1 | // defineclass.cc - defining a class from .class format. |
---|
2 | |
---|
3 | /* Copyright (C) 2001, 2002 Free Software Foundation |
---|
4 | |
---|
5 | This file is part of libgcj. |
---|
6 | |
---|
7 | This software is copyrighted work licensed under the terms of the |
---|
8 | Libgcj License. Please consult the file "LIBGCJ_LICENSE" for |
---|
9 | details. */ |
---|
10 | |
---|
11 | // Written by Tom Tromey <tromey@redhat.com> |
---|
12 | |
---|
13 | // Define VERIFY_DEBUG to enable debugging output. |
---|
14 | |
---|
15 | #include <config.h> |
---|
16 | |
---|
17 | #include <jvm.h> |
---|
18 | #include <gcj/cni.h> |
---|
19 | #include <java-insns.h> |
---|
20 | #include <java-interp.h> |
---|
21 | |
---|
22 | #ifdef INTERPRETER |
---|
23 | |
---|
24 | #include <java/lang/Class.h> |
---|
25 | #include <java/lang/VerifyError.h> |
---|
26 | #include <java/lang/Throwable.h> |
---|
27 | #include <java/lang/reflect/Modifier.h> |
---|
28 | #include <java/lang/StringBuffer.h> |
---|
29 | |
---|
30 | #ifdef VERIFY_DEBUG |
---|
31 | #include <stdio.h> |
---|
32 | #endif /* VERIFY_DEBUG */ |
---|
33 | |
---|
34 | |
---|
35 | static void debug_print (const char *fmt, ...) |
---|
36 | __attribute__ ((format (printf, 1, 2))); |
---|
37 | |
---|
38 | static inline void |
---|
39 | debug_print (const char *fmt, ...) |
---|
40 | { |
---|
41 | #ifdef VERIFY_DEBUG |
---|
42 | va_list ap; |
---|
43 | va_start (ap, fmt); |
---|
44 | vfprintf (stderr, fmt, ap); |
---|
45 | va_end (ap); |
---|
46 | #endif /* VERIFY_DEBUG */ |
---|
47 | } |
---|
48 | |
---|
49 | class _Jv_BytecodeVerifier |
---|
50 | { |
---|
51 | private: |
---|
52 | |
---|
53 | static const int FLAG_INSN_START = 1; |
---|
54 | static const int FLAG_BRANCH_TARGET = 2; |
---|
55 | |
---|
56 | struct state; |
---|
57 | struct type; |
---|
58 | struct subr_info; |
---|
59 | struct subr_entry_info; |
---|
60 | struct linked_utf8; |
---|
61 | |
---|
62 | // The current PC. |
---|
63 | int PC; |
---|
64 | // The PC corresponding to the start of the current instruction. |
---|
65 | int start_PC; |
---|
66 | |
---|
67 | // The current state of the stack, locals, etc. |
---|
68 | state *current_state; |
---|
69 | |
---|
70 | // We store the state at branch targets, for merging. This holds |
---|
71 | // such states. |
---|
72 | state **states; |
---|
73 | |
---|
74 | // We keep a linked list of all the PCs which we must reverify. |
---|
75 | // The link is done using the PC values. This is the head of the |
---|
76 | // list. |
---|
77 | int next_verify_pc; |
---|
78 | |
---|
79 | // We keep some flags for each instruction. The values are the |
---|
80 | // FLAG_* constants defined above. |
---|
81 | char *flags; |
---|
82 | |
---|
83 | // We need to keep track of which instructions can call a given |
---|
84 | // subroutine. FIXME: this is inefficient. We keep a linked list |
---|
85 | // of all calling `jsr's at at each jsr target. |
---|
86 | subr_info **jsr_ptrs; |
---|
87 | |
---|
88 | // We keep a linked list of entries which map each `ret' instruction |
---|
89 | // to its unique subroutine entry point. We expect that there won't |
---|
90 | // be many `ret' instructions, so a linked list is ok. |
---|
91 | subr_entry_info *entry_points; |
---|
92 | |
---|
93 | // The bytecode itself. |
---|
94 | unsigned char *bytecode; |
---|
95 | // The exceptions. |
---|
96 | _Jv_InterpException *exception; |
---|
97 | |
---|
98 | // Defining class. |
---|
99 | jclass current_class; |
---|
100 | // This method. |
---|
101 | _Jv_InterpMethod *current_method; |
---|
102 | |
---|
103 | // A linked list of utf8 objects we allocate. This is really ugly, |
---|
104 | // but without this our utf8 objects would be collected. |
---|
105 | linked_utf8 *utf8_list; |
---|
106 | |
---|
107 | struct linked_utf8 |
---|
108 | { |
---|
109 | _Jv_Utf8Const *val; |
---|
110 | linked_utf8 *next; |
---|
111 | }; |
---|
112 | |
---|
113 | _Jv_Utf8Const *make_utf8_const (char *s, int len) |
---|
114 | { |
---|
115 | _Jv_Utf8Const *val = _Jv_makeUtf8Const (s, len); |
---|
116 | _Jv_Utf8Const *r = (_Jv_Utf8Const *) _Jv_Malloc (sizeof (_Jv_Utf8Const) |
---|
117 | + val->length |
---|
118 | + 1); |
---|
119 | r->length = val->length; |
---|
120 | r->hash = val->hash; |
---|
121 | memcpy (r->data, val->data, val->length + 1); |
---|
122 | |
---|
123 | linked_utf8 *lu = (linked_utf8 *) _Jv_Malloc (sizeof (linked_utf8)); |
---|
124 | lu->val = r; |
---|
125 | lu->next = utf8_list; |
---|
126 | utf8_list = lu; |
---|
127 | |
---|
128 | return r; |
---|
129 | } |
---|
130 | |
---|
131 | // This enum holds a list of tags for all the different types we |
---|
132 | // need to handle. Reference types are treated specially by the |
---|
133 | // type class. |
---|
134 | enum type_val |
---|
135 | { |
---|
136 | void_type, |
---|
137 | |
---|
138 | // The values for primitive types are chosen to correspond to values |
---|
139 | // specified to newarray. |
---|
140 | boolean_type = 4, |
---|
141 | char_type = 5, |
---|
142 | float_type = 6, |
---|
143 | double_type = 7, |
---|
144 | byte_type = 8, |
---|
145 | short_type = 9, |
---|
146 | int_type = 10, |
---|
147 | long_type = 11, |
---|
148 | |
---|
149 | // Used when overwriting second word of a double or long in the |
---|
150 | // local variables. Also used after merging local variable states |
---|
151 | // to indicate an unusable value. |
---|
152 | unsuitable_type, |
---|
153 | return_address_type, |
---|
154 | continuation_type, |
---|
155 | |
---|
156 | // There is an obscure special case which requires us to note when |
---|
157 | // a local variable has not been used by a subroutine. See |
---|
158 | // push_jump_merge for more information. |
---|
159 | unused_by_subroutine_type, |
---|
160 | |
---|
161 | // Everything after `reference_type' must be a reference type. |
---|
162 | reference_type, |
---|
163 | null_type, |
---|
164 | unresolved_reference_type, |
---|
165 | uninitialized_reference_type, |
---|
166 | uninitialized_unresolved_reference_type |
---|
167 | }; |
---|
168 | |
---|
169 | // Return the type_val corresponding to a primitive signature |
---|
170 | // character. For instance `I' returns `int.class'. |
---|
171 | type_val get_type_val_for_signature (jchar sig) |
---|
172 | { |
---|
173 | type_val rt; |
---|
174 | switch (sig) |
---|
175 | { |
---|
176 | case 'Z': |
---|
177 | rt = boolean_type; |
---|
178 | break; |
---|
179 | case 'B': |
---|
180 | rt = byte_type; |
---|
181 | break; |
---|
182 | case 'C': |
---|
183 | rt = char_type; |
---|
184 | break; |
---|
185 | case 'S': |
---|
186 | rt = short_type; |
---|
187 | break; |
---|
188 | case 'I': |
---|
189 | rt = int_type; |
---|
190 | break; |
---|
191 | case 'J': |
---|
192 | rt = long_type; |
---|
193 | break; |
---|
194 | case 'F': |
---|
195 | rt = float_type; |
---|
196 | break; |
---|
197 | case 'D': |
---|
198 | rt = double_type; |
---|
199 | break; |
---|
200 | case 'V': |
---|
201 | rt = void_type; |
---|
202 | break; |
---|
203 | default: |
---|
204 | verify_fail ("invalid signature"); |
---|
205 | } |
---|
206 | return rt; |
---|
207 | } |
---|
208 | |
---|
209 | // Return the type_val corresponding to a primitive class. |
---|
210 | type_val get_type_val_for_signature (jclass k) |
---|
211 | { |
---|
212 | return get_type_val_for_signature ((jchar) k->method_count); |
---|
213 | } |
---|
214 | |
---|
215 | // This is like _Jv_IsAssignableFrom, but it works even if SOURCE or |
---|
216 | // TARGET haven't been prepared. |
---|
217 | static bool is_assignable_from_slow (jclass target, jclass source) |
---|
218 | { |
---|
219 | // This will terminate when SOURCE==Object. |
---|
220 | while (true) |
---|
221 | { |
---|
222 | if (source == target) |
---|
223 | return true; |
---|
224 | |
---|
225 | if (target->isPrimitive () || source->isPrimitive ()) |
---|
226 | return false; |
---|
227 | |
---|
228 | if (target->isArray ()) |
---|
229 | { |
---|
230 | if (! source->isArray ()) |
---|
231 | return false; |
---|
232 | target = target->getComponentType (); |
---|
233 | source = source->getComponentType (); |
---|
234 | } |
---|
235 | else if (target->isInterface ()) |
---|
236 | { |
---|
237 | for (int i = 0; i < source->interface_count; ++i) |
---|
238 | { |
---|
239 | // We use a recursive call because we also need to |
---|
240 | // check superinterfaces. |
---|
241 | if (is_assignable_from_slow (target, source->interfaces[i])) |
---|
242 | return true; |
---|
243 | } |
---|
244 | source = source->getSuperclass (); |
---|
245 | if (source == NULL) |
---|
246 | return false; |
---|
247 | } |
---|
248 | // We must do this check before we check to see if SOURCE is |
---|
249 | // an interface. This way we know that any interface is |
---|
250 | // assignable to an Object. |
---|
251 | else if (target == &java::lang::Object::class$) |
---|
252 | return true; |
---|
253 | else if (source->isInterface ()) |
---|
254 | { |
---|
255 | for (int i = 0; i < target->interface_count; ++i) |
---|
256 | { |
---|
257 | // We use a recursive call because we also need to |
---|
258 | // check superinterfaces. |
---|
259 | if (is_assignable_from_slow (target->interfaces[i], source)) |
---|
260 | return true; |
---|
261 | } |
---|
262 | target = target->getSuperclass (); |
---|
263 | if (target == NULL) |
---|
264 | return false; |
---|
265 | } |
---|
266 | else if (source == &java::lang::Object::class$) |
---|
267 | return false; |
---|
268 | else |
---|
269 | source = source->getSuperclass (); |
---|
270 | } |
---|
271 | } |
---|
272 | |
---|
273 | // This is used to keep track of which `jsr's correspond to a given |
---|
274 | // jsr target. |
---|
275 | struct subr_info |
---|
276 | { |
---|
277 | // PC of the instruction just after the jsr. |
---|
278 | int pc; |
---|
279 | // Link. |
---|
280 | subr_info *next; |
---|
281 | }; |
---|
282 | |
---|
283 | // This is used to keep track of which subroutine entry point |
---|
284 | // corresponds to which `ret' instruction. |
---|
285 | struct subr_entry_info |
---|
286 | { |
---|
287 | // PC of the subroutine entry point. |
---|
288 | int pc; |
---|
289 | // PC of the `ret' instruction. |
---|
290 | int ret_pc; |
---|
291 | // Link. |
---|
292 | subr_entry_info *next; |
---|
293 | }; |
---|
294 | |
---|
295 | // The `type' class is used to represent a single type in the |
---|
296 | // verifier. |
---|
297 | struct type |
---|
298 | { |
---|
299 | // The type. |
---|
300 | type_val key; |
---|
301 | // Some associated data. |
---|
302 | union |
---|
303 | { |
---|
304 | // For a resolved reference type, this is a pointer to the class. |
---|
305 | jclass klass; |
---|
306 | // For other reference types, this it the name of the class. |
---|
307 | _Jv_Utf8Const *name; |
---|
308 | } data; |
---|
309 | // This is used when constructing a new object. It is the PC of the |
---|
310 | // `new' instruction which created the object. We use the special |
---|
311 | // value -2 to mean that this is uninitialized, and the special |
---|
312 | // value -1 for the case where the current method is itself the |
---|
313 | // <init> method. |
---|
314 | int pc; |
---|
315 | |
---|
316 | static const int UNINIT = -2; |
---|
317 | static const int SELF = -1; |
---|
318 | |
---|
319 | // Basic constructor. |
---|
320 | type () |
---|
321 | { |
---|
322 | key = unsuitable_type; |
---|
323 | data.klass = NULL; |
---|
324 | pc = UNINIT; |
---|
325 | } |
---|
326 | |
---|
327 | // Make a new instance given the type tag. We assume a generic |
---|
328 | // `reference_type' means Object. |
---|
329 | type (type_val k) |
---|
330 | { |
---|
331 | key = k; |
---|
332 | data.klass = NULL; |
---|
333 | if (key == reference_type) |
---|
334 | data.klass = &java::lang::Object::class$; |
---|
335 | pc = UNINIT; |
---|
336 | } |
---|
337 | |
---|
338 | // Make a new instance given a class. |
---|
339 | type (jclass klass) |
---|
340 | { |
---|
341 | key = reference_type; |
---|
342 | data.klass = klass; |
---|
343 | pc = UNINIT; |
---|
344 | } |
---|
345 | |
---|
346 | // Make a new instance given the name of a class. |
---|
347 | type (_Jv_Utf8Const *n) |
---|
348 | { |
---|
349 | key = unresolved_reference_type; |
---|
350 | data.name = n; |
---|
351 | pc = UNINIT; |
---|
352 | } |
---|
353 | |
---|
354 | // Copy constructor. |
---|
355 | type (const type &t) |
---|
356 | { |
---|
357 | key = t.key; |
---|
358 | data = t.data; |
---|
359 | pc = t.pc; |
---|
360 | } |
---|
361 | |
---|
362 | // These operators are required because libgcj can't link in |
---|
363 | // -lstdc++. |
---|
364 | void *operator new[] (size_t bytes) |
---|
365 | { |
---|
366 | return _Jv_Malloc (bytes); |
---|
367 | } |
---|
368 | |
---|
369 | void operator delete[] (void *mem) |
---|
370 | { |
---|
371 | _Jv_Free (mem); |
---|
372 | } |
---|
373 | |
---|
374 | type& operator= (type_val k) |
---|
375 | { |
---|
376 | key = k; |
---|
377 | data.klass = NULL; |
---|
378 | pc = UNINIT; |
---|
379 | return *this; |
---|
380 | } |
---|
381 | |
---|
382 | type& operator= (const type& t) |
---|
383 | { |
---|
384 | key = t.key; |
---|
385 | data = t.data; |
---|
386 | pc = t.pc; |
---|
387 | return *this; |
---|
388 | } |
---|
389 | |
---|
390 | // Promote a numeric type. |
---|
391 | type &promote () |
---|
392 | { |
---|
393 | if (key == boolean_type || key == char_type |
---|
394 | || key == byte_type || key == short_type) |
---|
395 | key = int_type; |
---|
396 | return *this; |
---|
397 | } |
---|
398 | |
---|
399 | // If *THIS is an unresolved reference type, resolve it. |
---|
400 | void resolve (_Jv_BytecodeVerifier *verifier) |
---|
401 | { |
---|
402 | if (key != unresolved_reference_type |
---|
403 | && key != uninitialized_unresolved_reference_type) |
---|
404 | return; |
---|
405 | |
---|
406 | using namespace java::lang; |
---|
407 | java::lang::ClassLoader *loader |
---|
408 | = verifier->current_class->getClassLoader(); |
---|
409 | // We might see either kind of name. Sigh. |
---|
410 | if (data.name->data[0] == 'L' |
---|
411 | && data.name->data[data.name->length - 1] == ';') |
---|
412 | data.klass = _Jv_FindClassFromSignature (data.name->data, loader); |
---|
413 | else |
---|
414 | data.klass = Class::forName (_Jv_NewStringUtf8Const (data.name), |
---|
415 | false, loader); |
---|
416 | key = (key == unresolved_reference_type |
---|
417 | ? reference_type |
---|
418 | : uninitialized_reference_type); |
---|
419 | } |
---|
420 | |
---|
421 | // Mark this type as the uninitialized result of `new'. |
---|
422 | void set_uninitialized (int npc, _Jv_BytecodeVerifier *verifier) |
---|
423 | { |
---|
424 | if (key == reference_type) |
---|
425 | key = uninitialized_reference_type; |
---|
426 | else if (key == unresolved_reference_type) |
---|
427 | key = uninitialized_unresolved_reference_type; |
---|
428 | else |
---|
429 | verifier->verify_fail ("internal error in type::uninitialized"); |
---|
430 | pc = npc; |
---|
431 | } |
---|
432 | |
---|
433 | // Mark this type as now initialized. |
---|
434 | void set_initialized (int npc) |
---|
435 | { |
---|
436 | if (npc != UNINIT && pc == npc |
---|
437 | && (key == uninitialized_reference_type |
---|
438 | || key == uninitialized_unresolved_reference_type)) |
---|
439 | { |
---|
440 | key = (key == uninitialized_reference_type |
---|
441 | ? reference_type |
---|
442 | : unresolved_reference_type); |
---|
443 | pc = UNINIT; |
---|
444 | } |
---|
445 | } |
---|
446 | |
---|
447 | |
---|
448 | // Return true if an object of type K can be assigned to a variable |
---|
449 | // of type *THIS. Handle various special cases too. Might modify |
---|
450 | // *THIS or K. Note however that this does not perform numeric |
---|
451 | // promotion. |
---|
452 | bool compatible (type &k, _Jv_BytecodeVerifier *verifier) |
---|
453 | { |
---|
454 | // Any type is compatible with the unsuitable type. |
---|
455 | if (key == unsuitable_type) |
---|
456 | return true; |
---|
457 | |
---|
458 | if (key < reference_type || k.key < reference_type) |
---|
459 | return key == k.key; |
---|
460 | |
---|
461 | // The `null' type is convertible to any reference type. |
---|
462 | // FIXME: is this correct for THIS? |
---|
463 | if (key == null_type || k.key == null_type) |
---|
464 | return true; |
---|
465 | |
---|
466 | // Any reference type is convertible to Object. This is a special |
---|
467 | // case so we don't need to unnecessarily resolve a class. |
---|
468 | if (key == reference_type |
---|
469 | && data.klass == &java::lang::Object::class$) |
---|
470 | return true; |
---|
471 | |
---|
472 | // An initialized type and an uninitialized type are not |
---|
473 | // compatible. |
---|
474 | if (isinitialized () != k.isinitialized ()) |
---|
475 | return false; |
---|
476 | |
---|
477 | // Two uninitialized objects are compatible if either: |
---|
478 | // * The PCs are identical, or |
---|
479 | // * One PC is UNINIT. |
---|
480 | if (! isinitialized ()) |
---|
481 | { |
---|
482 | if (pc != k.pc && pc != UNINIT && k.pc != UNINIT) |
---|
483 | return false; |
---|
484 | } |
---|
485 | |
---|
486 | // Two unresolved types are equal if their names are the same. |
---|
487 | if (! isresolved () |
---|
488 | && ! k.isresolved () |
---|
489 | && _Jv_equalUtf8Consts (data.name, k.data.name)) |
---|
490 | return true; |
---|
491 | |
---|
492 | // We must resolve both types and check assignability. |
---|
493 | resolve (verifier); |
---|
494 | k.resolve (verifier); |
---|
495 | return is_assignable_from_slow (data.klass, k.data.klass); |
---|
496 | } |
---|
497 | |
---|
498 | bool isvoid () const |
---|
499 | { |
---|
500 | return key == void_type; |
---|
501 | } |
---|
502 | |
---|
503 | bool iswide () const |
---|
504 | { |
---|
505 | return key == long_type || key == double_type; |
---|
506 | } |
---|
507 | |
---|
508 | // Return number of stack or local variable slots taken by this |
---|
509 | // type. |
---|
510 | int depth () const |
---|
511 | { |
---|
512 | return iswide () ? 2 : 1; |
---|
513 | } |
---|
514 | |
---|
515 | bool isarray () const |
---|
516 | { |
---|
517 | // We treat null_type as not an array. This is ok based on the |
---|
518 | // current uses of this method. |
---|
519 | if (key == reference_type) |
---|
520 | return data.klass->isArray (); |
---|
521 | else if (key == unresolved_reference_type) |
---|
522 | return data.name->data[0] == '['; |
---|
523 | return false; |
---|
524 | } |
---|
525 | |
---|
526 | bool isnull () const |
---|
527 | { |
---|
528 | return key == null_type; |
---|
529 | } |
---|
530 | |
---|
531 | bool isinterface (_Jv_BytecodeVerifier *verifier) |
---|
532 | { |
---|
533 | resolve (verifier); |
---|
534 | if (key != reference_type) |
---|
535 | return false; |
---|
536 | return data.klass->isInterface (); |
---|
537 | } |
---|
538 | |
---|
539 | bool isabstract (_Jv_BytecodeVerifier *verifier) |
---|
540 | { |
---|
541 | resolve (verifier); |
---|
542 | if (key != reference_type) |
---|
543 | return false; |
---|
544 | using namespace java::lang::reflect; |
---|
545 | return Modifier::isAbstract (data.klass->getModifiers ()); |
---|
546 | } |
---|
547 | |
---|
548 | // Return the element type of an array. |
---|
549 | type element_type (_Jv_BytecodeVerifier *verifier) |
---|
550 | { |
---|
551 | // FIXME: maybe should do string manipulation here. |
---|
552 | resolve (verifier); |
---|
553 | if (key != reference_type) |
---|
554 | verifier->verify_fail ("programmer error in type::element_type()", -1); |
---|
555 | |
---|
556 | jclass k = data.klass->getComponentType (); |
---|
557 | if (k->isPrimitive ()) |
---|
558 | return type (verifier->get_type_val_for_signature (k)); |
---|
559 | return type (k); |
---|
560 | } |
---|
561 | |
---|
562 | // Return the array type corresponding to an initialized |
---|
563 | // reference. We could expand this to work for other kinds of |
---|
564 | // types, but currently we don't need to. |
---|
565 | type to_array (_Jv_BytecodeVerifier *verifier) |
---|
566 | { |
---|
567 | // Resolving isn't ideal, because it might force us to load |
---|
568 | // another class, but it's easy. FIXME? |
---|
569 | if (key == unresolved_reference_type) |
---|
570 | resolve (verifier); |
---|
571 | |
---|
572 | if (key == reference_type) |
---|
573 | return type (_Jv_GetArrayClass (data.klass, |
---|
574 | data.klass->getClassLoader ())); |
---|
575 | else |
---|
576 | verifier->verify_fail ("internal error in type::to_array()"); |
---|
577 | } |
---|
578 | |
---|
579 | bool isreference () const |
---|
580 | { |
---|
581 | return key >= reference_type; |
---|
582 | } |
---|
583 | |
---|
584 | int get_pc () const |
---|
585 | { |
---|
586 | return pc; |
---|
587 | } |
---|
588 | |
---|
589 | bool isinitialized () const |
---|
590 | { |
---|
591 | return (key == reference_type |
---|
592 | || key == null_type |
---|
593 | || key == unresolved_reference_type); |
---|
594 | } |
---|
595 | |
---|
596 | bool isresolved () const |
---|
597 | { |
---|
598 | return (key == reference_type |
---|
599 | || key == null_type |
---|
600 | || key == uninitialized_reference_type); |
---|
601 | } |
---|
602 | |
---|
603 | void verify_dimensions (int ndims, _Jv_BytecodeVerifier *verifier) |
---|
604 | { |
---|
605 | // The way this is written, we don't need to check isarray(). |
---|
606 | if (key == reference_type) |
---|
607 | { |
---|
608 | jclass k = data.klass; |
---|
609 | while (k->isArray () && ndims > 0) |
---|
610 | { |
---|
611 | k = k->getComponentType (); |
---|
612 | --ndims; |
---|
613 | } |
---|
614 | } |
---|
615 | else |
---|
616 | { |
---|
617 | // We know KEY == unresolved_reference_type. |
---|
618 | char *p = data.name->data; |
---|
619 | while (*p++ == '[' && ndims-- > 0) |
---|
620 | ; |
---|
621 | } |
---|
622 | |
---|
623 | if (ndims > 0) |
---|
624 | verifier->verify_fail ("array type has fewer dimensions than required"); |
---|
625 | } |
---|
626 | |
---|
627 | // Merge OLD_TYPE into this. On error throw exception. |
---|
628 | bool merge (type& old_type, bool local_semantics, |
---|
629 | _Jv_BytecodeVerifier *verifier) |
---|
630 | { |
---|
631 | bool changed = false; |
---|
632 | bool refo = old_type.isreference (); |
---|
633 | bool refn = isreference (); |
---|
634 | if (refo && refn) |
---|
635 | { |
---|
636 | if (old_type.key == null_type) |
---|
637 | ; |
---|
638 | else if (key == null_type) |
---|
639 | { |
---|
640 | *this = old_type; |
---|
641 | changed = true; |
---|
642 | } |
---|
643 | else if (isinitialized () != old_type.isinitialized ()) |
---|
644 | verifier->verify_fail ("merging initialized and uninitialized types"); |
---|
645 | else |
---|
646 | { |
---|
647 | if (! isinitialized ()) |
---|
648 | { |
---|
649 | if (pc == UNINIT) |
---|
650 | pc = old_type.pc; |
---|
651 | else if (old_type.pc == UNINIT) |
---|
652 | ; |
---|
653 | else if (pc != old_type.pc) |
---|
654 | verifier->verify_fail ("merging different uninitialized types"); |
---|
655 | } |
---|
656 | |
---|
657 | if (! isresolved () |
---|
658 | && ! old_type.isresolved () |
---|
659 | && _Jv_equalUtf8Consts (data.name, old_type.data.name)) |
---|
660 | { |
---|
661 | // Types are identical. |
---|
662 | } |
---|
663 | else |
---|
664 | { |
---|
665 | resolve (verifier); |
---|
666 | old_type.resolve (verifier); |
---|
667 | |
---|
668 | jclass k = data.klass; |
---|
669 | jclass oldk = old_type.data.klass; |
---|
670 | |
---|
671 | int arraycount = 0; |
---|
672 | while (k->isArray () && oldk->isArray ()) |
---|
673 | { |
---|
674 | ++arraycount; |
---|
675 | k = k->getComponentType (); |
---|
676 | oldk = oldk->getComponentType (); |
---|
677 | } |
---|
678 | |
---|
679 | // Ordinarily this terminates when we hit Object... |
---|
680 | while (k != NULL) |
---|
681 | { |
---|
682 | if (is_assignable_from_slow (k, oldk)) |
---|
683 | break; |
---|
684 | k = k->getSuperclass (); |
---|
685 | changed = true; |
---|
686 | } |
---|
687 | // ... but K could have been an interface, in which |
---|
688 | // case we'll end up here. We just convert this |
---|
689 | // into Object. |
---|
690 | if (k == NULL) |
---|
691 | k = &java::lang::Object::class$; |
---|
692 | |
---|
693 | if (changed) |
---|
694 | { |
---|
695 | while (arraycount > 0) |
---|
696 | { |
---|
697 | java::lang::ClassLoader *loader |
---|
698 | = verifier->current_class->getClassLoader(); |
---|
699 | k = _Jv_GetArrayClass (k, loader); |
---|
700 | --arraycount; |
---|
701 | } |
---|
702 | data.klass = k; |
---|
703 | } |
---|
704 | } |
---|
705 | } |
---|
706 | } |
---|
707 | else if (refo || refn || key != old_type.key) |
---|
708 | { |
---|
709 | if (local_semantics) |
---|
710 | { |
---|
711 | // If we're merging into an "unused" slot, then we |
---|
712 | // simply accept whatever we're merging from. |
---|
713 | if (key == unused_by_subroutine_type) |
---|
714 | { |
---|
715 | *this = old_type; |
---|
716 | changed = true; |
---|
717 | } |
---|
718 | else if (old_type.key == unused_by_subroutine_type) |
---|
719 | { |
---|
720 | // Do nothing. |
---|
721 | } |
---|
722 | // If we already have an `unsuitable' type, then we |
---|
723 | // don't need to change again. |
---|
724 | else if (key != unsuitable_type) |
---|
725 | { |
---|
726 | key = unsuitable_type; |
---|
727 | changed = true; |
---|
728 | } |
---|
729 | } |
---|
730 | else |
---|
731 | verifier->verify_fail ("unmergeable type"); |
---|
732 | } |
---|
733 | return changed; |
---|
734 | } |
---|
735 | |
---|
736 | #ifdef VERIFY_DEBUG |
---|
737 | void print (void) const |
---|
738 | { |
---|
739 | char c = '?'; |
---|
740 | switch (key) |
---|
741 | { |
---|
742 | case boolean_type: c = 'Z'; break; |
---|
743 | case byte_type: c = 'B'; break; |
---|
744 | case char_type: c = 'C'; break; |
---|
745 | case short_type: c = 'S'; break; |
---|
746 | case int_type: c = 'I'; break; |
---|
747 | case long_type: c = 'J'; break; |
---|
748 | case float_type: c = 'F'; break; |
---|
749 | case double_type: c = 'D'; break; |
---|
750 | case void_type: c = 'V'; break; |
---|
751 | case unsuitable_type: c = '-'; break; |
---|
752 | case return_address_type: c = 'r'; break; |
---|
753 | case continuation_type: c = '+'; break; |
---|
754 | case unused_by_subroutine_type: c = '_'; break; |
---|
755 | case reference_type: c = 'L'; break; |
---|
756 | case null_type: c = '@'; break; |
---|
757 | case unresolved_reference_type: c = 'l'; break; |
---|
758 | case uninitialized_reference_type: c = 'U'; break; |
---|
759 | case uninitialized_unresolved_reference_type: c = 'u'; break; |
---|
760 | } |
---|
761 | debug_print ("%c", c); |
---|
762 | } |
---|
763 | #endif /* VERIFY_DEBUG */ |
---|
764 | }; |
---|
765 | |
---|
766 | // This class holds all the state information we need for a given |
---|
767 | // location. |
---|
768 | struct state |
---|
769 | { |
---|
770 | // The current top of the stack, in terms of slots. |
---|
771 | int stacktop; |
---|
772 | // The current depth of the stack. This will be larger than |
---|
773 | // STACKTOP when wide types are on the stack. |
---|
774 | int stackdepth; |
---|
775 | // The stack. |
---|
776 | type *stack; |
---|
777 | // The local variables. |
---|
778 | type *locals; |
---|
779 | // This is used in subroutines to keep track of which local |
---|
780 | // variables have been accessed. |
---|
781 | bool *local_changed; |
---|
782 | // If not 0, then we are in a subroutine. The value is the PC of |
---|
783 | // the subroutine's entry point. We can use 0 as an exceptional |
---|
784 | // value because PC=0 can never be a subroutine. |
---|
785 | int subroutine; |
---|
786 | // This is used to keep a linked list of all the states which |
---|
787 | // require re-verification. We use the PC to keep track. |
---|
788 | int next; |
---|
789 | // We keep track of the type of `this' specially. This is used to |
---|
790 | // ensure that an instance initializer invokes another initializer |
---|
791 | // on `this' before returning. We must keep track of this |
---|
792 | // specially because otherwise we might be confused by code which |
---|
793 | // assigns to locals[0] (overwriting `this') and then returns |
---|
794 | // without really initializing. |
---|
795 | type this_type; |
---|
796 | |
---|
797 | // INVALID marks a state which is not on the linked list of states |
---|
798 | // requiring reverification. |
---|
799 | static const int INVALID = -1; |
---|
800 | // NO_NEXT marks the state at the end of the reverification list. |
---|
801 | static const int NO_NEXT = -2; |
---|
802 | |
---|
803 | // This is used to mark the stack depth at the instruction just |
---|
804 | // after a `jsr' when we haven't yet processed the corresponding |
---|
805 | // `ret'. See handle_jsr_insn for more information. |
---|
806 | static const int NO_STACK = -1; |
---|
807 | |
---|
808 | state () |
---|
809 | : this_type () |
---|
810 | { |
---|
811 | stack = NULL; |
---|
812 | locals = NULL; |
---|
813 | local_changed = NULL; |
---|
814 | } |
---|
815 | |
---|
816 | state (int max_stack, int max_locals) |
---|
817 | : this_type () |
---|
818 | { |
---|
819 | stacktop = 0; |
---|
820 | stackdepth = 0; |
---|
821 | stack = new type[max_stack]; |
---|
822 | for (int i = 0; i < max_stack; ++i) |
---|
823 | stack[i] = unsuitable_type; |
---|
824 | locals = new type[max_locals]; |
---|
825 | local_changed = (bool *) _Jv_Malloc (sizeof (bool) * max_locals); |
---|
826 | for (int i = 0; i < max_locals; ++i) |
---|
827 | { |
---|
828 | locals[i] = unsuitable_type; |
---|
829 | local_changed[i] = false; |
---|
830 | } |
---|
831 | next = INVALID; |
---|
832 | subroutine = 0; |
---|
833 | } |
---|
834 | |
---|
835 | state (const state *orig, int max_stack, int max_locals, |
---|
836 | bool ret_semantics = false) |
---|
837 | { |
---|
838 | stack = new type[max_stack]; |
---|
839 | locals = new type[max_locals]; |
---|
840 | local_changed = (bool *) _Jv_Malloc (sizeof (bool) * max_locals); |
---|
841 | copy (orig, max_stack, max_locals, ret_semantics); |
---|
842 | next = INVALID; |
---|
843 | } |
---|
844 | |
---|
845 | ~state () |
---|
846 | { |
---|
847 | if (stack) |
---|
848 | delete[] stack; |
---|
849 | if (locals) |
---|
850 | delete[] locals; |
---|
851 | if (local_changed) |
---|
852 | _Jv_Free (local_changed); |
---|
853 | } |
---|
854 | |
---|
855 | void *operator new[] (size_t bytes) |
---|
856 | { |
---|
857 | return _Jv_Malloc (bytes); |
---|
858 | } |
---|
859 | |
---|
860 | void operator delete[] (void *mem) |
---|
861 | { |
---|
862 | _Jv_Free (mem); |
---|
863 | } |
---|
864 | |
---|
865 | void *operator new (size_t bytes) |
---|
866 | { |
---|
867 | return _Jv_Malloc (bytes); |
---|
868 | } |
---|
869 | |
---|
870 | void operator delete (void *mem) |
---|
871 | { |
---|
872 | _Jv_Free (mem); |
---|
873 | } |
---|
874 | |
---|
875 | void copy (const state *copy, int max_stack, int max_locals, |
---|
876 | bool ret_semantics = false) |
---|
877 | { |
---|
878 | stacktop = copy->stacktop; |
---|
879 | stackdepth = copy->stackdepth; |
---|
880 | subroutine = copy->subroutine; |
---|
881 | for (int i = 0; i < max_stack; ++i) |
---|
882 | stack[i] = copy->stack[i]; |
---|
883 | for (int i = 0; i < max_locals; ++i) |
---|
884 | { |
---|
885 | // See push_jump_merge to understand this case. |
---|
886 | if (ret_semantics) |
---|
887 | locals[i] = type (copy->local_changed[i] |
---|
888 | ? unsuitable_type |
---|
889 | : unused_by_subroutine_type); |
---|
890 | else |
---|
891 | locals[i] = copy->locals[i]; |
---|
892 | local_changed[i] = copy->local_changed[i]; |
---|
893 | } |
---|
894 | this_type = copy->this_type; |
---|
895 | // Don't modify `next'. |
---|
896 | } |
---|
897 | |
---|
898 | // Modify this state to reflect entry to an exception handler. |
---|
899 | void set_exception (type t, int max_stack) |
---|
900 | { |
---|
901 | stackdepth = 1; |
---|
902 | stacktop = 1; |
---|
903 | stack[0] = t; |
---|
904 | for (int i = stacktop; i < max_stack; ++i) |
---|
905 | stack[i] = unsuitable_type; |
---|
906 | } |
---|
907 | |
---|
908 | // Modify this state to reflect entry into a subroutine. |
---|
909 | void enter_subroutine (int npc, int max_locals) |
---|
910 | { |
---|
911 | subroutine = npc; |
---|
912 | // Mark all items as unchanged. Each subroutine needs to keep |
---|
913 | // track of its `changed' state independently. In the case of |
---|
914 | // nested subroutines, this information will be merged back into |
---|
915 | // parent by the `ret'. |
---|
916 | for (int i = 0; i < max_locals; ++i) |
---|
917 | local_changed[i] = false; |
---|
918 | } |
---|
919 | |
---|
920 | // Merge STATE_OLD into this state. Destructively modifies this |
---|
921 | // state. Returns true if the new state was in fact changed. |
---|
922 | // Will throw an exception if the states are not mergeable. |
---|
923 | bool merge (state *state_old, bool ret_semantics, |
---|
924 | int max_locals, _Jv_BytecodeVerifier *verifier) |
---|
925 | { |
---|
926 | bool changed = false; |
---|
927 | |
---|
928 | // Special handling for `this'. If one or the other is |
---|
929 | // uninitialized, then the merge is uninitialized. |
---|
930 | if (this_type.isinitialized ()) |
---|
931 | this_type = state_old->this_type; |
---|
932 | |
---|
933 | // Merge subroutine states. Here we just keep track of what |
---|
934 | // subroutine we think we're in. We only check for a merge |
---|
935 | // (which is invalid) when we see a `ret'. |
---|
936 | if (subroutine == state_old->subroutine) |
---|
937 | { |
---|
938 | // Nothing. |
---|
939 | } |
---|
940 | else if (subroutine == 0) |
---|
941 | { |
---|
942 | subroutine = state_old->subroutine; |
---|
943 | changed = true; |
---|
944 | } |
---|
945 | else |
---|
946 | { |
---|
947 | // If the subroutines differ, indicate that the state |
---|
948 | // changed. This is needed to detect when subroutines have |
---|
949 | // merged. |
---|
950 | changed = true; |
---|
951 | } |
---|
952 | |
---|
953 | // Merge stacks. Special handling for NO_STACK case. |
---|
954 | if (state_old->stacktop == NO_STACK) |
---|
955 | { |
---|
956 | // Nothing to do in this case; we don't care about modifying |
---|
957 | // the old state. |
---|
958 | } |
---|
959 | else if (stacktop == NO_STACK) |
---|
960 | { |
---|
961 | stacktop = state_old->stacktop; |
---|
962 | stackdepth = state_old->stackdepth; |
---|
963 | for (int i = 0; i < stacktop; ++i) |
---|
964 | stack[i] = state_old->stack[i]; |
---|
965 | changed = true; |
---|
966 | } |
---|
967 | else if (state_old->stacktop != stacktop) |
---|
968 | verifier->verify_fail ("stack sizes differ"); |
---|
969 | else |
---|
970 | { |
---|
971 | for (int i = 0; i < state_old->stacktop; ++i) |
---|
972 | { |
---|
973 | if (stack[i].merge (state_old->stack[i], false, verifier)) |
---|
974 | changed = true; |
---|
975 | } |
---|
976 | } |
---|
977 | |
---|
978 | // Merge local variables. |
---|
979 | for (int i = 0; i < max_locals; ++i) |
---|
980 | { |
---|
981 | // If we're not processing a `ret', then we merge every |
---|
982 | // local variable. If we are processing a `ret', then we |
---|
983 | // only merge locals which changed in the subroutine. When |
---|
984 | // processing a `ret', STATE_OLD is the state at the point |
---|
985 | // of the `ret', and THIS is the state just after the `jsr'. |
---|
986 | if (! ret_semantics || state_old->local_changed[i]) |
---|
987 | { |
---|
988 | if (locals[i].merge (state_old->locals[i], true, verifier)) |
---|
989 | { |
---|
990 | // Note that we don't call `note_variable' here. |
---|
991 | // This change doesn't represent a real change to a |
---|
992 | // local, but rather a merge artifact. If we're in |
---|
993 | // a subroutine which is called with two |
---|
994 | // incompatible types in a slot that is unused by |
---|
995 | // the subroutine, then we don't want to mark that |
---|
996 | // variable as having been modified. |
---|
997 | changed = true; |
---|
998 | } |
---|
999 | } |
---|
1000 | |
---|
1001 | // If we're in a subroutine, we must compute the union of |
---|
1002 | // all the changed local variables. |
---|
1003 | if (state_old->local_changed[i]) |
---|
1004 | note_variable (i); |
---|
1005 | } |
---|
1006 | |
---|
1007 | return changed; |
---|
1008 | } |
---|
1009 | |
---|
1010 | // Throw an exception if there is an uninitialized object on the |
---|
1011 | // stack or in a local variable. EXCEPTION_SEMANTICS controls |
---|
1012 | // whether we're using backwards-branch or exception-handing |
---|
1013 | // semantics. |
---|
1014 | void check_no_uninitialized_objects (int max_locals, |
---|
1015 | _Jv_BytecodeVerifier *verifier, |
---|
1016 | bool exception_semantics = false) |
---|
1017 | { |
---|
1018 | if (! exception_semantics) |
---|
1019 | { |
---|
1020 | for (int i = 0; i < stacktop; ++i) |
---|
1021 | if (stack[i].isreference () && ! stack[i].isinitialized ()) |
---|
1022 | verifier->verify_fail ("uninitialized object on stack"); |
---|
1023 | } |
---|
1024 | |
---|
1025 | for (int i = 0; i < max_locals; ++i) |
---|
1026 | if (locals[i].isreference () && ! locals[i].isinitialized ()) |
---|
1027 | verifier->verify_fail ("uninitialized object in local variable"); |
---|
1028 | |
---|
1029 | check_this_initialized (verifier); |
---|
1030 | } |
---|
1031 | |
---|
1032 | // Ensure that `this' has been initialized. |
---|
1033 | void check_this_initialized (_Jv_BytecodeVerifier *verifier) |
---|
1034 | { |
---|
1035 | if (this_type.isreference () && ! this_type.isinitialized ()) |
---|
1036 | verifier->verify_fail ("`this' is uninitialized"); |
---|
1037 | } |
---|
1038 | |
---|
1039 | // Set type of `this'. |
---|
1040 | void set_this_type (const type &k) |
---|
1041 | { |
---|
1042 | this_type = k; |
---|
1043 | } |
---|
1044 | |
---|
1045 | // Note that a local variable was modified. |
---|
1046 | void note_variable (int index) |
---|
1047 | { |
---|
1048 | if (subroutine > 0) |
---|
1049 | local_changed[index] = true; |
---|
1050 | } |
---|
1051 | |
---|
1052 | // Mark each `new'd object we know of that was allocated at PC as |
---|
1053 | // initialized. |
---|
1054 | void set_initialized (int pc, int max_locals) |
---|
1055 | { |
---|
1056 | for (int i = 0; i < stacktop; ++i) |
---|
1057 | stack[i].set_initialized (pc); |
---|
1058 | for (int i = 0; i < max_locals; ++i) |
---|
1059 | locals[i].set_initialized (pc); |
---|
1060 | this_type.set_initialized (pc); |
---|
1061 | } |
---|
1062 | |
---|
1063 | // Return true if this state is the unmerged result of a `ret'. |
---|
1064 | bool is_unmerged_ret_state (int max_locals) const |
---|
1065 | { |
---|
1066 | if (stacktop == NO_STACK) |
---|
1067 | return true; |
---|
1068 | for (int i = 0; i < max_locals; ++i) |
---|
1069 | { |
---|
1070 | if (locals[i].key == unused_by_subroutine_type) |
---|
1071 | return true; |
---|
1072 | } |
---|
1073 | return false; |
---|
1074 | } |
---|
1075 | |
---|
1076 | #ifdef VERIFY_DEBUG |
---|
1077 | void print (const char *leader, int pc, |
---|
1078 | int max_stack, int max_locals) const |
---|
1079 | { |
---|
1080 | debug_print ("%s [%4d]: [stack] ", leader, pc); |
---|
1081 | int i; |
---|
1082 | for (i = 0; i < stacktop; ++i) |
---|
1083 | stack[i].print (); |
---|
1084 | for (; i < max_stack; ++i) |
---|
1085 | debug_print ("."); |
---|
1086 | debug_print (" [local] "); |
---|
1087 | for (i = 0; i < max_locals; ++i) |
---|
1088 | { |
---|
1089 | locals[i].print (); |
---|
1090 | debug_print (local_changed[i] ? "+" : " "); |
---|
1091 | } |
---|
1092 | if (subroutine == 0) |
---|
1093 | debug_print (" | None"); |
---|
1094 | else |
---|
1095 | debug_print (" | %4d", subroutine); |
---|
1096 | debug_print (" | %p\n", this); |
---|
1097 | } |
---|
1098 | #else |
---|
1099 | inline void print (const char *, int, int, int) const |
---|
1100 | { |
---|
1101 | } |
---|
1102 | #endif /* VERIFY_DEBUG */ |
---|
1103 | }; |
---|
1104 | |
---|
1105 | type pop_raw () |
---|
1106 | { |
---|
1107 | if (current_state->stacktop <= 0) |
---|
1108 | verify_fail ("stack empty"); |
---|
1109 | type r = current_state->stack[--current_state->stacktop]; |
---|
1110 | current_state->stackdepth -= r.depth (); |
---|
1111 | if (current_state->stackdepth < 0) |
---|
1112 | verify_fail ("stack empty", start_PC); |
---|
1113 | return r; |
---|
1114 | } |
---|
1115 | |
---|
1116 | type pop32 () |
---|
1117 | { |
---|
1118 | type r = pop_raw (); |
---|
1119 | if (r.iswide ()) |
---|
1120 | verify_fail ("narrow pop of wide type"); |
---|
1121 | return r; |
---|
1122 | } |
---|
1123 | |
---|
1124 | type pop64 () |
---|
1125 | { |
---|
1126 | type r = pop_raw (); |
---|
1127 | if (! r.iswide ()) |
---|
1128 | verify_fail ("wide pop of narrow type"); |
---|
1129 | return r; |
---|
1130 | } |
---|
1131 | |
---|
1132 | type pop_type (type match) |
---|
1133 | { |
---|
1134 | match.promote (); |
---|
1135 | type t = pop_raw (); |
---|
1136 | if (! match.compatible (t, this)) |
---|
1137 | verify_fail ("incompatible type on stack"); |
---|
1138 | return t; |
---|
1139 | } |
---|
1140 | |
---|
1141 | // Pop a reference type or a return address. |
---|
1142 | type pop_ref_or_return () |
---|
1143 | { |
---|
1144 | type t = pop_raw (); |
---|
1145 | if (! t.isreference () && t.key != return_address_type) |
---|
1146 | verify_fail ("expected reference or return address on stack"); |
---|
1147 | return t; |
---|
1148 | } |
---|
1149 | |
---|
1150 | void push_type (type t) |
---|
1151 | { |
---|
1152 | // If T is a numeric type like short, promote it to int. |
---|
1153 | t.promote (); |
---|
1154 | |
---|
1155 | int depth = t.depth (); |
---|
1156 | if (current_state->stackdepth + depth > current_method->max_stack) |
---|
1157 | verify_fail ("stack overflow"); |
---|
1158 | current_state->stack[current_state->stacktop++] = t; |
---|
1159 | current_state->stackdepth += depth; |
---|
1160 | } |
---|
1161 | |
---|
1162 | void set_variable (int index, type t) |
---|
1163 | { |
---|
1164 | // If T is a numeric type like short, promote it to int. |
---|
1165 | t.promote (); |
---|
1166 | |
---|
1167 | int depth = t.depth (); |
---|
1168 | if (index > current_method->max_locals - depth) |
---|
1169 | verify_fail ("invalid local variable"); |
---|
1170 | current_state->locals[index] = t; |
---|
1171 | current_state->note_variable (index); |
---|
1172 | |
---|
1173 | if (depth == 2) |
---|
1174 | { |
---|
1175 | current_state->locals[index + 1] = continuation_type; |
---|
1176 | current_state->note_variable (index + 1); |
---|
1177 | } |
---|
1178 | if (index > 0 && current_state->locals[index - 1].iswide ()) |
---|
1179 | { |
---|
1180 | current_state->locals[index - 1] = unsuitable_type; |
---|
1181 | // There's no need to call note_variable here. |
---|
1182 | } |
---|
1183 | } |
---|
1184 | |
---|
1185 | type get_variable (int index, type t) |
---|
1186 | { |
---|
1187 | int depth = t.depth (); |
---|
1188 | if (index > current_method->max_locals - depth) |
---|
1189 | verify_fail ("invalid local variable"); |
---|
1190 | if (! t.compatible (current_state->locals[index], this)) |
---|
1191 | verify_fail ("incompatible type in local variable"); |
---|
1192 | if (depth == 2) |
---|
1193 | { |
---|
1194 | type t (continuation_type); |
---|
1195 | if (! current_state->locals[index + 1].compatible (t, this)) |
---|
1196 | verify_fail ("invalid local variable"); |
---|
1197 | } |
---|
1198 | return current_state->locals[index]; |
---|
1199 | } |
---|
1200 | |
---|
1201 | // Make sure ARRAY is an array type and that its elements are |
---|
1202 | // compatible with type ELEMENT. Returns the actual element type. |
---|
1203 | type require_array_type (type array, type element) |
---|
1204 | { |
---|
1205 | // An odd case. Here we just pretend that everything went ok. If |
---|
1206 | // the requested element type is some kind of reference, return |
---|
1207 | // the null type instead. |
---|
1208 | if (array.isnull ()) |
---|
1209 | return element.isreference () ? type (null_type) : element; |
---|
1210 | |
---|
1211 | if (! array.isarray ()) |
---|
1212 | verify_fail ("array required"); |
---|
1213 | |
---|
1214 | type t = array.element_type (this); |
---|
1215 | if (! element.compatible (t, this)) |
---|
1216 | { |
---|
1217 | // Special case for byte arrays, which must also be boolean |
---|
1218 | // arrays. |
---|
1219 | bool ok = true; |
---|
1220 | if (element.key == byte_type) |
---|
1221 | { |
---|
1222 | type e2 (boolean_type); |
---|
1223 | ok = e2.compatible (t, this); |
---|
1224 | } |
---|
1225 | if (! ok) |
---|
1226 | verify_fail ("incompatible array element type"); |
---|
1227 | } |
---|
1228 | |
---|
1229 | // Return T and not ELEMENT, because T might be specialized. |
---|
1230 | return t; |
---|
1231 | } |
---|
1232 | |
---|
1233 | jint get_byte () |
---|
1234 | { |
---|
1235 | if (PC >= current_method->code_length) |
---|
1236 | verify_fail ("premature end of bytecode"); |
---|
1237 | return (jint) bytecode[PC++] & 0xff; |
---|
1238 | } |
---|
1239 | |
---|
1240 | jint get_ushort () |
---|
1241 | { |
---|
1242 | jint b1 = get_byte (); |
---|
1243 | jint b2 = get_byte (); |
---|
1244 | return (jint) ((b1 << 8) | b2) & 0xffff; |
---|
1245 | } |
---|
1246 | |
---|
1247 | jint get_short () |
---|
1248 | { |
---|
1249 | jint b1 = get_byte (); |
---|
1250 | jint b2 = get_byte (); |
---|
1251 | jshort s = (b1 << 8) | b2; |
---|
1252 | return (jint) s; |
---|
1253 | } |
---|
1254 | |
---|
1255 | jint get_int () |
---|
1256 | { |
---|
1257 | jint b1 = get_byte (); |
---|
1258 | jint b2 = get_byte (); |
---|
1259 | jint b3 = get_byte (); |
---|
1260 | jint b4 = get_byte (); |
---|
1261 | return (b1 << 24) | (b2 << 16) | (b3 << 8) | b4; |
---|
1262 | } |
---|
1263 | |
---|
1264 | int compute_jump (int offset) |
---|
1265 | { |
---|
1266 | int npc = start_PC + offset; |
---|
1267 | if (npc < 0 || npc >= current_method->code_length) |
---|
1268 | verify_fail ("branch out of range", start_PC); |
---|
1269 | return npc; |
---|
1270 | } |
---|
1271 | |
---|
1272 | // Merge the indicated state into the state at the branch target and |
---|
1273 | // schedule a new PC if there is a change. If RET_SEMANTICS is |
---|
1274 | // true, then we are merging from a `ret' instruction into the |
---|
1275 | // instruction after a `jsr'. This is a special case with its own |
---|
1276 | // modified semantics. |
---|
1277 | void push_jump_merge (int npc, state *nstate, bool ret_semantics = false) |
---|
1278 | { |
---|
1279 | bool changed = true; |
---|
1280 | if (states[npc] == NULL) |
---|
1281 | { |
---|
1282 | // There's a weird situation here. If are examining the |
---|
1283 | // branch that results from a `ret', and there is not yet a |
---|
1284 | // state available at the branch target (the instruction just |
---|
1285 | // after the `jsr'), then we have to construct a special kind |
---|
1286 | // of state at that point for future merging. This special |
---|
1287 | // state has the type `unused_by_subroutine_type' in each slot |
---|
1288 | // which was not modified by the subroutine. |
---|
1289 | states[npc] = new state (nstate, current_method->max_stack, |
---|
1290 | current_method->max_locals, ret_semantics); |
---|
1291 | debug_print ("== New state in push_jump_merge\n"); |
---|
1292 | states[npc]->print ("New", npc, current_method->max_stack, |
---|
1293 | current_method->max_locals); |
---|
1294 | } |
---|
1295 | else |
---|
1296 | { |
---|
1297 | debug_print ("== Merge states in push_jump_merge\n"); |
---|
1298 | nstate->print ("Frm", start_PC, current_method->max_stack, |
---|
1299 | current_method->max_locals); |
---|
1300 | states[npc]->print (" To", npc, current_method->max_stack, |
---|
1301 | current_method->max_locals); |
---|
1302 | changed = states[npc]->merge (nstate, ret_semantics, |
---|
1303 | current_method->max_locals, this); |
---|
1304 | states[npc]->print ("New", npc, current_method->max_stack, |
---|
1305 | current_method->max_locals); |
---|
1306 | } |
---|
1307 | |
---|
1308 | if (changed && states[npc]->next == state::INVALID) |
---|
1309 | { |
---|
1310 | // The merge changed the state, and the new PC isn't yet on our |
---|
1311 | // list of PCs to re-verify. |
---|
1312 | states[npc]->next = next_verify_pc; |
---|
1313 | next_verify_pc = npc; |
---|
1314 | } |
---|
1315 | } |
---|
1316 | |
---|
1317 | void push_jump (int offset) |
---|
1318 | { |
---|
1319 | int npc = compute_jump (offset); |
---|
1320 | if (npc < PC) |
---|
1321 | current_state->check_no_uninitialized_objects (current_method->max_locals, this); |
---|
1322 | push_jump_merge (npc, current_state); |
---|
1323 | } |
---|
1324 | |
---|
1325 | void push_exception_jump (type t, int pc) |
---|
1326 | { |
---|
1327 | current_state->check_no_uninitialized_objects (current_method->max_locals, |
---|
1328 | this, true); |
---|
1329 | state s (current_state, current_method->max_stack, |
---|
1330 | current_method->max_locals); |
---|
1331 | if (current_method->max_stack < 1) |
---|
1332 | verify_fail ("stack overflow at exception handler"); |
---|
1333 | s.set_exception (t, current_method->max_stack); |
---|
1334 | push_jump_merge (pc, &s); |
---|
1335 | } |
---|
1336 | |
---|
1337 | int pop_jump () |
---|
1338 | { |
---|
1339 | int *prev_loc = &next_verify_pc; |
---|
1340 | int npc = next_verify_pc; |
---|
1341 | bool skipped = false; |
---|
1342 | |
---|
1343 | while (npc != state::NO_NEXT) |
---|
1344 | { |
---|
1345 | // If the next available PC is an unmerged `ret' state, then |
---|
1346 | // we aren't yet ready to handle it. That's because we would |
---|
1347 | // need all kind of special cases to do so. So instead we |
---|
1348 | // defer this jump until after we've processed it via a |
---|
1349 | // fall-through. This has to happen because the instruction |
---|
1350 | // before this one must be a `jsr'. |
---|
1351 | if (! states[npc]->is_unmerged_ret_state (current_method->max_locals)) |
---|
1352 | { |
---|
1353 | *prev_loc = states[npc]->next; |
---|
1354 | states[npc]->next = state::INVALID; |
---|
1355 | return npc; |
---|
1356 | } |
---|
1357 | |
---|
1358 | skipped = true; |
---|
1359 | prev_loc = &states[npc]->next; |
---|
1360 | npc = states[npc]->next; |
---|
1361 | } |
---|
1362 | |
---|
1363 | // Note that we might have gotten here even when there are |
---|
1364 | // remaining states to process. That can happen if we find a |
---|
1365 | // `jsr' without a `ret'. |
---|
1366 | return state::NO_NEXT; |
---|
1367 | } |
---|
1368 | |
---|
1369 | void invalidate_pc () |
---|
1370 | { |
---|
1371 | PC = state::NO_NEXT; |
---|
1372 | } |
---|
1373 | |
---|
1374 | void note_branch_target (int pc, bool is_jsr_target = false) |
---|
1375 | { |
---|
1376 | // Don't check `pc <= PC', because we've advanced PC after |
---|
1377 | // fetching the target and we haven't yet checked the next |
---|
1378 | // instruction. |
---|
1379 | if (pc < PC && ! (flags[pc] & FLAG_INSN_START)) |
---|
1380 | verify_fail ("branch not to instruction start", start_PC); |
---|
1381 | flags[pc] |= FLAG_BRANCH_TARGET; |
---|
1382 | if (is_jsr_target) |
---|
1383 | { |
---|
1384 | // Record the jsr which called this instruction. |
---|
1385 | subr_info *info = (subr_info *) _Jv_Malloc (sizeof (subr_info)); |
---|
1386 | info->pc = PC; |
---|
1387 | info->next = jsr_ptrs[pc]; |
---|
1388 | jsr_ptrs[pc] = info; |
---|
1389 | } |
---|
1390 | } |
---|
1391 | |
---|
1392 | void skip_padding () |
---|
1393 | { |
---|
1394 | while ((PC % 4) > 0) |
---|
1395 | if (get_byte () != 0) |
---|
1396 | verify_fail ("found nonzero padding byte"); |
---|
1397 | } |
---|
1398 | |
---|
1399 | // Return the subroutine to which the instruction at PC belongs. |
---|
1400 | int get_subroutine (int pc) |
---|
1401 | { |
---|
1402 | if (states[pc] == NULL) |
---|
1403 | return 0; |
---|
1404 | return states[pc]->subroutine; |
---|
1405 | } |
---|
1406 | |
---|
1407 | // Do the work for a `ret' instruction. INDEX is the index into the |
---|
1408 | // local variables. |
---|
1409 | void handle_ret_insn (int index) |
---|
1410 | { |
---|
1411 | get_variable (index, return_address_type); |
---|
1412 | |
---|
1413 | int csub = current_state->subroutine; |
---|
1414 | if (csub == 0) |
---|
1415 | verify_fail ("no subroutine"); |
---|
1416 | |
---|
1417 | // Check to see if we've merged subroutines. |
---|
1418 | subr_entry_info *entry; |
---|
1419 | for (entry = entry_points; entry != NULL; entry = entry->next) |
---|
1420 | { |
---|
1421 | if (entry->ret_pc == start_PC) |
---|
1422 | break; |
---|
1423 | } |
---|
1424 | if (entry == NULL) |
---|
1425 | { |
---|
1426 | entry = (subr_entry_info *) _Jv_Malloc (sizeof (subr_entry_info)); |
---|
1427 | entry->pc = csub; |
---|
1428 | entry->ret_pc = start_PC; |
---|
1429 | entry->next = entry_points; |
---|
1430 | entry_points = entry; |
---|
1431 | } |
---|
1432 | else if (entry->pc != csub) |
---|
1433 | verify_fail ("subroutines merged"); |
---|
1434 | |
---|
1435 | for (subr_info *subr = jsr_ptrs[csub]; subr != NULL; subr = subr->next) |
---|
1436 | { |
---|
1437 | // Temporarily modify the current state so it looks like we're |
---|
1438 | // in the enclosing context. |
---|
1439 | current_state->subroutine = get_subroutine (subr->pc); |
---|
1440 | if (subr->pc < PC) |
---|
1441 | current_state->check_no_uninitialized_objects (current_method->max_locals, this); |
---|
1442 | push_jump_merge (subr->pc, current_state, true); |
---|
1443 | } |
---|
1444 | |
---|
1445 | current_state->subroutine = csub; |
---|
1446 | invalidate_pc (); |
---|
1447 | } |
---|
1448 | |
---|
1449 | // We're in the subroutine SUB, calling a subroutine at DEST. Make |
---|
1450 | // sure this subroutine isn't already on the stack. |
---|
1451 | void check_nonrecursive_call (int sub, int dest) |
---|
1452 | { |
---|
1453 | if (sub == 0) |
---|
1454 | return; |
---|
1455 | if (sub == dest) |
---|
1456 | verify_fail ("recursive subroutine call"); |
---|
1457 | for (subr_info *info = jsr_ptrs[sub]; info != NULL; info = info->next) |
---|
1458 | check_nonrecursive_call (get_subroutine (info->pc), dest); |
---|
1459 | } |
---|
1460 | |
---|
1461 | void handle_jsr_insn (int offset) |
---|
1462 | { |
---|
1463 | int npc = compute_jump (offset); |
---|
1464 | |
---|
1465 | if (npc < PC) |
---|
1466 | current_state->check_no_uninitialized_objects (current_method->max_locals, this); |
---|
1467 | check_nonrecursive_call (current_state->subroutine, npc); |
---|
1468 | |
---|
1469 | // Modify our state as appropriate for entry into a subroutine. |
---|
1470 | push_type (return_address_type); |
---|
1471 | push_jump_merge (npc, current_state); |
---|
1472 | // Clean up. |
---|
1473 | pop_type (return_address_type); |
---|
1474 | |
---|
1475 | // On entry to the subroutine, the subroutine number must be set |
---|
1476 | // and the locals must be marked as cleared. We do this after |
---|
1477 | // merging state so that we don't erroneously "notice" a variable |
---|
1478 | // change merely on entry. |
---|
1479 | states[npc]->enter_subroutine (npc, current_method->max_locals); |
---|
1480 | |
---|
1481 | // Indicate that we don't know the stack depth of the instruction |
---|
1482 | // following the `jsr'. The idea here is that we need to merge |
---|
1483 | // the local variable state across the jsr, but the subroutine |
---|
1484 | // might change the stack depth, so we can't make any assumptions |
---|
1485 | // about it. So we have yet another special case. We know that |
---|
1486 | // at this point PC points to the instruction after the jsr. |
---|
1487 | |
---|
1488 | // FIXME: what if we have a jsr at the end of the code, but that |
---|
1489 | // jsr has no corresponding ret? Is this verifiable, or is it |
---|
1490 | // not? If it is then we need a special case here. |
---|
1491 | if (PC >= current_method->code_length) |
---|
1492 | verify_fail ("fell off end"); |
---|
1493 | |
---|
1494 | current_state->stacktop = state::NO_STACK; |
---|
1495 | push_jump_merge (PC, current_state); |
---|
1496 | invalidate_pc (); |
---|
1497 | } |
---|
1498 | |
---|
1499 | jclass construct_primitive_array_type (type_val prim) |
---|
1500 | { |
---|
1501 | jclass k = NULL; |
---|
1502 | switch (prim) |
---|
1503 | { |
---|
1504 | case boolean_type: |
---|
1505 | k = JvPrimClass (boolean); |
---|
1506 | break; |
---|
1507 | case char_type: |
---|
1508 | k = JvPrimClass (char); |
---|
1509 | break; |
---|
1510 | case float_type: |
---|
1511 | k = JvPrimClass (float); |
---|
1512 | break; |
---|
1513 | case double_type: |
---|
1514 | k = JvPrimClass (double); |
---|
1515 | break; |
---|
1516 | case byte_type: |
---|
1517 | k = JvPrimClass (byte); |
---|
1518 | break; |
---|
1519 | case short_type: |
---|
1520 | k = JvPrimClass (short); |
---|
1521 | break; |
---|
1522 | case int_type: |
---|
1523 | k = JvPrimClass (int); |
---|
1524 | break; |
---|
1525 | case long_type: |
---|
1526 | k = JvPrimClass (long); |
---|
1527 | break; |
---|
1528 | default: |
---|
1529 | verify_fail ("unknown type in construct_primitive_array_type"); |
---|
1530 | } |
---|
1531 | k = _Jv_GetArrayClass (k, NULL); |
---|
1532 | return k; |
---|
1533 | } |
---|
1534 | |
---|
1535 | // This pass computes the location of branch targets and also |
---|
1536 | // instruction starts. |
---|
1537 | void branch_prepass () |
---|
1538 | { |
---|
1539 | flags = (char *) _Jv_Malloc (current_method->code_length); |
---|
1540 | jsr_ptrs = (subr_info **) _Jv_Malloc (sizeof (subr_info *) |
---|
1541 | * current_method->code_length); |
---|
1542 | |
---|
1543 | for (int i = 0; i < current_method->code_length; ++i) |
---|
1544 | { |
---|
1545 | flags[i] = 0; |
---|
1546 | jsr_ptrs[i] = NULL; |
---|
1547 | } |
---|
1548 | |
---|
1549 | bool last_was_jsr = false; |
---|
1550 | |
---|
1551 | PC = 0; |
---|
1552 | while (PC < current_method->code_length) |
---|
1553 | { |
---|
1554 | // Set `start_PC' early so that error checking can have the |
---|
1555 | // correct value. |
---|
1556 | start_PC = PC; |
---|
1557 | flags[PC] |= FLAG_INSN_START; |
---|
1558 | |
---|
1559 | // If the previous instruction was a jsr, then the next |
---|
1560 | // instruction is a branch target -- the branch being the |
---|
1561 | // corresponding `ret'. |
---|
1562 | if (last_was_jsr) |
---|
1563 | note_branch_target (PC); |
---|
1564 | last_was_jsr = false; |
---|
1565 | |
---|
1566 | java_opcode opcode = (java_opcode) bytecode[PC++]; |
---|
1567 | switch (opcode) |
---|
1568 | { |
---|
1569 | case op_nop: |
---|
1570 | case op_aconst_null: |
---|
1571 | case op_iconst_m1: |
---|
1572 | case op_iconst_0: |
---|
1573 | case op_iconst_1: |
---|
1574 | case op_iconst_2: |
---|
1575 | case op_iconst_3: |
---|
1576 | case op_iconst_4: |
---|
1577 | case op_iconst_5: |
---|
1578 | case op_lconst_0: |
---|
1579 | case op_lconst_1: |
---|
1580 | case op_fconst_0: |
---|
1581 | case op_fconst_1: |
---|
1582 | case op_fconst_2: |
---|
1583 | case op_dconst_0: |
---|
1584 | case op_dconst_1: |
---|
1585 | case op_iload_0: |
---|
1586 | case op_iload_1: |
---|
1587 | case op_iload_2: |
---|
1588 | case op_iload_3: |
---|
1589 | case op_lload_0: |
---|
1590 | case op_lload_1: |
---|
1591 | case op_lload_2: |
---|
1592 | case op_lload_3: |
---|
1593 | case op_fload_0: |
---|
1594 | case op_fload_1: |
---|
1595 | case op_fload_2: |
---|
1596 | case op_fload_3: |
---|
1597 | case op_dload_0: |
---|
1598 | case op_dload_1: |
---|
1599 | case op_dload_2: |
---|
1600 | case op_dload_3: |
---|
1601 | case op_aload_0: |
---|
1602 | case op_aload_1: |
---|
1603 | case op_aload_2: |
---|
1604 | case op_aload_3: |
---|
1605 | case op_iaload: |
---|
1606 | case op_laload: |
---|
1607 | case op_faload: |
---|
1608 | case op_daload: |
---|
1609 | case op_aaload: |
---|
1610 | case op_baload: |
---|
1611 | case op_caload: |
---|
1612 | case op_saload: |
---|
1613 | case op_istore_0: |
---|
1614 | case op_istore_1: |
---|
1615 | case op_istore_2: |
---|
1616 | case op_istore_3: |
---|
1617 | case op_lstore_0: |
---|
1618 | case op_lstore_1: |
---|
1619 | case op_lstore_2: |
---|
1620 | case op_lstore_3: |
---|
1621 | case op_fstore_0: |
---|
1622 | case op_fstore_1: |
---|
1623 | case op_fstore_2: |
---|
1624 | case op_fstore_3: |
---|
1625 | case op_dstore_0: |
---|
1626 | case op_dstore_1: |
---|
1627 | case op_dstore_2: |
---|
1628 | case op_dstore_3: |
---|
1629 | case op_astore_0: |
---|
1630 | case op_astore_1: |
---|
1631 | case op_astore_2: |
---|
1632 | case op_astore_3: |
---|
1633 | case op_iastore: |
---|
1634 | case op_lastore: |
---|
1635 | case op_fastore: |
---|
1636 | case op_dastore: |
---|
1637 | case op_aastore: |
---|
1638 | case op_bastore: |
---|
1639 | case op_castore: |
---|
1640 | case op_sastore: |
---|
1641 | case op_pop: |
---|
1642 | case op_pop2: |
---|
1643 | case op_dup: |
---|
1644 | case op_dup_x1: |
---|
1645 | case op_dup_x2: |
---|
1646 | case op_dup2: |
---|
1647 | case op_dup2_x1: |
---|
1648 | case op_dup2_x2: |
---|
1649 | case op_swap: |
---|
1650 | case op_iadd: |
---|
1651 | case op_isub: |
---|
1652 | case op_imul: |
---|
1653 | case op_idiv: |
---|
1654 | case op_irem: |
---|
1655 | case op_ishl: |
---|
1656 | case op_ishr: |
---|
1657 | case op_iushr: |
---|
1658 | case op_iand: |
---|
1659 | case op_ior: |
---|
1660 | case op_ixor: |
---|
1661 | case op_ladd: |
---|
1662 | case op_lsub: |
---|
1663 | case op_lmul: |
---|
1664 | case op_ldiv: |
---|
1665 | case op_lrem: |
---|
1666 | case op_lshl: |
---|
1667 | case op_lshr: |
---|
1668 | case op_lushr: |
---|
1669 | case op_land: |
---|
1670 | case op_lor: |
---|
1671 | case op_lxor: |
---|
1672 | case op_fadd: |
---|
1673 | case op_fsub: |
---|
1674 | case op_fmul: |
---|
1675 | case op_fdiv: |
---|
1676 | case op_frem: |
---|
1677 | case op_dadd: |
---|
1678 | case op_dsub: |
---|
1679 | case op_dmul: |
---|
1680 | case op_ddiv: |
---|
1681 | case op_drem: |
---|
1682 | case op_ineg: |
---|
1683 | case op_i2b: |
---|
1684 | case op_i2c: |
---|
1685 | case op_i2s: |
---|
1686 | case op_lneg: |
---|
1687 | case op_fneg: |
---|
1688 | case op_dneg: |
---|
1689 | case op_i2l: |
---|
1690 | case op_i2f: |
---|
1691 | case op_i2d: |
---|
1692 | case op_l2i: |
---|
1693 | case op_l2f: |
---|
1694 | case op_l2d: |
---|
1695 | case op_f2i: |
---|
1696 | case op_f2l: |
---|
1697 | case op_f2d: |
---|
1698 | case op_d2i: |
---|
1699 | case op_d2l: |
---|
1700 | case op_d2f: |
---|
1701 | case op_lcmp: |
---|
1702 | case op_fcmpl: |
---|
1703 | case op_fcmpg: |
---|
1704 | case op_dcmpl: |
---|
1705 | case op_dcmpg: |
---|
1706 | case op_monitorenter: |
---|
1707 | case op_monitorexit: |
---|
1708 | case op_ireturn: |
---|
1709 | case op_lreturn: |
---|
1710 | case op_freturn: |
---|
1711 | case op_dreturn: |
---|
1712 | case op_areturn: |
---|
1713 | case op_return: |
---|
1714 | case op_athrow: |
---|
1715 | case op_arraylength: |
---|
1716 | break; |
---|
1717 | |
---|
1718 | case op_bipush: |
---|
1719 | case op_ldc: |
---|
1720 | case op_iload: |
---|
1721 | case op_lload: |
---|
1722 | case op_fload: |
---|
1723 | case op_dload: |
---|
1724 | case op_aload: |
---|
1725 | case op_istore: |
---|
1726 | case op_lstore: |
---|
1727 | case op_fstore: |
---|
1728 | case op_dstore: |
---|
1729 | case op_astore: |
---|
1730 | case op_ret: |
---|
1731 | case op_newarray: |
---|
1732 | get_byte (); |
---|
1733 | break; |
---|
1734 | |
---|
1735 | case op_iinc: |
---|
1736 | case op_sipush: |
---|
1737 | case op_ldc_w: |
---|
1738 | case op_ldc2_w: |
---|
1739 | case op_getstatic: |
---|
1740 | case op_getfield: |
---|
1741 | case op_putfield: |
---|
1742 | case op_putstatic: |
---|
1743 | case op_new: |
---|
1744 | case op_anewarray: |
---|
1745 | case op_instanceof: |
---|
1746 | case op_checkcast: |
---|
1747 | case op_invokespecial: |
---|
1748 | case op_invokestatic: |
---|
1749 | case op_invokevirtual: |
---|
1750 | get_short (); |
---|
1751 | break; |
---|
1752 | |
---|
1753 | case op_multianewarray: |
---|
1754 | get_short (); |
---|
1755 | get_byte (); |
---|
1756 | break; |
---|
1757 | |
---|
1758 | case op_jsr: |
---|
1759 | last_was_jsr = true; |
---|
1760 | // Fall through. |
---|
1761 | case op_ifeq: |
---|
1762 | case op_ifne: |
---|
1763 | case op_iflt: |
---|
1764 | case op_ifge: |
---|
1765 | case op_ifgt: |
---|
1766 | case op_ifle: |
---|
1767 | case op_if_icmpeq: |
---|
1768 | case op_if_icmpne: |
---|
1769 | case op_if_icmplt: |
---|
1770 | case op_if_icmpge: |
---|
1771 | case op_if_icmpgt: |
---|
1772 | case op_if_icmple: |
---|
1773 | case op_if_acmpeq: |
---|
1774 | case op_if_acmpne: |
---|
1775 | case op_ifnull: |
---|
1776 | case op_ifnonnull: |
---|
1777 | case op_goto: |
---|
1778 | note_branch_target (compute_jump (get_short ()), last_was_jsr); |
---|
1779 | break; |
---|
1780 | |
---|
1781 | case op_tableswitch: |
---|
1782 | { |
---|
1783 | skip_padding (); |
---|
1784 | note_branch_target (compute_jump (get_int ())); |
---|
1785 | jint low = get_int (); |
---|
1786 | jint hi = get_int (); |
---|
1787 | if (low > hi) |
---|
1788 | verify_fail ("invalid tableswitch", start_PC); |
---|
1789 | for (int i = low; i <= hi; ++i) |
---|
1790 | note_branch_target (compute_jump (get_int ())); |
---|
1791 | } |
---|
1792 | break; |
---|
1793 | |
---|
1794 | case op_lookupswitch: |
---|
1795 | { |
---|
1796 | skip_padding (); |
---|
1797 | note_branch_target (compute_jump (get_int ())); |
---|
1798 | int npairs = get_int (); |
---|
1799 | if (npairs < 0) |
---|
1800 | verify_fail ("too few pairs in lookupswitch", start_PC); |
---|
1801 | while (npairs-- > 0) |
---|
1802 | { |
---|
1803 | get_int (); |
---|
1804 | note_branch_target (compute_jump (get_int ())); |
---|
1805 | } |
---|
1806 | } |
---|
1807 | break; |
---|
1808 | |
---|
1809 | case op_invokeinterface: |
---|
1810 | get_short (); |
---|
1811 | get_byte (); |
---|
1812 | get_byte (); |
---|
1813 | break; |
---|
1814 | |
---|
1815 | case op_wide: |
---|
1816 | { |
---|
1817 | opcode = (java_opcode) get_byte (); |
---|
1818 | get_short (); |
---|
1819 | if (opcode == op_iinc) |
---|
1820 | get_short (); |
---|
1821 | } |
---|
1822 | break; |
---|
1823 | |
---|
1824 | case op_jsr_w: |
---|
1825 | last_was_jsr = true; |
---|
1826 | // Fall through. |
---|
1827 | case op_goto_w: |
---|
1828 | note_branch_target (compute_jump (get_int ()), last_was_jsr); |
---|
1829 | break; |
---|
1830 | |
---|
1831 | default: |
---|
1832 | verify_fail ("unrecognized instruction in branch_prepass", |
---|
1833 | start_PC); |
---|
1834 | } |
---|
1835 | |
---|
1836 | // See if any previous branch tried to branch to the middle of |
---|
1837 | // this instruction. |
---|
1838 | for (int pc = start_PC + 1; pc < PC; ++pc) |
---|
1839 | { |
---|
1840 | if ((flags[pc] & FLAG_BRANCH_TARGET)) |
---|
1841 | verify_fail ("branch to middle of instruction", pc); |
---|
1842 | } |
---|
1843 | } |
---|
1844 | |
---|
1845 | // Verify exception handlers. |
---|
1846 | for (int i = 0; i < current_method->exc_count; ++i) |
---|
1847 | { |
---|
1848 | if (! (flags[exception[i].handler_pc] & FLAG_INSN_START)) |
---|
1849 | verify_fail ("exception handler not at instruction start", |
---|
1850 | exception[i].handler_pc); |
---|
1851 | if (! (flags[exception[i].start_pc] & FLAG_INSN_START)) |
---|
1852 | verify_fail ("exception start not at instruction start", |
---|
1853 | exception[i].start_pc); |
---|
1854 | if (exception[i].end_pc != current_method->code_length |
---|
1855 | && ! (flags[exception[i].end_pc] & FLAG_INSN_START)) |
---|
1856 | verify_fail ("exception end not at instruction start", |
---|
1857 | exception[i].end_pc); |
---|
1858 | |
---|
1859 | flags[exception[i].handler_pc] |= FLAG_BRANCH_TARGET; |
---|
1860 | } |
---|
1861 | } |
---|
1862 | |
---|
1863 | void check_pool_index (int index) |
---|
1864 | { |
---|
1865 | if (index < 0 || index >= current_class->constants.size) |
---|
1866 | verify_fail ("constant pool index out of range", start_PC); |
---|
1867 | } |
---|
1868 | |
---|
1869 | type check_class_constant (int index) |
---|
1870 | { |
---|
1871 | check_pool_index (index); |
---|
1872 | _Jv_Constants *pool = ¤t_class->constants; |
---|
1873 | if (pool->tags[index] == JV_CONSTANT_ResolvedClass) |
---|
1874 | return type (pool->data[index].clazz); |
---|
1875 | else if (pool->tags[index] == JV_CONSTANT_Class) |
---|
1876 | return type (pool->data[index].utf8); |
---|
1877 | verify_fail ("expected class constant", start_PC); |
---|
1878 | } |
---|
1879 | |
---|
1880 | type check_constant (int index) |
---|
1881 | { |
---|
1882 | check_pool_index (index); |
---|
1883 | _Jv_Constants *pool = ¤t_class->constants; |
---|
1884 | if (pool->tags[index] == JV_CONSTANT_ResolvedString |
---|
1885 | || pool->tags[index] == JV_CONSTANT_String) |
---|
1886 | return type (&java::lang::String::class$); |
---|
1887 | else if (pool->tags[index] == JV_CONSTANT_Integer) |
---|
1888 | return type (int_type); |
---|
1889 | else if (pool->tags[index] == JV_CONSTANT_Float) |
---|
1890 | return type (float_type); |
---|
1891 | verify_fail ("String, int, or float constant expected", start_PC); |
---|
1892 | } |
---|
1893 | |
---|
1894 | type check_wide_constant (int index) |
---|
1895 | { |
---|
1896 | check_pool_index (index); |
---|
1897 | _Jv_Constants *pool = ¤t_class->constants; |
---|
1898 | if (pool->tags[index] == JV_CONSTANT_Long) |
---|
1899 | return type (long_type); |
---|
1900 | else if (pool->tags[index] == JV_CONSTANT_Double) |
---|
1901 | return type (double_type); |
---|
1902 | verify_fail ("long or double constant expected", start_PC); |
---|
1903 | } |
---|
1904 | |
---|
1905 | // Helper for both field and method. These are laid out the same in |
---|
1906 | // the constant pool. |
---|
1907 | type handle_field_or_method (int index, int expected, |
---|
1908 | _Jv_Utf8Const **name, |
---|
1909 | _Jv_Utf8Const **fmtype) |
---|
1910 | { |
---|
1911 | check_pool_index (index); |
---|
1912 | _Jv_Constants *pool = ¤t_class->constants; |
---|
1913 | if (pool->tags[index] != expected) |
---|
1914 | verify_fail ("didn't see expected constant", start_PC); |
---|
1915 | // Once we know we have a Fieldref or Methodref we assume that it |
---|
1916 | // is correctly laid out in the constant pool. I think the code |
---|
1917 | // in defineclass.cc guarantees this. |
---|
1918 | _Jv_ushort class_index, name_and_type_index; |
---|
1919 | _Jv_loadIndexes (&pool->data[index], |
---|
1920 | class_index, |
---|
1921 | name_and_type_index); |
---|
1922 | _Jv_ushort name_index, desc_index; |
---|
1923 | _Jv_loadIndexes (&pool->data[name_and_type_index], |
---|
1924 | name_index, desc_index); |
---|
1925 | |
---|
1926 | *name = pool->data[name_index].utf8; |
---|
1927 | *fmtype = pool->data[desc_index].utf8; |
---|
1928 | |
---|
1929 | return check_class_constant (class_index); |
---|
1930 | } |
---|
1931 | |
---|
1932 | // Return field's type, compute class' type if requested. |
---|
1933 | type check_field_constant (int index, type *class_type = NULL) |
---|
1934 | { |
---|
1935 | _Jv_Utf8Const *name, *field_type; |
---|
1936 | type ct = handle_field_or_method (index, |
---|
1937 | JV_CONSTANT_Fieldref, |
---|
1938 | &name, &field_type); |
---|
1939 | if (class_type) |
---|
1940 | *class_type = ct; |
---|
1941 | if (field_type->data[0] == '[' || field_type->data[0] == 'L') |
---|
1942 | return type (field_type); |
---|
1943 | return get_type_val_for_signature (field_type->data[0]); |
---|
1944 | } |
---|
1945 | |
---|
1946 | type check_method_constant (int index, bool is_interface, |
---|
1947 | _Jv_Utf8Const **method_name, |
---|
1948 | _Jv_Utf8Const **method_signature) |
---|
1949 | { |
---|
1950 | return handle_field_or_method (index, |
---|
1951 | (is_interface |
---|
1952 | ? JV_CONSTANT_InterfaceMethodref |
---|
1953 | : JV_CONSTANT_Methodref), |
---|
1954 | method_name, method_signature); |
---|
1955 | } |
---|
1956 | |
---|
1957 | type get_one_type (char *&p) |
---|
1958 | { |
---|
1959 | char *start = p; |
---|
1960 | |
---|
1961 | int arraycount = 0; |
---|
1962 | while (*p == '[') |
---|
1963 | { |
---|
1964 | ++arraycount; |
---|
1965 | ++p; |
---|
1966 | } |
---|
1967 | |
---|
1968 | char v = *p++; |
---|
1969 | |
---|
1970 | if (v == 'L') |
---|
1971 | { |
---|
1972 | while (*p != ';') |
---|
1973 | ++p; |
---|
1974 | ++p; |
---|
1975 | _Jv_Utf8Const *name = make_utf8_const (start, p - start); |
---|
1976 | return type (name); |
---|
1977 | } |
---|
1978 | |
---|
1979 | // Casting to jchar here is ok since we are looking at an ASCII |
---|
1980 | // character. |
---|
1981 | type_val rt = get_type_val_for_signature (jchar (v)); |
---|
1982 | |
---|
1983 | if (arraycount == 0) |
---|
1984 | { |
---|
1985 | // Callers of this function eventually push their arguments on |
---|
1986 | // the stack. So, promote them here. |
---|
1987 | return type (rt).promote (); |
---|
1988 | } |
---|
1989 | |
---|
1990 | jclass k = construct_primitive_array_type (rt); |
---|
1991 | while (--arraycount > 0) |
---|
1992 | k = _Jv_GetArrayClass (k, NULL); |
---|
1993 | return type (k); |
---|
1994 | } |
---|
1995 | |
---|
1996 | void compute_argument_types (_Jv_Utf8Const *signature, |
---|
1997 | type *types) |
---|
1998 | { |
---|
1999 | char *p = signature->data; |
---|
2000 | // Skip `('. |
---|
2001 | ++p; |
---|
2002 | |
---|
2003 | int i = 0; |
---|
2004 | while (*p != ')') |
---|
2005 | types[i++] = get_one_type (p); |
---|
2006 | } |
---|
2007 | |
---|
2008 | type compute_return_type (_Jv_Utf8Const *signature) |
---|
2009 | { |
---|
2010 | char *p = signature->data; |
---|
2011 | while (*p != ')') |
---|
2012 | ++p; |
---|
2013 | ++p; |
---|
2014 | return get_one_type (p); |
---|
2015 | } |
---|
2016 | |
---|
2017 | void check_return_type (type onstack) |
---|
2018 | { |
---|
2019 | type rt = compute_return_type (current_method->self->signature); |
---|
2020 | if (! rt.compatible (onstack, this)) |
---|
2021 | verify_fail ("incompatible return type"); |
---|
2022 | } |
---|
2023 | |
---|
2024 | // Initialize the stack for the new method. Returns true if this |
---|
2025 | // method is an instance initializer. |
---|
2026 | bool initialize_stack () |
---|
2027 | { |
---|
2028 | int var = 0; |
---|
2029 | bool is_init = false; |
---|
2030 | |
---|
2031 | using namespace java::lang::reflect; |
---|
2032 | if (! Modifier::isStatic (current_method->self->accflags)) |
---|
2033 | { |
---|
2034 | type kurr (current_class); |
---|
2035 | if (_Jv_equalUtf8Consts (current_method->self->name, gcj::init_name)) |
---|
2036 | { |
---|
2037 | kurr.set_uninitialized (type::SELF, this); |
---|
2038 | is_init = true; |
---|
2039 | } |
---|
2040 | set_variable (0, kurr); |
---|
2041 | current_state->set_this_type (kurr); |
---|
2042 | ++var; |
---|
2043 | } |
---|
2044 | |
---|
2045 | // We have to handle wide arguments specially here. |
---|
2046 | int arg_count = _Jv_count_arguments (current_method->self->signature); |
---|
2047 | type arg_types[arg_count]; |
---|
2048 | compute_argument_types (current_method->self->signature, arg_types); |
---|
2049 | for (int i = 0; i < arg_count; ++i) |
---|
2050 | { |
---|
2051 | set_variable (var, arg_types[i]); |
---|
2052 | ++var; |
---|
2053 | if (arg_types[i].iswide ()) |
---|
2054 | ++var; |
---|
2055 | } |
---|
2056 | |
---|
2057 | return is_init; |
---|
2058 | } |
---|
2059 | |
---|
2060 | void verify_instructions_0 () |
---|
2061 | { |
---|
2062 | current_state = new state (current_method->max_stack, |
---|
2063 | current_method->max_locals); |
---|
2064 | |
---|
2065 | PC = 0; |
---|
2066 | start_PC = 0; |
---|
2067 | |
---|
2068 | // True if we are verifying an instance initializer. |
---|
2069 | bool this_is_init = initialize_stack (); |
---|
2070 | |
---|
2071 | states = (state **) _Jv_Malloc (sizeof (state *) |
---|
2072 | * current_method->code_length); |
---|
2073 | for (int i = 0; i < current_method->code_length; ++i) |
---|
2074 | states[i] = NULL; |
---|
2075 | |
---|
2076 | next_verify_pc = state::NO_NEXT; |
---|
2077 | |
---|
2078 | while (true) |
---|
2079 | { |
---|
2080 | // If the PC was invalidated, get a new one from the work list. |
---|
2081 | if (PC == state::NO_NEXT) |
---|
2082 | { |
---|
2083 | PC = pop_jump (); |
---|
2084 | if (PC == state::INVALID) |
---|
2085 | verify_fail ("can't happen: saw state::INVALID"); |
---|
2086 | if (PC == state::NO_NEXT) |
---|
2087 | break; |
---|
2088 | debug_print ("== State pop from pending list\n"); |
---|
2089 | // Set up the current state. |
---|
2090 | current_state->copy (states[PC], current_method->max_stack, |
---|
2091 | current_method->max_locals); |
---|
2092 | } |
---|
2093 | else |
---|
2094 | { |
---|
2095 | // Control can't fall off the end of the bytecode. We |
---|
2096 | // only need to check this in the fall-through case, |
---|
2097 | // because branch bounds are checked when they are |
---|
2098 | // pushed. |
---|
2099 | if (PC >= current_method->code_length) |
---|
2100 | verify_fail ("fell off end"); |
---|
2101 | |
---|
2102 | // We only have to do this checking in the situation where |
---|
2103 | // control flow falls through from the previous |
---|
2104 | // instruction. Otherwise merging is done at the time we |
---|
2105 | // push the branch. |
---|
2106 | if (states[PC] != NULL) |
---|
2107 | { |
---|
2108 | // We've already visited this instruction. So merge |
---|
2109 | // the states together. If this yields no change then |
---|
2110 | // we don't have to re-verify. However, if the new |
---|
2111 | // state is an the result of an unmerged `ret', we |
---|
2112 | // must continue through it. |
---|
2113 | debug_print ("== Fall through merge\n"); |
---|
2114 | states[PC]->print ("Old", PC, current_method->max_stack, |
---|
2115 | current_method->max_locals); |
---|
2116 | current_state->print ("Cur", PC, current_method->max_stack, |
---|
2117 | current_method->max_locals); |
---|
2118 | if (! current_state->merge (states[PC], false, |
---|
2119 | current_method->max_locals, this) |
---|
2120 | && ! states[PC]->is_unmerged_ret_state (current_method->max_locals)) |
---|
2121 | { |
---|
2122 | debug_print ("== Fall through optimization\n"); |
---|
2123 | invalidate_pc (); |
---|
2124 | continue; |
---|
2125 | } |
---|
2126 | // Save a copy of it for later. |
---|
2127 | states[PC]->copy (current_state, current_method->max_stack, |
---|
2128 | current_method->max_locals); |
---|
2129 | current_state->print ("New", PC, current_method->max_stack, |
---|
2130 | current_method->max_locals); |
---|
2131 | } |
---|
2132 | } |
---|
2133 | |
---|
2134 | // We only have to keep saved state at branch targets. If |
---|
2135 | // we're at a branch target and the state here hasn't been set |
---|
2136 | // yet, we set it now. |
---|
2137 | if (states[PC] == NULL && (flags[PC] & FLAG_BRANCH_TARGET)) |
---|
2138 | { |
---|
2139 | states[PC] = new state (current_state, current_method->max_stack, |
---|
2140 | current_method->max_locals); |
---|
2141 | } |
---|
2142 | |
---|
2143 | // Set this before handling exceptions so that debug output is |
---|
2144 | // sane. |
---|
2145 | start_PC = PC; |
---|
2146 | |
---|
2147 | // Update states for all active exception handlers. Ordinarily |
---|
2148 | // there are not many exception handlers. So we simply run |
---|
2149 | // through them all. |
---|
2150 | for (int i = 0; i < current_method->exc_count; ++i) |
---|
2151 | { |
---|
2152 | if (PC >= exception[i].start_pc && PC < exception[i].end_pc) |
---|
2153 | { |
---|
2154 | type handler (&java::lang::Throwable::class$); |
---|
2155 | if (exception[i].handler_type != 0) |
---|
2156 | handler = check_class_constant (exception[i].handler_type); |
---|
2157 | push_exception_jump (handler, exception[i].handler_pc); |
---|
2158 | } |
---|
2159 | } |
---|
2160 | |
---|
2161 | current_state->print (" ", PC, current_method->max_stack, |
---|
2162 | current_method->max_locals); |
---|
2163 | java_opcode opcode = (java_opcode) bytecode[PC++]; |
---|
2164 | switch (opcode) |
---|
2165 | { |
---|
2166 | case op_nop: |
---|
2167 | break; |
---|
2168 | |
---|
2169 | case op_aconst_null: |
---|
2170 | push_type (null_type); |
---|
2171 | break; |
---|
2172 | |
---|
2173 | case op_iconst_m1: |
---|
2174 | case op_iconst_0: |
---|
2175 | case op_iconst_1: |
---|
2176 | case op_iconst_2: |
---|
2177 | case op_iconst_3: |
---|
2178 | case op_iconst_4: |
---|
2179 | case op_iconst_5: |
---|
2180 | push_type (int_type); |
---|
2181 | break; |
---|
2182 | |
---|
2183 | case op_lconst_0: |
---|
2184 | case op_lconst_1: |
---|
2185 | push_type (long_type); |
---|
2186 | break; |
---|
2187 | |
---|
2188 | case op_fconst_0: |
---|
2189 | case op_fconst_1: |
---|
2190 | case op_fconst_2: |
---|
2191 | push_type (float_type); |
---|
2192 | break; |
---|
2193 | |
---|
2194 | case op_dconst_0: |
---|
2195 | case op_dconst_1: |
---|
2196 | push_type (double_type); |
---|
2197 | break; |
---|
2198 | |
---|
2199 | case op_bipush: |
---|
2200 | get_byte (); |
---|
2201 | push_type (int_type); |
---|
2202 | break; |
---|
2203 | |
---|
2204 | case op_sipush: |
---|
2205 | get_short (); |
---|
2206 | push_type (int_type); |
---|
2207 | break; |
---|
2208 | |
---|
2209 | case op_ldc: |
---|
2210 | push_type (check_constant (get_byte ())); |
---|
2211 | break; |
---|
2212 | case op_ldc_w: |
---|
2213 | push_type (check_constant (get_ushort ())); |
---|
2214 | break; |
---|
2215 | case op_ldc2_w: |
---|
2216 | push_type (check_wide_constant (get_ushort ())); |
---|
2217 | break; |
---|
2218 | |
---|
2219 | case op_iload: |
---|
2220 | push_type (get_variable (get_byte (), int_type)); |
---|
2221 | break; |
---|
2222 | case op_lload: |
---|
2223 | push_type (get_variable (get_byte (), long_type)); |
---|
2224 | break; |
---|
2225 | case op_fload: |
---|
2226 | push_type (get_variable (get_byte (), float_type)); |
---|
2227 | break; |
---|
2228 | case op_dload: |
---|
2229 | push_type (get_variable (get_byte (), double_type)); |
---|
2230 | break; |
---|
2231 | case op_aload: |
---|
2232 | push_type (get_variable (get_byte (), reference_type)); |
---|
2233 | break; |
---|
2234 | |
---|
2235 | case op_iload_0: |
---|
2236 | case op_iload_1: |
---|
2237 | case op_iload_2: |
---|
2238 | case op_iload_3: |
---|
2239 | push_type (get_variable (opcode - op_iload_0, int_type)); |
---|
2240 | break; |
---|
2241 | case op_lload_0: |
---|
2242 | case op_lload_1: |
---|
2243 | case op_lload_2: |
---|
2244 | case op_lload_3: |
---|
2245 | push_type (get_variable (opcode - op_lload_0, long_type)); |
---|
2246 | break; |
---|
2247 | case op_fload_0: |
---|
2248 | case op_fload_1: |
---|
2249 | case op_fload_2: |
---|
2250 | case op_fload_3: |
---|
2251 | push_type (get_variable (opcode - op_fload_0, float_type)); |
---|
2252 | break; |
---|
2253 | case op_dload_0: |
---|
2254 | case op_dload_1: |
---|
2255 | case op_dload_2: |
---|
2256 | case op_dload_3: |
---|
2257 | push_type (get_variable (opcode - op_dload_0, double_type)); |
---|
2258 | break; |
---|
2259 | case op_aload_0: |
---|
2260 | case op_aload_1: |
---|
2261 | case op_aload_2: |
---|
2262 | case op_aload_3: |
---|
2263 | push_type (get_variable (opcode - op_aload_0, reference_type)); |
---|
2264 | break; |
---|
2265 | case op_iaload: |
---|
2266 | pop_type (int_type); |
---|
2267 | push_type (require_array_type (pop_type (reference_type), |
---|
2268 | int_type)); |
---|
2269 | break; |
---|
2270 | case op_laload: |
---|
2271 | pop_type (int_type); |
---|
2272 | push_type (require_array_type (pop_type (reference_type), |
---|
2273 | long_type)); |
---|
2274 | break; |
---|
2275 | case op_faload: |
---|
2276 | pop_type (int_type); |
---|
2277 | push_type (require_array_type (pop_type (reference_type), |
---|
2278 | float_type)); |
---|
2279 | break; |
---|
2280 | case op_daload: |
---|
2281 | pop_type (int_type); |
---|
2282 | push_type (require_array_type (pop_type (reference_type), |
---|
2283 | double_type)); |
---|
2284 | break; |
---|
2285 | case op_aaload: |
---|
2286 | pop_type (int_type); |
---|
2287 | push_type (require_array_type (pop_type (reference_type), |
---|
2288 | reference_type)); |
---|
2289 | break; |
---|
2290 | case op_baload: |
---|
2291 | pop_type (int_type); |
---|
2292 | require_array_type (pop_type (reference_type), byte_type); |
---|
2293 | push_type (int_type); |
---|
2294 | break; |
---|
2295 | case op_caload: |
---|
2296 | pop_type (int_type); |
---|
2297 | require_array_type (pop_type (reference_type), char_type); |
---|
2298 | push_type (int_type); |
---|
2299 | break; |
---|
2300 | case op_saload: |
---|
2301 | pop_type (int_type); |
---|
2302 | require_array_type (pop_type (reference_type), short_type); |
---|
2303 | push_type (int_type); |
---|
2304 | break; |
---|
2305 | case op_istore: |
---|
2306 | set_variable (get_byte (), pop_type (int_type)); |
---|
2307 | break; |
---|
2308 | case op_lstore: |
---|
2309 | set_variable (get_byte (), pop_type (long_type)); |
---|
2310 | break; |
---|
2311 | case op_fstore: |
---|
2312 | set_variable (get_byte (), pop_type (float_type)); |
---|
2313 | break; |
---|
2314 | case op_dstore: |
---|
2315 | set_variable (get_byte (), pop_type (double_type)); |
---|
2316 | break; |
---|
2317 | case op_astore: |
---|
2318 | set_variable (get_byte (), pop_ref_or_return ()); |
---|
2319 | break; |
---|
2320 | case op_istore_0: |
---|
2321 | case op_istore_1: |
---|
2322 | case op_istore_2: |
---|
2323 | case op_istore_3: |
---|
2324 | set_variable (opcode - op_istore_0, pop_type (int_type)); |
---|
2325 | break; |
---|
2326 | case op_lstore_0: |
---|
2327 | case op_lstore_1: |
---|
2328 | case op_lstore_2: |
---|
2329 | case op_lstore_3: |
---|
2330 | set_variable (opcode - op_lstore_0, pop_type (long_type)); |
---|
2331 | break; |
---|
2332 | case op_fstore_0: |
---|
2333 | case op_fstore_1: |
---|
2334 | case op_fstore_2: |
---|
2335 | case op_fstore_3: |
---|
2336 | set_variable (opcode - op_fstore_0, pop_type (float_type)); |
---|
2337 | break; |
---|
2338 | case op_dstore_0: |
---|
2339 | case op_dstore_1: |
---|
2340 | case op_dstore_2: |
---|
2341 | case op_dstore_3: |
---|
2342 | set_variable (opcode - op_dstore_0, pop_type (double_type)); |
---|
2343 | break; |
---|
2344 | case op_astore_0: |
---|
2345 | case op_astore_1: |
---|
2346 | case op_astore_2: |
---|
2347 | case op_astore_3: |
---|
2348 | set_variable (opcode - op_astore_0, pop_ref_or_return ()); |
---|
2349 | break; |
---|
2350 | case op_iastore: |
---|
2351 | pop_type (int_type); |
---|
2352 | pop_type (int_type); |
---|
2353 | require_array_type (pop_type (reference_type), int_type); |
---|
2354 | break; |
---|
2355 | case op_lastore: |
---|
2356 | pop_type (long_type); |
---|
2357 | pop_type (int_type); |
---|
2358 | require_array_type (pop_type (reference_type), long_type); |
---|
2359 | break; |
---|
2360 | case op_fastore: |
---|
2361 | pop_type (float_type); |
---|
2362 | pop_type (int_type); |
---|
2363 | require_array_type (pop_type (reference_type), float_type); |
---|
2364 | break; |
---|
2365 | case op_dastore: |
---|
2366 | pop_type (double_type); |
---|
2367 | pop_type (int_type); |
---|
2368 | require_array_type (pop_type (reference_type), double_type); |
---|
2369 | break; |
---|
2370 | case op_aastore: |
---|
2371 | pop_type (reference_type); |
---|
2372 | pop_type (int_type); |
---|
2373 | require_array_type (pop_type (reference_type), reference_type); |
---|
2374 | break; |
---|
2375 | case op_bastore: |
---|
2376 | pop_type (int_type); |
---|
2377 | pop_type (int_type); |
---|
2378 | require_array_type (pop_type (reference_type), byte_type); |
---|
2379 | break; |
---|
2380 | case op_castore: |
---|
2381 | pop_type (int_type); |
---|
2382 | pop_type (int_type); |
---|
2383 | require_array_type (pop_type (reference_type), char_type); |
---|
2384 | break; |
---|
2385 | case op_sastore: |
---|
2386 | pop_type (int_type); |
---|
2387 | pop_type (int_type); |
---|
2388 | require_array_type (pop_type (reference_type), short_type); |
---|
2389 | break; |
---|
2390 | case op_pop: |
---|
2391 | pop32 (); |
---|
2392 | break; |
---|
2393 | case op_pop2: |
---|
2394 | pop64 (); |
---|
2395 | break; |
---|
2396 | case op_dup: |
---|
2397 | { |
---|
2398 | type t = pop32 (); |
---|
2399 | push_type (t); |
---|
2400 | push_type (t); |
---|
2401 | } |
---|
2402 | break; |
---|
2403 | case op_dup_x1: |
---|
2404 | { |
---|
2405 | type t1 = pop32 (); |
---|
2406 | type t2 = pop32 (); |
---|
2407 | push_type (t1); |
---|
2408 | push_type (t2); |
---|
2409 | push_type (t1); |
---|
2410 | } |
---|
2411 | break; |
---|
2412 | case op_dup_x2: |
---|
2413 | { |
---|
2414 | type t1 = pop32 (); |
---|
2415 | type t2 = pop_raw (); |
---|
2416 | if (! t2.iswide ()) |
---|
2417 | { |
---|
2418 | type t3 = pop32 (); |
---|
2419 | push_type (t1); |
---|
2420 | push_type (t3); |
---|
2421 | } |
---|
2422 | else |
---|
2423 | push_type (t1); |
---|
2424 | push_type (t2); |
---|
2425 | push_type (t1); |
---|
2426 | } |
---|
2427 | break; |
---|
2428 | case op_dup2: |
---|
2429 | { |
---|
2430 | type t = pop_raw (); |
---|
2431 | if (! t.iswide ()) |
---|
2432 | { |
---|
2433 | type t2 = pop32 (); |
---|
2434 | push_type (t2); |
---|
2435 | push_type (t); |
---|
2436 | push_type (t2); |
---|
2437 | } |
---|
2438 | else |
---|
2439 | push_type (t); |
---|
2440 | push_type (t); |
---|
2441 | } |
---|
2442 | break; |
---|
2443 | case op_dup2_x1: |
---|
2444 | { |
---|
2445 | type t1 = pop_raw (); |
---|
2446 | type t2 = pop32 (); |
---|
2447 | if (! t1.iswide ()) |
---|
2448 | { |
---|
2449 | type t3 = pop32 (); |
---|
2450 | push_type (t2); |
---|
2451 | push_type (t1); |
---|
2452 | push_type (t3); |
---|
2453 | } |
---|
2454 | else |
---|
2455 | push_type (t1); |
---|
2456 | push_type (t2); |
---|
2457 | push_type (t1); |
---|
2458 | } |
---|
2459 | break; |
---|
2460 | case op_dup2_x2: |
---|
2461 | { |
---|
2462 | type t1 = pop_raw (); |
---|
2463 | if (t1.iswide ()) |
---|
2464 | { |
---|
2465 | type t2 = pop_raw (); |
---|
2466 | if (t2.iswide ()) |
---|
2467 | { |
---|
2468 | push_type (t1); |
---|
2469 | push_type (t2); |
---|
2470 | } |
---|
2471 | else |
---|
2472 | { |
---|
2473 | type t3 = pop32 (); |
---|
2474 | push_type (t1); |
---|
2475 | push_type (t3); |
---|
2476 | push_type (t2); |
---|
2477 | } |
---|
2478 | push_type (t1); |
---|
2479 | } |
---|
2480 | else |
---|
2481 | { |
---|
2482 | type t2 = pop32 (); |
---|
2483 | type t3 = pop_raw (); |
---|
2484 | if (t3.iswide ()) |
---|
2485 | { |
---|
2486 | push_type (t2); |
---|
2487 | push_type (t1); |
---|
2488 | } |
---|
2489 | else |
---|
2490 | { |
---|
2491 | type t4 = pop32 (); |
---|
2492 | push_type (t2); |
---|
2493 | push_type (t1); |
---|
2494 | push_type (t4); |
---|
2495 | } |
---|
2496 | push_type (t3); |
---|
2497 | push_type (t2); |
---|
2498 | push_type (t1); |
---|
2499 | } |
---|
2500 | } |
---|
2501 | break; |
---|
2502 | case op_swap: |
---|
2503 | { |
---|
2504 | type t1 = pop32 (); |
---|
2505 | type t2 = pop32 (); |
---|
2506 | push_type (t1); |
---|
2507 | push_type (t2); |
---|
2508 | } |
---|
2509 | break; |
---|
2510 | case op_iadd: |
---|
2511 | case op_isub: |
---|
2512 | case op_imul: |
---|
2513 | case op_idiv: |
---|
2514 | case op_irem: |
---|
2515 | case op_ishl: |
---|
2516 | case op_ishr: |
---|
2517 | case op_iushr: |
---|
2518 | case op_iand: |
---|
2519 | case op_ior: |
---|
2520 | case op_ixor: |
---|
2521 | pop_type (int_type); |
---|
2522 | push_type (pop_type (int_type)); |
---|
2523 | break; |
---|
2524 | case op_ladd: |
---|
2525 | case op_lsub: |
---|
2526 | case op_lmul: |
---|
2527 | case op_ldiv: |
---|
2528 | case op_lrem: |
---|
2529 | case op_land: |
---|
2530 | case op_lor: |
---|
2531 | case op_lxor: |
---|
2532 | pop_type (long_type); |
---|
2533 | push_type (pop_type (long_type)); |
---|
2534 | break; |
---|
2535 | case op_lshl: |
---|
2536 | case op_lshr: |
---|
2537 | case op_lushr: |
---|
2538 | pop_type (int_type); |
---|
2539 | push_type (pop_type (long_type)); |
---|
2540 | break; |
---|
2541 | case op_fadd: |
---|
2542 | case op_fsub: |
---|
2543 | case op_fmul: |
---|
2544 | case op_fdiv: |
---|
2545 | case op_frem: |
---|
2546 | pop_type (float_type); |
---|
2547 | push_type (pop_type (float_type)); |
---|
2548 | break; |
---|
2549 | case op_dadd: |
---|
2550 | case op_dsub: |
---|
2551 | case op_dmul: |
---|
2552 | case op_ddiv: |
---|
2553 | case op_drem: |
---|
2554 | pop_type (double_type); |
---|
2555 | push_type (pop_type (double_type)); |
---|
2556 | break; |
---|
2557 | case op_ineg: |
---|
2558 | case op_i2b: |
---|
2559 | case op_i2c: |
---|
2560 | case op_i2s: |
---|
2561 | push_type (pop_type (int_type)); |
---|
2562 | break; |
---|
2563 | case op_lneg: |
---|
2564 | push_type (pop_type (long_type)); |
---|
2565 | break; |
---|
2566 | case op_fneg: |
---|
2567 | push_type (pop_type (float_type)); |
---|
2568 | break; |
---|
2569 | case op_dneg: |
---|
2570 | push_type (pop_type (double_type)); |
---|
2571 | break; |
---|
2572 | case op_iinc: |
---|
2573 | get_variable (get_byte (), int_type); |
---|
2574 | get_byte (); |
---|
2575 | break; |
---|
2576 | case op_i2l: |
---|
2577 | pop_type (int_type); |
---|
2578 | push_type (long_type); |
---|
2579 | break; |
---|
2580 | case op_i2f: |
---|
2581 | pop_type (int_type); |
---|
2582 | push_type (float_type); |
---|
2583 | break; |
---|
2584 | case op_i2d: |
---|
2585 | pop_type (int_type); |
---|
2586 | push_type (double_type); |
---|
2587 | break; |
---|
2588 | case op_l2i: |
---|
2589 | pop_type (long_type); |
---|
2590 | push_type (int_type); |
---|
2591 | break; |
---|
2592 | case op_l2f: |
---|
2593 | pop_type (long_type); |
---|
2594 | push_type (float_type); |
---|
2595 | break; |
---|
2596 | case op_l2d: |
---|
2597 | pop_type (long_type); |
---|
2598 | push_type (double_type); |
---|
2599 | break; |
---|
2600 | case op_f2i: |
---|
2601 | pop_type (float_type); |
---|
2602 | push_type (int_type); |
---|
2603 | break; |
---|
2604 | case op_f2l: |
---|
2605 | pop_type (float_type); |
---|
2606 | push_type (long_type); |
---|
2607 | break; |
---|
2608 | case op_f2d: |
---|
2609 | pop_type (float_type); |
---|
2610 | push_type (double_type); |
---|
2611 | break; |
---|
2612 | case op_d2i: |
---|
2613 | pop_type (double_type); |
---|
2614 | push_type (int_type); |
---|
2615 | break; |
---|
2616 | case op_d2l: |
---|
2617 | pop_type (double_type); |
---|
2618 | push_type (long_type); |
---|
2619 | break; |
---|
2620 | case op_d2f: |
---|
2621 | pop_type (double_type); |
---|
2622 | push_type (float_type); |
---|
2623 | break; |
---|
2624 | case op_lcmp: |
---|
2625 | pop_type (long_type); |
---|
2626 | pop_type (long_type); |
---|
2627 | push_type (int_type); |
---|
2628 | break; |
---|
2629 | case op_fcmpl: |
---|
2630 | case op_fcmpg: |
---|
2631 | pop_type (float_type); |
---|
2632 | pop_type (float_type); |
---|
2633 | push_type (int_type); |
---|
2634 | break; |
---|
2635 | case op_dcmpl: |
---|
2636 | case op_dcmpg: |
---|
2637 | pop_type (double_type); |
---|
2638 | pop_type (double_type); |
---|
2639 | push_type (int_type); |
---|
2640 | break; |
---|
2641 | case op_ifeq: |
---|
2642 | case op_ifne: |
---|
2643 | case op_iflt: |
---|
2644 | case op_ifge: |
---|
2645 | case op_ifgt: |
---|
2646 | case op_ifle: |
---|
2647 | pop_type (int_type); |
---|
2648 | push_jump (get_short ()); |
---|
2649 | break; |
---|
2650 | case op_if_icmpeq: |
---|
2651 | case op_if_icmpne: |
---|
2652 | case op_if_icmplt: |
---|
2653 | case op_if_icmpge: |
---|
2654 | case op_if_icmpgt: |
---|
2655 | case op_if_icmple: |
---|
2656 | pop_type (int_type); |
---|
2657 | pop_type (int_type); |
---|
2658 | push_jump (get_short ()); |
---|
2659 | break; |
---|
2660 | case op_if_acmpeq: |
---|
2661 | case op_if_acmpne: |
---|
2662 | pop_type (reference_type); |
---|
2663 | pop_type (reference_type); |
---|
2664 | push_jump (get_short ()); |
---|
2665 | break; |
---|
2666 | case op_goto: |
---|
2667 | push_jump (get_short ()); |
---|
2668 | invalidate_pc (); |
---|
2669 | break; |
---|
2670 | case op_jsr: |
---|
2671 | handle_jsr_insn (get_short ()); |
---|
2672 | break; |
---|
2673 | case op_ret: |
---|
2674 | handle_ret_insn (get_byte ()); |
---|
2675 | break; |
---|
2676 | case op_tableswitch: |
---|
2677 | { |
---|
2678 | pop_type (int_type); |
---|
2679 | skip_padding (); |
---|
2680 | push_jump (get_int ()); |
---|
2681 | jint low = get_int (); |
---|
2682 | jint high = get_int (); |
---|
2683 | // Already checked LOW -vs- HIGH. |
---|
2684 | for (int i = low; i <= high; ++i) |
---|
2685 | push_jump (get_int ()); |
---|
2686 | invalidate_pc (); |
---|
2687 | } |
---|
2688 | break; |
---|
2689 | |
---|
2690 | case op_lookupswitch: |
---|
2691 | { |
---|
2692 | pop_type (int_type); |
---|
2693 | skip_padding (); |
---|
2694 | push_jump (get_int ()); |
---|
2695 | jint npairs = get_int (); |
---|
2696 | // Already checked NPAIRS >= 0. |
---|
2697 | jint lastkey = 0; |
---|
2698 | for (int i = 0; i < npairs; ++i) |
---|
2699 | { |
---|
2700 | jint key = get_int (); |
---|
2701 | if (i > 0 && key <= lastkey) |
---|
2702 | verify_fail ("lookupswitch pairs unsorted", start_PC); |
---|
2703 | lastkey = key; |
---|
2704 | push_jump (get_int ()); |
---|
2705 | } |
---|
2706 | invalidate_pc (); |
---|
2707 | } |
---|
2708 | break; |
---|
2709 | case op_ireturn: |
---|
2710 | check_return_type (pop_type (int_type)); |
---|
2711 | invalidate_pc (); |
---|
2712 | break; |
---|
2713 | case op_lreturn: |
---|
2714 | check_return_type (pop_type (long_type)); |
---|
2715 | invalidate_pc (); |
---|
2716 | break; |
---|
2717 | case op_freturn: |
---|
2718 | check_return_type (pop_type (float_type)); |
---|
2719 | invalidate_pc (); |
---|
2720 | break; |
---|
2721 | case op_dreturn: |
---|
2722 | check_return_type (pop_type (double_type)); |
---|
2723 | invalidate_pc (); |
---|
2724 | break; |
---|
2725 | case op_areturn: |
---|
2726 | check_return_type (pop_type (reference_type)); |
---|
2727 | invalidate_pc (); |
---|
2728 | break; |
---|
2729 | case op_return: |
---|
2730 | // We only need to check this when the return type is |
---|
2731 | // void, because all instance initializers return void. |
---|
2732 | if (this_is_init) |
---|
2733 | current_state->check_this_initialized (this); |
---|
2734 | check_return_type (void_type); |
---|
2735 | invalidate_pc (); |
---|
2736 | break; |
---|
2737 | case op_getstatic: |
---|
2738 | push_type (check_field_constant (get_ushort ())); |
---|
2739 | break; |
---|
2740 | case op_putstatic: |
---|
2741 | pop_type (check_field_constant (get_ushort ())); |
---|
2742 | break; |
---|
2743 | case op_getfield: |
---|
2744 | { |
---|
2745 | type klass; |
---|
2746 | type field = check_field_constant (get_ushort (), &klass); |
---|
2747 | pop_type (klass); |
---|
2748 | push_type (field); |
---|
2749 | } |
---|
2750 | break; |
---|
2751 | case op_putfield: |
---|
2752 | { |
---|
2753 | type klass; |
---|
2754 | type field = check_field_constant (get_ushort (), &klass); |
---|
2755 | pop_type (field); |
---|
2756 | |
---|
2757 | // We have an obscure special case here: we can use |
---|
2758 | // `putfield' on a field declared in this class, even if |
---|
2759 | // `this' has not yet been initialized. |
---|
2760 | if (! current_state->this_type.isinitialized () |
---|
2761 | && current_state->this_type.pc == type::SELF) |
---|
2762 | klass.set_uninitialized (type::SELF, this); |
---|
2763 | pop_type (klass); |
---|
2764 | } |
---|
2765 | break; |
---|
2766 | |
---|
2767 | case op_invokevirtual: |
---|
2768 | case op_invokespecial: |
---|
2769 | case op_invokestatic: |
---|
2770 | case op_invokeinterface: |
---|
2771 | { |
---|
2772 | _Jv_Utf8Const *method_name, *method_signature; |
---|
2773 | type class_type |
---|
2774 | = check_method_constant (get_ushort (), |
---|
2775 | opcode == op_invokeinterface, |
---|
2776 | &method_name, |
---|
2777 | &method_signature); |
---|
2778 | // NARGS is only used when we're processing |
---|
2779 | // invokeinterface. It is simplest for us to compute it |
---|
2780 | // here and then verify it later. |
---|
2781 | int nargs = 0; |
---|
2782 | if (opcode == op_invokeinterface) |
---|
2783 | { |
---|
2784 | nargs = get_byte (); |
---|
2785 | if (get_byte () != 0) |
---|
2786 | verify_fail ("invokeinterface dummy byte is wrong"); |
---|
2787 | } |
---|
2788 | |
---|
2789 | bool is_init = false; |
---|
2790 | if (_Jv_equalUtf8Consts (method_name, gcj::init_name)) |
---|
2791 | { |
---|
2792 | is_init = true; |
---|
2793 | if (opcode != op_invokespecial) |
---|
2794 | verify_fail ("can't invoke <init>"); |
---|
2795 | } |
---|
2796 | else if (method_name->data[0] == '<') |
---|
2797 | verify_fail ("can't invoke method starting with `<'"); |
---|
2798 | |
---|
2799 | // Pop arguments and check types. |
---|
2800 | int arg_count = _Jv_count_arguments (method_signature); |
---|
2801 | type arg_types[arg_count]; |
---|
2802 | compute_argument_types (method_signature, arg_types); |
---|
2803 | for (int i = arg_count - 1; i >= 0; --i) |
---|
2804 | { |
---|
2805 | // This is only used for verifying the byte for |
---|
2806 | // invokeinterface. |
---|
2807 | nargs -= arg_types[i].depth (); |
---|
2808 | pop_type (arg_types[i]); |
---|
2809 | } |
---|
2810 | |
---|
2811 | if (opcode == op_invokeinterface |
---|
2812 | && nargs != 1) |
---|
2813 | verify_fail ("wrong argument count for invokeinterface"); |
---|
2814 | |
---|
2815 | if (opcode != op_invokestatic) |
---|
2816 | { |
---|
2817 | type t = class_type; |
---|
2818 | if (is_init) |
---|
2819 | { |
---|
2820 | // In this case the PC doesn't matter. |
---|
2821 | t.set_uninitialized (type::UNINIT, this); |
---|
2822 | } |
---|
2823 | type raw = pop_raw (); |
---|
2824 | bool ok = false; |
---|
2825 | if (t.compatible (raw, this)) |
---|
2826 | { |
---|
2827 | ok = true; |
---|
2828 | } |
---|
2829 | else if (opcode == op_invokeinterface) |
---|
2830 | { |
---|
2831 | // This is a hack. We might have merged two |
---|
2832 | // items and gotten `Object'. This can happen |
---|
2833 | // because we don't keep track of where merges |
---|
2834 | // come from. This is safe as long as the |
---|
2835 | // interpreter checks interfaces at runtime. |
---|
2836 | type obj (&java::lang::Object::class$); |
---|
2837 | ok = raw.compatible (obj, this); |
---|
2838 | } |
---|
2839 | |
---|
2840 | if (! ok) |
---|
2841 | verify_fail ("incompatible type on stack"); |
---|
2842 | |
---|
2843 | if (is_init) |
---|
2844 | current_state->set_initialized (raw.get_pc (), |
---|
2845 | current_method->max_locals); |
---|
2846 | } |
---|
2847 | |
---|
2848 | type rt = compute_return_type (method_signature); |
---|
2849 | if (! rt.isvoid ()) |
---|
2850 | push_type (rt); |
---|
2851 | } |
---|
2852 | break; |
---|
2853 | |
---|
2854 | case op_new: |
---|
2855 | { |
---|
2856 | type t = check_class_constant (get_ushort ()); |
---|
2857 | if (t.isarray () || t.isinterface (this) || t.isabstract (this)) |
---|
2858 | verify_fail ("type is array, interface, or abstract"); |
---|
2859 | t.set_uninitialized (start_PC, this); |
---|
2860 | push_type (t); |
---|
2861 | } |
---|
2862 | break; |
---|
2863 | |
---|
2864 | case op_newarray: |
---|
2865 | { |
---|
2866 | int atype = get_byte (); |
---|
2867 | // We intentionally have chosen constants to make this |
---|
2868 | // valid. |
---|
2869 | if (atype < boolean_type || atype > long_type) |
---|
2870 | verify_fail ("type not primitive", start_PC); |
---|
2871 | pop_type (int_type); |
---|
2872 | push_type (construct_primitive_array_type (type_val (atype))); |
---|
2873 | } |
---|
2874 | break; |
---|
2875 | case op_anewarray: |
---|
2876 | pop_type (int_type); |
---|
2877 | push_type (check_class_constant (get_ushort ()).to_array (this)); |
---|
2878 | break; |
---|
2879 | case op_arraylength: |
---|
2880 | { |
---|
2881 | type t = pop_type (reference_type); |
---|
2882 | if (! t.isarray () && ! t.isnull ()) |
---|
2883 | verify_fail ("array type expected"); |
---|
2884 | push_type (int_type); |
---|
2885 | } |
---|
2886 | break; |
---|
2887 | case op_athrow: |
---|
2888 | pop_type (type (&java::lang::Throwable::class$)); |
---|
2889 | invalidate_pc (); |
---|
2890 | break; |
---|
2891 | case op_checkcast: |
---|
2892 | pop_type (reference_type); |
---|
2893 | push_type (check_class_constant (get_ushort ())); |
---|
2894 | break; |
---|
2895 | case op_instanceof: |
---|
2896 | pop_type (reference_type); |
---|
2897 | check_class_constant (get_ushort ()); |
---|
2898 | push_type (int_type); |
---|
2899 | break; |
---|
2900 | case op_monitorenter: |
---|
2901 | pop_type (reference_type); |
---|
2902 | break; |
---|
2903 | case op_monitorexit: |
---|
2904 | pop_type (reference_type); |
---|
2905 | break; |
---|
2906 | case op_wide: |
---|
2907 | { |
---|
2908 | switch (get_byte ()) |
---|
2909 | { |
---|
2910 | case op_iload: |
---|
2911 | push_type (get_variable (get_ushort (), int_type)); |
---|
2912 | break; |
---|
2913 | case op_lload: |
---|
2914 | push_type (get_variable (get_ushort (), long_type)); |
---|
2915 | break; |
---|
2916 | case op_fload: |
---|
2917 | push_type (get_variable (get_ushort (), float_type)); |
---|
2918 | break; |
---|
2919 | case op_dload: |
---|
2920 | push_type (get_variable (get_ushort (), double_type)); |
---|
2921 | break; |
---|
2922 | case op_aload: |
---|
2923 | push_type (get_variable (get_ushort (), reference_type)); |
---|
2924 | break; |
---|
2925 | case op_istore: |
---|
2926 | set_variable (get_ushort (), pop_type (int_type)); |
---|
2927 | break; |
---|
2928 | case op_lstore: |
---|
2929 | set_variable (get_ushort (), pop_type (long_type)); |
---|
2930 | break; |
---|
2931 | case op_fstore: |
---|
2932 | set_variable (get_ushort (), pop_type (float_type)); |
---|
2933 | break; |
---|
2934 | case op_dstore: |
---|
2935 | set_variable (get_ushort (), pop_type (double_type)); |
---|
2936 | break; |
---|
2937 | case op_astore: |
---|
2938 | set_variable (get_ushort (), pop_type (reference_type)); |
---|
2939 | break; |
---|
2940 | case op_ret: |
---|
2941 | handle_ret_insn (get_short ()); |
---|
2942 | break; |
---|
2943 | case op_iinc: |
---|
2944 | get_variable (get_ushort (), int_type); |
---|
2945 | get_short (); |
---|
2946 | break; |
---|
2947 | default: |
---|
2948 | verify_fail ("unrecognized wide instruction", start_PC); |
---|
2949 | } |
---|
2950 | } |
---|
2951 | break; |
---|
2952 | case op_multianewarray: |
---|
2953 | { |
---|
2954 | type atype = check_class_constant (get_ushort ()); |
---|
2955 | int dim = get_byte (); |
---|
2956 | if (dim < 1) |
---|
2957 | verify_fail ("too few dimensions to multianewarray", start_PC); |
---|
2958 | atype.verify_dimensions (dim, this); |
---|
2959 | for (int i = 0; i < dim; ++i) |
---|
2960 | pop_type (int_type); |
---|
2961 | push_type (atype); |
---|
2962 | } |
---|
2963 | break; |
---|
2964 | case op_ifnull: |
---|
2965 | case op_ifnonnull: |
---|
2966 | pop_type (reference_type); |
---|
2967 | push_jump (get_short ()); |
---|
2968 | break; |
---|
2969 | case op_goto_w: |
---|
2970 | push_jump (get_int ()); |
---|
2971 | invalidate_pc (); |
---|
2972 | break; |
---|
2973 | case op_jsr_w: |
---|
2974 | handle_jsr_insn (get_int ()); |
---|
2975 | break; |
---|
2976 | |
---|
2977 | default: |
---|
2978 | // Unrecognized opcode. |
---|
2979 | verify_fail ("unrecognized instruction in verify_instructions_0", |
---|
2980 | start_PC); |
---|
2981 | } |
---|
2982 | } |
---|
2983 | } |
---|
2984 | |
---|
2985 | __attribute__ ((__noreturn__)) void verify_fail (char *s, jint pc = -1) |
---|
2986 | { |
---|
2987 | using namespace java::lang; |
---|
2988 | StringBuffer *buf = new StringBuffer (); |
---|
2989 | |
---|
2990 | buf->append (JvNewStringLatin1 ("verification failed")); |
---|
2991 | if (pc == -1) |
---|
2992 | pc = start_PC; |
---|
2993 | if (pc != -1) |
---|
2994 | { |
---|
2995 | buf->append (JvNewStringLatin1 (" at PC ")); |
---|
2996 | buf->append (pc); |
---|
2997 | } |
---|
2998 | |
---|
2999 | _Jv_InterpMethod *method = current_method; |
---|
3000 | buf->append (JvNewStringLatin1 (" in ")); |
---|
3001 | buf->append (current_class->getName()); |
---|
3002 | buf->append ((jchar) ':'); |
---|
3003 | buf->append (JvNewStringUTF (method->get_method()->name->data)); |
---|
3004 | buf->append ((jchar) '('); |
---|
3005 | buf->append (JvNewStringUTF (method->get_method()->signature->data)); |
---|
3006 | buf->append ((jchar) ')'); |
---|
3007 | |
---|
3008 | buf->append (JvNewStringLatin1 (": ")); |
---|
3009 | buf->append (JvNewStringLatin1 (s)); |
---|
3010 | throw new java::lang::VerifyError (buf->toString ()); |
---|
3011 | } |
---|
3012 | |
---|
3013 | public: |
---|
3014 | |
---|
3015 | void verify_instructions () |
---|
3016 | { |
---|
3017 | branch_prepass (); |
---|
3018 | verify_instructions_0 (); |
---|
3019 | } |
---|
3020 | |
---|
3021 | _Jv_BytecodeVerifier (_Jv_InterpMethod *m) |
---|
3022 | { |
---|
3023 | // We just print the text as utf-8. This is just for debugging |
---|
3024 | // anyway. |
---|
3025 | debug_print ("--------------------------------\n"); |
---|
3026 | debug_print ("-- Verifying method `%s'\n", m->self->name->data); |
---|
3027 | |
---|
3028 | current_method = m; |
---|
3029 | bytecode = m->bytecode (); |
---|
3030 | exception = m->exceptions (); |
---|
3031 | current_class = m->defining_class; |
---|
3032 | |
---|
3033 | states = NULL; |
---|
3034 | flags = NULL; |
---|
3035 | jsr_ptrs = NULL; |
---|
3036 | utf8_list = NULL; |
---|
3037 | entry_points = NULL; |
---|
3038 | } |
---|
3039 | |
---|
3040 | ~_Jv_BytecodeVerifier () |
---|
3041 | { |
---|
3042 | if (states) |
---|
3043 | _Jv_Free (states); |
---|
3044 | if (flags) |
---|
3045 | _Jv_Free (flags); |
---|
3046 | |
---|
3047 | if (jsr_ptrs) |
---|
3048 | { |
---|
3049 | for (int i = 0; i < current_method->code_length; ++i) |
---|
3050 | { |
---|
3051 | if (jsr_ptrs[i] != NULL) |
---|
3052 | { |
---|
3053 | subr_info *info = jsr_ptrs[i]; |
---|
3054 | while (info != NULL) |
---|
3055 | { |
---|
3056 | subr_info *next = info->next; |
---|
3057 | _Jv_Free (info); |
---|
3058 | info = next; |
---|
3059 | } |
---|
3060 | } |
---|
3061 | } |
---|
3062 | _Jv_Free (jsr_ptrs); |
---|
3063 | } |
---|
3064 | |
---|
3065 | while (utf8_list != NULL) |
---|
3066 | { |
---|
3067 | linked_utf8 *n = utf8_list->next; |
---|
3068 | _Jv_Free (utf8_list->val); |
---|
3069 | _Jv_Free (utf8_list); |
---|
3070 | utf8_list = n; |
---|
3071 | } |
---|
3072 | |
---|
3073 | while (entry_points != NULL) |
---|
3074 | { |
---|
3075 | subr_entry_info *next = entry_points->next; |
---|
3076 | _Jv_Free (entry_points); |
---|
3077 | entry_points = next; |
---|
3078 | } |
---|
3079 | } |
---|
3080 | }; |
---|
3081 | |
---|
3082 | void |
---|
3083 | _Jv_VerifyMethod (_Jv_InterpMethod *meth) |
---|
3084 | { |
---|
3085 | _Jv_BytecodeVerifier v (meth); |
---|
3086 | v.verify_instructions (); |
---|
3087 | } |
---|
3088 | #endif /* INTERPRETER */ |
---|