but better ones
53 * may yet be found.
54 *
55 * In earlier versions of the IJG code, this module quantized in YCbCr color
56 * space, processing the raw upsampled data without a color conversion step.
57 * This allowed the color conversion math to be done only once per colormap
58 * entry, not once per pixel.  However, that optimization precluded other
59 * useful optimizations (such as merging color conversion with upsampling)
60 * and it also interfered with desired capabilities such as quantizing to an
61 * externally-supplied colormap.  We have therefore abandoned that approach.
62 * The present code works in the post-conversion color space, typically RGB.
63 *
64 * To improve the visual quality of the results, we actually work in scaled
65 * RGB space, giving G distances more weight than R, and R in turn more than
66 * B.  To do everything in integer math, we must use integer scale factors.
67 * The 2/3/1 scale factors used here correspond loosely to the relative
68 * weights of the colors in the NTSC grayscale equation.
69 * If you want to use this code to quantize a non-RGB color space, you'll
70 * probably need to change these scale factors.
71 */
72
73#define R_SCALE 2               /* scale R distances by this much */
74#define G_SCALE 3               /* scale G distances by this much */
75#define B_SCALE 1               /* and B by this much */
76
77/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
78 * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
79 * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
80 * you'll get compile errors until you extend this logic.  In that case
81 * you'll probably want to tweak the histogram sizes too.
82 */
83
84#if RGB_RED == 0
85#define C0_SCALE R_SCALE
86#endif
87#if RGB_BLUE == 0
88#define C0_SCALE B_SCALE
89#endif
90#if RGB_GREEN == 1
91#define C1_SCALE G_SCALE
92#endif
93#if RGB_RED == 2
94#define C2_SCALE R_SCALE
95#endif
96#if RGB_BLUE == 2
97#define C2_SCALE B_SCALE
98#endif
99
100
101/*
102 * First we have the histogram data structure and routines for creating it.
103 *
104 * The number of bits of precision can be adjusted by changing these symbols.
105 * We recommend keeping 6 bits for G and 5 each for R and B.
106 * If you have plenty of memory and cycles, 6 bits all around gives marginally
107 * better results; if you are short of memory, 5 bits all around will save
108 * some space but degrade the results.
109 * To maintain a fully accurate histogram, we'd need to allocate a "long"
110 * (preferably unsigned long) for each cell.  In practice this is overkill;
111 * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
112 * and clamping those that do overflow to the maximum value will give close-
113 * enough results.  This reduces the recommended histogram size from 256Kb
114 * to 128Kb, which is a useful savings on PC-class machines.
115 * (In the second pass the histogram space is re-used for pixel mapping data;
116 * in that capacity, each cell must be able to store zero to the number of
117 * desired colors.  16 bits/cell is plenty for that too.)
118 * Since the JPEG code is intended to run in small memory model on 80x86
119 * machines, we can't just allocate the histogram in one chunk.  Instead
120 * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
121 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
122 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
123 * on 80x86 machines, the pointer row is in near memory but the actual
124 * arrays are in far memory (same arrangement as we use for image arrays).
125 */
126
127#define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
128
129/* These will do the right thing for either R,G,B or B,G,R color order,
130 * but you may not like the results for other color orders.
131 */
132#define HIST_C0_BITS  5         /* bits of precision in R/B histogram */
133#define HIST_C1_BITS  6         /* bits of precision in G histogram */
134#define HIST_C2_BITS  5         /* bits of precision in B/R histogram */
135
136/* Number of elements along histogram axes. */
137#define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
138#define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
139#define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
140
141/* These are the amounts to shift an input value to get a histogram index. */
142#define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
143#define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
144#define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
145
146
147typedef UINT16 histcell;        /* histogram cell; prefer an unsigned type */
148
149typedef histcell FAR * histptr; /* for pointers to histogram cells */
150
151typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
152typedef hist1d FAR * hist2d;    /* type for the 2nd-level pointers */
153typedef hist2d * hist3d;        /* type for top-level pointer */
154
155
156/* Declarations for Floyd-Steinberg dithering.
157 *
158 * Errors are accumulated into the array fserrors[], at a resolution of
159 * 1/16th of a pixel count.  The error at a given pixel is propagated
160 * to its not-yet-processed neighbors using the standard F-S fractions,
161 *              ...     (here)  7/16
162 *              3/16    5/16    1/16
163 * We work left-to-right on even rows, right-to-left on odd rows.
164 *
165 * We can get away with a single array (holding one row's worth of errors)
166 * by using it to store the current row's errors at pixel columns not yet
167 * processed, but the next row's errors at columns already processed.  We
168 * need only a few extra variables to hold the errors immediately around the
169 * current column.  (If we are lucky, those variables are in registers, but
170 * even if not, they're probably cheaper to access than array elements are.)
171 *
172 * The fserrors[] array has (#columns + 2) entries; the extra entry at
173 * each end saves us from special-casing the first and last pixels.
174 * Each entry is three values long, one value for each color component.
175 *
176 * Note: on a wide image, we might not have enough room in a PC's near data
177 * segment to hold the error array; so it is allocated with alloc_large.
178 */
179
180#if BITS_IN_JSAMPLE == 8
181typedef INT16 FSERROR;          /* 16 bits should be enough */
182typedef int LOCFSERROR;         /* use 'int' for calculation temps */
183#else
184typedef INT32 FSERROR;          /* may need more than 16 bits */
185typedef INT32 LOCFSERROR;       /* be sure calculation temps are big enough */
186#endif
187
188typedef FSERROR FAR *FSERRPTR;  /* pointer to error array (in FAR storage!) */
189
190
191/* Private subobject */
192
193typedef struct {
194  struct jpeg_color_quantizer pub; /* public fields */
195
196  /* Space for the eventually created colormap is stashed here */
197  JSAMPARRAY sv_colormap;       /* colormap allocated at init time */
198  int desired;                  /* desired # of colors = size of colormap */
199
200  /* Variables for accumulating image statistics */
201  hist3d histogram;             /* pointer to the histogram */
202
203  boolean needs_zeroed;         /* TRUE if next pass must zero histogram */
204
205  /* Variables for Floyd-Steinberg dithering */
206  FSERRPTR fserrors;            /* accumulated errors */
207  boolean on_odd_row;           /* flag to remember which row we are on */
208  int * error_limiter;          /* table for clamping the applied error */
209} my_cquantizer;
210
211typedef my_cquantizer * my_cquantize_ptr;
212
213
214/*
215 * Prescan some rows of pixels.
216 * In this module the prescan simply updates the histogram, which has been
217 * initialized to zeroes by start_pass.
218 * An output_buf parameter is required by the method signature, but no data
219 * is actually output (in fact the buffer controller is probably passing a
220 * NULL pointer).
221 */
222
223METHODDEF(void)
224prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
225                  JSAMPARRAY output_buf, int num_rows)
226{
227  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
228  register JSAMPROW ptr;
229  register histptr histp;
230  register hist3d histogram = cquantize->histogram;
231  int row;
232  JDIMENSION col;
233  JDIMENSION width = cinfo->output_width;
234
235  for (row = 0; row < num_rows; row++) {
236    ptr = input_buf[row];
237    for (col = width; col > 0; col--) {
238      /* get pixel value and index into the histogram */
239      histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
240                         [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
241                         [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
242      /* increment, check for overflow and undo increment if so. */
243      if (++(*histp) <= 0)
244        (*histp)--;
245      ptr += 3;
246    }
247  }
248}
249
250
251/*
252 * Next we have the really interesting routines: selection of a colormap
253 * given the completed histogram.
254 * These routines work with a list of "boxes", each representing a rectangular
255 * subset of the input color space (to histogram precision).
256 */
257
258typedef struct {
259  /* The bounds of the box (inclusive); expressed as histogram indexes */
260  int c0min, c0max;
261  int c1min, c1max;
262  int c2min, c2max;
263  /* The volume (actually 2-norm) of the box */
264  INT32 volume;
265  /* The number of nonzero histogram cells within this box */
266  long colorcount;
267} box;
268
269typedef box * boxptr;
270
271
272LOCAL(boxptr)
273find_biggest_color_pop (boxptr boxlist, int numboxes)
274/* Find the splittable box with the largest color population */
275/* Returns NULL if no splittable boxes remain */
276{
277  register boxptr boxp;
278  register int i;
279  register long maxc = 0;
280  boxptr which = NULL;
281 
282  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
283    if (boxp->colorcount > maxc && boxp->volume > 0) {
284      which = boxp;
285      maxc = boxp->colorcount;
286    }
287  }
288  return which;
289}
290
291
292LOCAL(boxptr)
293find_biggest_volume (boxptr boxlist, int numboxes)
294/* Find the splittable box with the largest (scaled) volume */
295/* Returns NULL if no splittable boxes remain */
296{
297  register boxptr boxp;
298  register int i;
299  register INT32 maxv = 0;
300  boxptr which = NULL;
301 
302  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
303    if (boxp->volume > maxv) {
304      which = boxp;
305      maxv = boxp->volume;
306    }
307  }
308  return which;
309}
310
311
312LOCAL(void)
313update_box (j_decompress_ptr cinfo, boxptr boxp)
314/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
315/* and recompute its volume and population */
316{
317  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
318  hist3d histogram = cquantize->histogram;
319  histptr histp;
320  int c0,c1,c2;
321  int c0min,c0max,c1min,c1max,c2min,c2max;
322  INT32 dist0,dist1,dist2;
323  long ccount;
324 
325  c0min = boxp->c0min;  c0max = boxp->c0max;
326  c1min = boxp->c1min;  c1max = boxp->c1max;
327  c2min = boxp->c2min;  c2max = boxp->c2max;
328 
329  if (c0max > c0min)
330    for (c0 = c0min; c0 <= c0max; c0++)
331      for (c1 = c1min; c1 <= c1max; c1++) {
332        histp = & histogram[c0][c1][c2min];
333        for (c2 = c2min; c2 <= c2max; c2++)
334          if (*histp++ != 0) {
335            boxp->c0min = c0min = c0;
336            goto have_c0min;
337          }
338      }
339 have_c0min:
340  if (c0max > c0min)
341    for (c0 = c0max; c0 >= c0min; c0--)
342      for (c1 = c1min; c1 <= c1max; c1++) {
343        histp = & histogram[c0][c1][c2min];
344        for (c2 = c2min; c2 <= c2max; c2++)
345          if (*histp++ != 0) {
346            boxp->c0max = c0max = c0;
347            goto have_c0max;
348          }
349      }
350 have_c0max:
351  if (c1max > c1min)
352    for (c1 = c1min; c1 <= c1max; c1++)
353      for (c0 = c0min; c0 <= c0max; c0++) {
354        histp = & histogram[c0][c1][c2min];
355        for (c2 = c2min; c2 <= c2max; c2++)
356          if (*histp++ != 0) {
357            boxp->c1min = c1min = c1;
358            goto have_c1min;
359          }
360      }
361 have_c1min:
362  if (c1max > c1min)
363    for (c1 = c1max; c1 >= c1min; c1--)
364      for (c0 = c0min; c0 <= c0max; c0++) {
365        histp = & histogram[c0][c1][c2min];
366        for (c2 = c2min; c2 <= c2max; c2++)
367          if (*histp++ != 0) {
368            boxp->c1max = c1max = c1;
369            goto have_c1max;
370          }
371      }
372 have_c1max:
373  if (c2max > c2min)
374    for (c2 = c2min; c2 <= c2max; c2++)
375      for (c0 = c0min; c0 <= c0max; c0++) {
376        histp = & histogram[c0][c1min][c2];
377        for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
378          if (*histp != 0) {
379            boxp->c2min = c2min = c2;
380            goto have_c2min;
381          }
382      }
383 have_c2min:
384  if (c2max > c2min)
385    for (c2 = c2max; c2 >= c2min; c2--)
386      for (c0 = c0min; c0 <= c0max; c0++) {
387        histp = & histogram[c0][c1min][c2];
388        for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
389          if (*histp != 0) {
390            boxp->c2max = c2max = c2;
391            goto have_c2max;
392          }
393      }
394 have_c2max:
395
396  /* Update box volume.
397   * We use 2-norm rather than real volume here; this biases the method
398   * against making long narrow boxes, and it has the side benefit that
399   * a box is splittable iff norm > 0.
400   * Since the differences are expressed in histogram-cell units,
401   * we have to shift back to JSAMPLE units to get consistent distances;
402   * after which, we scale according to the selected distance scale factors.
403   */
404  dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
405  dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
406  dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
407  boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
408 
409  /* Now scan remaining volume of box and compute population */
410  ccount = 0;
411  for (c0 = c0min; c0 <= c0max; c0++)
412    for (c1 = c1min; c1 <= c1max; c1++) {
413      histp = & histogram[c0][c1][c2min];
414      for (c2 = c2min; c2 <= c2max; c2++, histp++)
415        if (*histp != 0) {
416          ccount++;
417        }
418    }
419  boxp->colorcount = ccount;
420}
421
422
423LOCAL(int)
424median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
425            int desired_colors)
426/* Repeatedly select and split the largest box until we have enough boxes */
427{
428  int n,lb;
429  int c0,c1,c2,cmax;
430  register boxptr b1,b2;
431
432  while (numboxes < desired_colors) {
433    /* Select box to split.
434     * Current algorithm: by population for first half, then by volume.
435     */
436    if (numboxes*2 <= desired_colors) {
437      b1 = find_biggest_color_pop(boxlist, numboxes);
438    } else {
439      b1 = find_biggest_volume(boxlist, numboxes);
440    }
441    if (b1 == NULL)             /* no splittable boxes left! */
442      break;
443    b2 = &boxlist[numboxes];    /* where new box will go */
444    /* Copy the color bounds to the new box. */
445    b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
446    b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
447    /* Choose which axis to split the box on.
448     * Current algorithm: longest scaled axis.
449     * See notes in update_box about scaling distances.
450     */
451    c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
452    c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
453    c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
454    /* We want to break any ties in favor of green, then red, blue last.
455     * This code does the right thing for R,G,B or B,G,R color orders only.
456     */
457#if RGB_RED == 0
458    cmax = c1; n = 1;
459    if (c0 > cmax) { cmax = c0; n = 0; }
460    if (c2 > cmax) { n = 2; }
461#else
462    cmax = c1; n = 1;
463    if (c2 > cmax) { cmax = c2; n = 2; }
464    if (c0 > cmax) { n = 0; }
465#endif
466    /* Choose split point along selected axis, and update box bounds.
467     * Current algorithm: split at halfway point.
468     * (Since the box has been shrunk to minimum volume,
469     * any split will produce two nonempty subboxes.)
470     * Note that lb value is max for lower box, so must be < old max.
471     */
472    switch (n) {
473    case 0:
474      lb = (b1->c0max + b1->c0min) / 2;
475      b1->c0max = lb;
476      b2->c0min = lb+1;
477      break;
478    case 1:
479      lb = (b1->c1max + b1->c1min) / 2;
480      b1->c1max = lb;
481      b2->c1min = lb+1;
482      break;
483    case 2:
484      lb = (b1->c2max + b1->c2min) / 2;
485      b1->c2max = lb;
486      b2->c2min = lb+1;
487      break;
488    }
489    /* Update stats for boxes */
490    update_box(cinfo, b1);
491    update_box(cinfo, b2);
492    numboxes++;
493  }
494  return numboxes;
495}
496
497
498LOCAL(void)
499compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
500/* Compute representative color for a box, put it in colormap[icolor] */
501{
502  /* Current algorithm: mean weighted by pixels (not colors) */
503  /* Note it is important to get the rounding correct! */
504  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
505  hist3d histogram = cquantize->histogram;
506  histptr histp;
507  int c0,c1,c2;
508  int c0min,c0max,c1min,c1max,c2min,c2max;
509  long count;
510  long total = 0;
511  long c0total = 0;
512  long c1total = 0;
513  long c2total = 0;
514 
515  c0min = boxp->c0min;  c0max = boxp->c0max;
516  c1min = boxp->c1min;  c1max = boxp->c1max;
517  c2min = boxp->c2min;  c2max = boxp->c2max;
518 
519  for (c0 = c0min; c0 <= c0max; c0++)
520    for (c1 = c1min; c1 <= c1max; c1++) {
521      histp = & histogram[c0][c1][c2min];
522      for (c2 = c2min; c2 <= c2max; c2++) {
523        if ((count = *histp++) != 0) {
524          total += count;
525          c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
526          c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
527          c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
528        }
529      }
530    }
531 
532  cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
533  cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
534  cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
535}
536
537
538LOCAL(void)
539select_colors (j_decompress_ptr cinfo, int desired_colors)
540/* Master routine for color selection */
541{
542  boxptr boxlist;
543  int numboxes;
544  int i;
545
546  /* Allocate workspace for box list */
547  boxlist = (boxptr) (*cinfo->mem->alloc_small)
548    ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
549  /* Initialize one box containing whole space */
550  numboxes = 1;
551  boxlist[0].c0min = 0;
552  boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
553  boxlist[0].c1min = 0;
554  boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
555  boxlist[0].c2min = 0;
556  boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
557  /* Shrink it to actually-used volume and set its statistics */
558  update_box(cinfo, & boxlist[0]);
559  /* Perform median-cut to produce final box list */
560  numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
561  /* Compute the representative color for each box, fill colormap */
562  for (i = 0; i < numboxes; i++)
563    compute_color(cinfo, & boxlist[i], i);
564  cinfo->actual_number_of_colors = numboxes;
565  TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
566}
567
568
569/*
570 * These routines are concerned with the time-critical task of mapping input
571 * colors to the nearest color in the selected colormap.
572 *
573 * We re-use the histogram space as an "inverse color map", essentially a
574 * cache for the results of nearest-color searches.  All colors within a
575 * histogram cell will be mapped to the same colormap entry, namely the one
576 * closest to the cell's center.  This may not be quite the closest entry to
577 * the actual input color, but it's almost as good.  A zero in the cache
578 * indicates we haven't found the nearest color for that cell yet; the array
579 * is cleared to zeroes before starting the mapping pass.  When we find the
580 * nearest color for a cell, its colormap index plus one is recorded in the
581 * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
582 * when they need to use an unfilled entry in the cache.
583 *
584 * Our method of efficiently finding nearest colors is based on the "locally
585 * sorted search" idea described by Heckbert and on the incremental distance
586 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
587 * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
588 * the distances from a given colormap entry to each cell of the histogram can
589 * be computed quickly using an incremental method: the differences between
590 * distances to adjacent cells themselves differ by a constant.  This allows a
591 * fairly fast implementation of the "brute force" approach of computing the
592 * distance from every colormap entry to every histogram cell.  Unfortunately,
593 * it needs a work array to hold the best-distance-so-far for each histogram
594 * cell (because the inner loop has to be over cells, not colormap entries).
595 * The work array elements have to be INT32s, so the work array would need
596 * 256Kb at our recommended precision.  This is not feasible in DOS machines.
597 *
598 * To get around these problems, we apply Thomas' method to compute the
599 * nearest colors for only the cells within a small subbox of the histogram.
600 * The work array need be only as big as the subbox, so the memory usage
601 * problem is solved.  Furthermore, we need not fill subboxes that are never
602 * referenced in pass2; many images use only part of the color gamut, so a
603 * fair amount of work is saved.  An additional advantage of this
604 * approach is that we can apply Heckbert's locality criterion to quickly
605 * eliminate colormap entries that are far away from the subbox; typically
606 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
607 * and we need not compute their distances to individual cells in the subbox.
608 * The speed of this approach is heavily influenced by the subbox size: too
609 * small means too much overhead, too big loses because Heckbert's criterion
610 * can't eliminate as many colormap entries.  Empirically the best subbox
611 * size seems to be about 1/512th of the histogram (1/8th in each direction).
612 *
613 * Thomas' article also describes a refined method which is asymptotically
614 * faster than the brute-force method, but it is also far more complex and
615 * cannot efficiently be applied to small subboxes.  It is therefore not
616 * useful for programs intended to be portable to DOS machines.  On machines
617 * with plenty of memory, filling the whole histogram in one shot with Thomas'
618 * refined method might be faster than the present code --- but then again,
619 * it might not be any faster, and it's certainly more complicated.
620 */
621
622
623/* log2(histogram cells in update box) for each axis; this can be adjusted */
624#define BOX_C0_LOG  (HIST_C0_BITS-3)
625#define BOX_C1_LOG  (HIST_C1_BITS-3)
626#define BOX_C2_LOG  (HIST_C2_BITS-3)
627
628#define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
629#define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
630#define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
631
632#define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
633#define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
634#define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
635
636
637/*
638 * The next three routines implement inverse colormap filling.  They could
639 * all be folded into one big routine, but splitting them up this way saves
640 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
641 * and may allow some compilers to produce better code by registerizing more
642 * inner-loop variables.
643 */
644
645LOCAL(int)
646find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
647                    JSAMPLE colorlist[])
648/* Locate the colormap entries close enough to an update box to be candidates
649 * for the nearest entry to some cell(s) in the update box.  The update box
650 * is specified by the center coordinates of its first cell.  The number of
651 * candidate colormap entries is returned, and their colormap indexes are
652 * placed in colorlist[].
653 * This routine uses Heckbert's "locally sorted search" criterion to select
654 * the colors that need further consideration.
655 */
656{
657  int numcolors = cinfo->actual_number_of_colors;
658  int maxc0, maxc1, maxc2;
659  int centerc0, centerc1, centerc2;
660  int i, x, ncolors;
661  INT32 minmaxdist, min_dist, max_dist, tdist;
662  INT32 mindist[MAXNUMCOLORS];  /* min distance to colormap entry i */
663
664  /* Compute true coordinates of update box's upper corner and center.
665   * Actually we compute the coordinates of the center of the upper-corner
666   * histogram cell, which are the upper bounds of the volume we care about.
667   * Note that since ">>" rounds down, the "center" values may be closer to
668   * min than to max; hence comparisons to them must be "<=", not "<".
669   */
670  maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
671  centerc0 = (minc0 + maxc0) >> 1;
672  maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
673  centerc1 = (minc1 + maxc1) >> 1;
674  maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
675  centerc2 = (minc2 + maxc2) >> 1;
676
677  /* For each color in colormap, find:
678   *  1. its minimum squared-distance to any point in the update box
679   *     (zero if color is within update box);
680   *  2. its maximum squared-distance to any point in the update box.
681   * Both of these can be found by considering only the corners of the box.
682   * We save the minimum distance for each color in mindist[];
683   * only the smallest maximum distance is of interest.
684   */
685  minmaxdist = 0x7FFFFFFFL;
686
687  for (i = 0; i < numcolors; i++) {
688    /* We compute the squared-c0-distance term, then add in the other two. */
689    x = GETJSAMPLE(cinfo->colormap[0][i]);
690    if (x < minc0) {
691      tdist = (x - minc0) * C0_SCALE;
692      min_dist = tdist*tdist;
693      tdist = (x - maxc0) * C0_SCALE;
694      max_dist = tdist*tdist;
695    } else if (x > maxc0) {
696      tdist = (x - maxc0) * C0_SCALE;
697      min_dist = tdist*tdist;
698      tdist = (x - minc0) * C0_SCALE;
699      max_dist = tdist*tdist;
700    } else {
701      /* within cell range so no contribution to min_dist */
702      min_dist = 0;
703      if (x <= centerc0) {
704        tdist = (x - maxc0) * C0_SCALE;
705        max_dist = tdist*tdist;
706      } else {
707        tdist = (x - minc0) * C0_SCALE;
708        max_dist = tdist*tdist;
709      }
710    }
711
712    x = GETJSAMPLE(cinfo->colormap[1][i]);
713    if (x < minc1) {
714      tdist = (x - minc1) * C1_SCALE;
715      min_dist += tdist*tdist;
716      tdist = (x - maxc1) * C1_SCALE;
717      max_dist += tdist*tdist;
718    } else if (x > maxc1) {
719      tdist = (x - maxc1) * C1_SCALE;
720      min_dist += tdist*tdist;
721      tdist = (x - minc1) * C1_SCALE;
722      max_dist += tdist*tdist;
723    } else {
724      /* within cell range so no contribution to min_dist */
725      if (x <= centerc1) {
726        tdist = (x - maxc1) * C1_SCALE;
727        max_dist += tdist*tdist;
728      } else {
729        tdist = (x - minc1) * C1_SCALE;
730        max_dist += tdist*tdist;
731      }
732    }
733
734    x = GETJSAMPLE(cinfo->colormap[2][i]);
735    if (x < minc2) {
736      tdist = (x - minc2) * C2_SCALE;
737      min_dist += tdist*tdist;
738      tdist = (x - maxc2) * C2_SCALE;
739      max_dist += tdist*tdist;
740    } else if (x > maxc2) {
741      tdist = (x - maxc2) * C2_SCALE;
742      min_dist += tdist*tdist;
743      tdist = (x - minc2) * C2_SCALE;
744      max_dist += tdist*tdist;
745    } else {
746      /* within cell range so no contribution to min_dist */
747      if (x <= centerc2) {
748        tdist = (x - maxc2) * C2_SCALE;
749        max_dist += tdist*tdist;
750      } else {
751        tdist = (x - minc2) * C2_SCALE;
752        max_dist += tdist*tdist;
753      }
754    }
755
756    mindist[i] = min_dist;      /* save away the results */
757    if (max_dist < minmaxdist)
758      minmaxdist = max_dist;
759  }
760
761  /* Now we know that no cell in the update box is more than minmaxdist
762   * away from some colormap entry.  Therefore, only colors that are
763   * within minmaxdist of some part of the box need be considered.
764   */
765  ncolors = 0;
766  for (i = 0; i < numcolors; i++) {
767    if (mindist[i] <= minmaxdist)
768      colorlist[ncolors++] = (JSAMPLE) i;
769  }
770  return ncolors;
771}
772
773
774LOCAL(void)
775find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
776                  int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
777/* Find the closest colormap entry for each cell in the update box,
778 * given the list of candidate colors prepared by find_nearby_colors.
779 * Return the indexes of the closest entries in the bestcolor[] array.
780 * This routine uses Thomas' incremental distance calculation method to
781 * find the distance from a colormap entry to successive cells in the box.
782 */
783{
784  int ic0, ic1, ic2;
785  int i, icolor;
786  register INT32 * bptr;        /* pointer into bestdist[] array */
787  JSAMPLE * cptr;               /* pointer into bestcolor[] array */
788  INT32 dist0, dist1;           /* initial distance values */
789  register INT32 dist2;         /* current distance in inner loop */
790  INT32 xx0, xx1;               /* distance increments */
791  register INT32 xx2;
792  INT32 inc0, inc1, inc2;       /* initial values for increments */
793  /* This array holds the distance to the nearest-so-far color for each cell */
794  INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
795
796  /* Initialize best-distance for each cell of the update box */
797  bptr = bestdist;
798  for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
799    *bptr++ = 0x7FFFFFFFL;
800 
801  /* For each color selected by find_nearby_colors,
802   * compute its distance to the center of each cell in the box.
803   * If that's less than best-so-far, update best distance and color number.
804   */
805 
806  /* Nominal steps between cell centers ("x" in Thomas article) */
807#define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
808#define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
809#define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
810 
811  for (i = 0; i < numcolors; i++) {
812    icolor = GETJSAMPLE(colorlist[i]);
813    /* Compute (square of) distance from minc0/c1/c2 to this color */
814    inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
815    dist0 = inc0*inc0;
816    inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
817    dist0 += inc1*inc1;
818    inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
819    dist0 += inc2*inc2;
820    /* Form the initial difference increments */
821    inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
822    inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
823    inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
824    /* Now loop over all cells in box, updating distance per Thomas method */
825    bptr = bestdist;
826    cptr = bestcolor;
827    xx0 = inc0;
828    for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
829      dist1 = dist0;
830      xx1 = inc1;
831      for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
832        dist2 = dist1;
833        xx2 = inc2;
834        for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
835          if (dist2 < *bptr) {
836            *bptr = dist2;
837            *cptr = (JSAMPLE) icolor;
838          }
839          dist2 += xx2;
840          xx2 += 2 * STEP_C2 * STEP_C2;
841          bptr++;
842          cptr++;
843        }
844        dist1 += xx1;
845        xx1 += 2 * STEP_C1 * STEP_C1;
846      }
847      dist0 += xx0;
848      xx0 += 2 * STEP_C0 * STEP_C0;
849    }
850  }
851}
852
853
854LOCAL(void)
855fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
856/* Fill the inverse-colormap entries in the update box that contains */
857/* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
858/* we can fill as many others as we wish.) */
859{
860  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
861  hist3d histogram = cquantize->histogram;
862  int minc0, minc1, minc2;      /* lower left corner of update box */
863  int ic0, ic1, ic2;
864  register JSAMPLE * cptr;      /* pointer into bestcolor[] array */
865  register histptr cachep;      /* pointer into main cache array */
866  /* This array lists the candidate colormap indexes. */
867  JSAMPLE colorlist[MAXNUMCOLORS];
868  int numcolors;                /* number of candidate colors */
869  /* This array holds the actually closest colormap index for each cell. */
870  JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
871
872  /* Convert cell coordinates to update box ID */
873  c0 >>= BOX_C0_LOG;
874  c1 >>= BOX_C1_LOG;
875  c2 >>= BOX_C2_LOG;
876
877  /* Compute true coordinates of update box's origin corner.
878   * Actually we compute the coordinates of the center of the corner
879   * histogram cell, which are the lower bounds of the volume we care about.
880   */
881  minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
882  minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
883  minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
884 
885  /* Determine which colormap entries are close enough to be candidates
886   * for the nearest entry to some cell in the update box.
887   */
888  numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
889
890  /* Determine the actually nearest colors. */
891  find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
892                   bestcolor);
893
894  /* Save the best color numbers (plus 1) in the main cache array */
895  c0 <<= BOX_C0_LOG;            /* convert ID back to base cell indexes */
896  c1 <<= BOX_C1_LOG;
897  c2 <<= BOX_C2_LOG;
898  cptr = bestcolor;
899  for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
900    for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
901      cachep = & histogram[c0+ic0][c1+ic1][c2];
902      for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
903        *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
904      }
905    }
906  }
907}
908
909
910/*
911 * Map some rows of pixels to the output colormapped representation.
912 */
913
914METHODDEF(void)
915pass2_no_dither (j_decompress_ptr cinfo,
916                 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
917/* This version performs no dithering */
918{
919  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
920  hist3d histogram = cquantize->histogram;
921  register JSAMPROW inptr, outptr;
922  register histptr cachep;
923  register int c0, c1, c2;
924  int row;
925  JDIMENSION col;
926  JDIMENSION width = cinfo->output_width;
927
928  for (row = 0; row < num_rows; row++) {
929    inptr = input_buf[row];
930    outptr = output_buf[row];
931    for (col = width; col > 0; col--) {
932      /* get pixel value and index into the cache */
933      c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
934      c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
935      c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
936      cachep = & histogram[c0][c1][c2];
937      /* If we have not seen this color before, find nearest colormap entry */
938      /* and update the cache */
939      if (*cachep == 0)
940        fill_inverse_cmap(cinfo, c0,c1,c2);
941      /* Now emit the colormap index for this cell */
942      *outptr++ = (JSAMPLE) (*cachep - 1);
943    }
944  }
945}
946
947
948METHODDEF(void)
949pass2_fs_dither (j_decompress_ptr cinfo,
950                 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
951/* This version performs Floyd-Steinberg dithering */
952{
953  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
954  hist3d histogram = cquantize->histogram;
955  register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
956  LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
957  LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
958  register FSERRPTR errorptr;   /* => fserrors[] at column before current */
959  JSAMPROW inptr;               /* => current input pixel */
960  JSAMPROW outptr;              /* => current output pixel */
961  histptr cachep;
962  int dir;                      /* +1 or -1 depending on direction */
963  int dir3;                     /* 3*dir, for advancing inptr & errorptr */
964  int row;
965  JDIMENSION col;
966  JDIMENSION width = cinfo->output_width;
967  JSAMPLE *range_limit = cinfo->sample_range_limit;
968  int *error_limit = cquantize->error_limiter;
969  JSAMPROW colormap0 = cinfo->colormap[0];
970  JSAMPROW colormap1 = cinfo->colormap[1];
971  JSAMPROW colormap2 = cinfo->colormap[2];
972  SHIFT_TEMPS
973
974  for (row = 0; row < num_rows; row++) {
975    inptr = input_buf[row];
976    outptr = output_buf[row];
977    if (cquantize->on_odd_row) {
978      /* work right to left in this row */
979      inptr += (width-1) * 3;   /* so point to rightmost pixel */
980      outptr += width-1;
981      dir = -1;
982      dir3 = -3;
983      errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
984      cquantize->on_odd_row = FALSE; /* flip for next time */
985    } else {
986      /* work left to right in this row */
987      dir = 1;
988      dir3 = 3;
989      errorptr = cquantize->fserrors; /* => entry before first real column */
990      cquantize->on_odd_row = TRUE; /* flip for next time */
991    }
992    /* Preset error values: no error propagated to first pixel from left */
993    cur0 = cur1 = cur2 = 0;
994    /* and no error propagated to row below yet */
995    belowerr0 = belowerr1 = belowerr2 = 0;
996    bpreverr0 = bpreverr1 = bpreverr2 = 0;
997
998    for (col = width; col > 0; col--) {
999      /* curN holds the error propagated from the previous pixel on the
1000       * current line.  Add the error propagated from the previous line
1001       * to form the complete error correction term for this pixel, and
1002       * round the error term (which is expressed * 16) to an integer.
1003       * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1004       * for either sign of the error value.
1005       * Note: errorptr points to *previous* column's array entry.
1006       */
1007      cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
1008      cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
1009      cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
1010      /* Limit the error using transfer function set by init_error_limit.
1011       * See comments with init_error_limit for rationale.
1012       */
1013      cur0 = error_limit[cur0];
1014      cur1 = error_limit[cur1];
1015      cur2 = error_limit[cur2];
1016      /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1017       * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1018       * this sets the required size of the range_limit array.
1019       */
1020      cur0 += GETJSAMPLE(inptr[0]);
1021      cur1 += GETJSAMPLE(inptr[1]);
1022      cur2 += GETJSAMPLE(inptr[2]);
1023      cur0 = GETJSAMPLE(range_limit[cur0]);
1024      cur1 = GETJSAMPLE(range_limit[cur1]);
1025      cur2 = GETJSAMPLE(range_limit[cur2]);
1026      /* Index into the cache with adjusted pixel value */
1027      cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1028      /* If we have not seen this color before, find nearest colormap */
1029      /* entry and update the cache */
1030      if (*cachep == 0)
1031        fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
1032      /* Now emit the colormap index for this cell */
1033      { register int pixcode = *cachep - 1;
1034        *outptr = (JSAMPLE) pixcode;
1035        /* Compute representation error for this pixel */
1036        cur0 -= GETJSAMPLE(colormap0[pixcode]);
1037        cur1 -= GETJSAMPLE(colormap1[pixcode]);
1038        cur2 -= GETJSAMPLE(colormap2[pixcode]);
1039      }
1040      /* Compute error fractions to be propagated to adjacent pixels.
1041       * Add these into the running sums, and simultaneously shift the
1042       * next-line error sums left by 1 column.
1043       */
1044      { register LOCFSERROR bnexterr, delta;
1045
1046        bnexterr = cur0;        /* Process component 0 */
1047        delta = cur0 * 2;
1048        cur0 += delta;          /* form error * 3 */
1049        errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1050        cur0 += delta;          /* form error * 5 */
1051        bpreverr0 = belowerr0 + cur0;
1052        belowerr0 = bnexterr;
1053        cur0 += delta;          /* form error * 7 */
1054        bnexterr = cur1;        /* Process component 1 */
1055        delta = cur1 * 2;
1056        cur1 += delta;          /* form error * 3 */
1057        errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1058        cur1 += delta;          /* form error * 5 */
1059        bpreverr1 = belowerr1 + cur1;
1060        belowerr1 = bnexterr;
1061        cur1 += delta;          /* form error * 7 */
1062        bnexterr = cur2;        /* Process component 2 */
1063        delta = cur2 * 2;
1064        cur2 += delta;          /* form error * 3 */
1065        errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1066        cur2 += delta;          /* form error * 5 */
1067        bpreverr2 = belowerr2 + cur2;
1068        belowerr2 = bnexterr;
1069        cur2 += delta;          /* form error * 7 */
1070      }
1071      /* At this point curN contains the 7/16 error value to be propagated
1072       * to the next pixel on the current line, and all the errors for the
1073       * next line have been shifted over.  We are therefore ready to move on.
1074       */
1075      inptr += dir3;            /* Advance pixel pointers to next column */
1076      outptr += dir;
1077      errorptr += dir3;         /* advance errorptr to current column */
1078    }
1079    /* Post-loop cleanup: we must unload the final error values into the
1080     * final fserrors[] entry.  Note we need not unload belowerrN because
1081     * it is for the dummy column before or after the actual array.
1082     */
1083    errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1084    errorptr[1] = (FSERROR) bpreverr1;
1085    errorptr[2] = (FSERROR) bpreverr2;
1086  }
1087}
1088
1089
1090/*
1091 * Initialize the error-limiting transfer function (lookup table).
1092 * The raw F-S error computation can potentially compute error values of up to
1093 * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
1094 * much less, otherwise obviously wrong pixels will be created.  (Typical
1095 * effects include weird fringes at color-area boundaries, isolated bright
1096 * pixels in a dark area, etc.)  The standard advice for avoiding this problem
1097 * is to ensure that the "corners" of the color cube are allocated as output
1098 * colors; then repeated errors in the same direction cannot cause cascading
1099 * error buildup.  However, that only prevents the error from getting
1100 * completely out of hand; Aaron Giles reports that error limiting improves
1101 * the results even with corner colors allocated.
1102 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1103 * well, but the smoother transfer function used below is even better.  Thanks
1104 * to Aaron Giles for this idea.
1105 */
1106
1107LOCAL(void)
1108init_error_limit (j_decompress_ptr cinfo)
1109/* Allocate and fill in the error_limiter table */
1110{
1111  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1112  int * table;
1113  int in, out;
1114
1115  table = (int *) (*cinfo->mem->alloc_small)
1116    ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
1117  table += MAXJSAMPLE;          /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1118  cquantize->error_limiter = table;
1119
1120#define STEPSIZE ((MAXJSAMPLE+1)/16)
1121  /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1122  out = 0;
1123  for (in = 0; in < STEPSIZE; in++, out++) {
1124    table[in] = out; table[-in] = -out;
1125  }
1126  /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1127  for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1128    table[in] = out; table[-in] = -out;
1129  }
1130  /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1131  for (; in <= MAXJSAMPLE; in++) {
1132    table[in] = out; table[-in] = -out;
1133  }
1134#undef STEPSIZE
1135}
1136
1137
1138/*
1139 * Finish up at the end of each pass.
1140 */
1141
1142METHODDEF(void)
1143finish_pass1 (j_decompress_ptr cinfo)
1144{
1145  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1146
1147  /* Select the representative colors and fill in cinfo->colormap */
1148  cinfo->colormap = cquantize->sv_colormap;
1149  select_colors(cinfo, cquantize->desired);
1150  /* Force next pass to zero the color index table */
1151  cquantize->needs_zeroed = TRUE;
1152}
1153
1154
1155METHODDEF(void)
1156finish_pass2 (j_decompress_ptr cinfo)
1157{
1158  /* no work */
1159}
1160
1161
1162/*
1163 * Initialize for each processing pass.
1164 */
1165
1166METHODDEF(void)
1167start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
1168{
1169  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1170  hist3d histogram = cquantize->histogram;
1171  int i;
1172
1173  /* Only F-S dithering or no dithering is supported. */
1174  /* If user asks for ordered dither, give him F-S. */
1175  if (cinfo->dither_mode != JDITHER_NONE)
1176    cinfo->dither_mode = JDITHER_FS;
1177
1178  if (is_pre_scan) {
1179    /* Set up method pointers */
1180    cquantize->pub.color_quantize = prescan_quantize;
1181    cquantize->pub.finish_pass = finish_pass1;
1182    cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1183  } else {
1184    /* Set up method pointers */
1185    if (cinfo->dither_mode == JDITHER_FS)
1186      cquantize->pub.color_quantize = pass2_fs_dither;
1187    else
1188      cquantize->pub.color_quantize = pass2_no_dither;
1189    cquantize->pub.finish_pass = finish_pass2;
1190
1191    /* Make sure color count is acceptable */
1192    i = cinfo->actual_number_of_colors;
1193    if (i < 1)
1194      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1195    if (i > MAXNUMCOLORS)
1196      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1197
1198    if (cinfo->dither_mode == JDITHER_FS) {
1199      size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1200                                   (3 * SIZEOF(FSERROR)));
1201      /* Allocate Floyd-Steinberg workspace if we didn't already. */
1202      if (cquantize->fserrors == NULL)
1203        cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1204          ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
1205      /* Initialize the propagated errors to zero. */
1206      jzero_far((void FAR *) cquantize->fserrors, arraysize);
1207      /* Make the error-limit table if we didn't already. */
1208      if (cquantize->error_limiter == NULL)
1209        init_error_limit(cinfo);
1210      cquantize->on_odd_row = FALSE;
1211    }
1212
1213  }
1214  /* Zero the histogram or inverse color map, if necessary */
1215  if (cquantize->needs_zeroed) {
1216    for (i = 0; i < HIST_C0_ELEMS; i++) {
1217      jzero_far((void FAR *) histogram[i],
1218                HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1219    }
1220    cquantize->needs_zeroed = FALSE;
1221  }
1222}
1223
1224
1225/*
1226 * Switch to a new external colormap between output passes.
1227 */
1228
1229METHODDEF(void)
1230new_color_map_2_quant (j_decompress_ptr cinfo)
1231{
1232  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1233
1234  /* Reset the inverse color map */
1235  cquantize->needs_zeroed = TRUE;
1236}
1237
1238
1239/*
1240 * Module initialization routine for 2-pass color quantization.
1241 */
1242
1243GLOBAL(void)
1244jinit_2pass_quantizer (j_decompress_ptr cinfo)
1245{
1246  my_cquantize_ptr cquantize;
1247  int i;
1248
1249  cquantize = (my_cquantize_ptr)
1250    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1251                                SIZEOF(my_cquantizer));
1252  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1253  cquantize->pub.start_pass = start_pass_2_quant;
1254  cquantize->pub.new_color_map = new_color_map_2_quant;
1255  cquantize->fserrors = NULL;   /* flag optional arrays not allocated */
1256  cquantize->error_limiter = NULL;
1257
1258  /* Make sure jdmaster didn't give me a case I can't handle */
1259  if (cinfo->out_color_components != 3)
1260    ERREXIT(cinfo, JERR_NOTIMPL);
1261
1262  /* Allocate the histogram/inverse colormap storage */
1263  cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
1264    ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
1265  for (i = 0; i < HIST_C0_ELEMS; i++) {
1266    cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
1267      ((j_common_ptr) cinfo, JPOOL_IMAGE,
1268       HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1269  }
1270  cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1271
1272  /* Allocate storage for the completed colormap, if required.
1273   * We do this now since it is FAR storage and may affect
1274   * the memory manager's space calculations.
1275   */
1276  if (cinfo->enable_2pass_quant) {
1277    /* Make sure color count is acceptable */
1278    int desired = cinfo->desired_number_of_colors;
1279    /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1280    if (desired < 8)
1281      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1282    /* Make sure colormap indexes can be represented by JSAMPLEs */
1283    if (desired > MAXNUMCOLORS)
1284      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1285    cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
1286      ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
1287    cquantize->desired = desired;
1288  } else
1289    cquantize->sv_colormap = NULL;
1290
1291  /* Only F-S dithering or no dithering is supported. */
1292  /* If user asks for ordered dither, give him F-S. */
1293  if (cinfo->dither_mode != JDITHER_NONE)
1294    cinfo->dither_mode = JDITHER_FS;
1295
1296  /* Allocate Floyd-Steinberg workspace if necessary.
1297   * This isn't really needed until pass 2, but again it is FAR storage.
1298   * Although we will cope with a later change in dither_mode,
1299   * we do not promise to honor max_memory_to_use if dither_mode changes.
1300   */
1301  if (cinfo->dither_mode == JDITHER_FS) {
1302    cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1303      ((j_common_ptr) cinfo, JPOOL_IMAGE,
1304       (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
1305    /* Might as well create the error-limiting table too. */
1306    init_error_limit(cinfo);
1307  }
1308}
1309
1310#endif /* QUANT_2PASS_SUPPORTED */
Note: See TracBrowser for help on using the repository browser.