source: trunk/third/glib2/glib/grand.c @ 20721

Revision 20721, 15.0 KB checked in by ghudson, 20 years ago (diff)
This commit was generated by cvs2svn to compensate for changes in r20720, which included commits to RCS files with non-trunk default branches.
Line 
1/* GLIB - Library of useful routines for C programming
2 * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
3 *
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
8 *
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12 * Lesser General Public License for more details.
13 *
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 */
19
20/* Originally developed and coded by Makoto Matsumoto and Takuji
21 * Nishimura.  Please mail <matumoto@math.keio.ac.jp>, if you're using
22 * code from this file in your own programs or libraries.
23 * Further information on the Mersenne Twister can be found at
24 * http://www.math.keio.ac.jp/~matumoto/emt.html
25 * This code was adapted to glib by Sebastian Wilhelmi.
26 */
27
28/*
29 * Modified by the GLib Team and others 1997-2000.  See the AUTHORS
30 * file for a list of people on the GLib Team.  See the ChangeLog
31 * files for a list of changes.  These files are distributed with
32 * GLib at ftp://ftp.gtk.org/pub/gtk/. 
33 */
34
35/*
36 * MT safe
37 */
38
39#include "config.h"
40
41#include <math.h>
42#include <errno.h>
43#include <stdio.h>
44#include <string.h>
45#include <sys/types.h>
46#ifdef HAVE_UNISTD_H
47#include <unistd.h>
48#endif
49
50#include "glib.h"
51#include "gthreadinit.h"
52
53#ifdef G_OS_WIN32
54#include <process.h>            /* For getpid() */
55#endif
56
57G_LOCK_DEFINE_STATIC (global_random);
58static GRand* global_random = NULL;
59
60/* Period parameters */ 
61#define N 624
62#define M 397
63#define MATRIX_A 0x9908b0df   /* constant vector a */
64#define UPPER_MASK 0x80000000 /* most significant w-r bits */
65#define LOWER_MASK 0x7fffffff /* least significant r bits */
66
67/* Tempering parameters */   
68#define TEMPERING_MASK_B 0x9d2c5680
69#define TEMPERING_MASK_C 0xefc60000
70#define TEMPERING_SHIFT_U(y)  (y >> 11)
71#define TEMPERING_SHIFT_S(y)  (y << 7)
72#define TEMPERING_SHIFT_T(y)  (y << 15)
73#define TEMPERING_SHIFT_L(y)  (y >> 18)
74
75static guint
76get_random_version (void)
77{
78  static gboolean initialized = FALSE;
79  static guint random_version;
80 
81  if (!initialized)
82    {
83      const gchar *version_string = g_getenv ("G_RANDOM_VERSION");
84      if (!version_string || version_string[0] == '\000' ||
85          strcmp (version_string, "2.2") == 0)
86        random_version = 22;
87      else if (strcmp (version_string, "2.0") == 0)
88        random_version = 20;
89      else
90        {
91          g_warning ("Unknown G_RANDOM_VERSION \"%s\". Using version 2.2.",
92                     version_string);
93          random_version = 22;
94        }
95      initialized = TRUE;
96    }
97 
98  return random_version;
99}
100
101/* This is called from g_thread_init(). It's used to
102 * initialize some static data in a threadsafe way.
103 */
104void
105_g_rand_thread_init (void)
106{
107  (void)get_random_version ();
108}
109
110struct _GRand
111{
112  guint32 mt[N]; /* the array for the state vector  */
113  guint mti;
114};
115
116/**
117 * g_rand_new_with_seed:
118 * @seed: a value to initialize the random number generator.
119 *
120 * Creates a new random number generator initialized with @seed.
121 *
122 * Return value: the new #GRand.
123 **/
124GRand*
125g_rand_new_with_seed (guint32 seed)
126{
127  GRand *rand = g_new0 (GRand, 1);
128  g_rand_set_seed (rand, seed);
129  return rand;
130}
131
132/**
133 * g_rand_new_with_seed_array:
134 * @seed: an array of seeds to initialize the random number generator.
135 * @seed_length: an array of seeds to initialize the random number generator.
136 *
137 * Creates a new random number generator initialized with @seed.
138 *
139 * Return value: the new #GRand.
140 *
141 * Since: 2.4
142 **/
143GRand*
144g_rand_new_with_seed_array (const guint32 *seed, guint seed_length)
145{
146  GRand *rand = g_new0 (GRand, 1);
147  g_rand_set_seed_array (rand, seed, seed_length);
148  return rand;
149}
150
151/**
152 * g_rand_new:
153 *
154 * Creates a new random number generator initialized with a seed taken
155 * either from <filename>/dev/urandom</filename> (if existing) or from
156 * the current time (as a fallback).
157 *
158 * Return value: the new #GRand.
159 **/
160GRand*
161g_rand_new (void)
162{
163  guint32 seed[4];
164  GTimeVal now;
165#ifdef G_OS_UNIX
166  static gboolean dev_urandom_exists = TRUE;
167
168  if (dev_urandom_exists)
169    {
170      FILE* dev_urandom;
171
172      do
173        {
174          errno = 0;
175          dev_urandom = fopen("/dev/urandom", "rb");
176        }
177      while G_UNLIKELY (errno == EINTR);
178
179      if (dev_urandom)
180        {
181          int r;
182
183          do
184            {
185              errno = 0;
186              r = fread (seed, sizeof (seed), 1, dev_urandom);
187            }
188          while G_UNLIKELY (errno == EINTR);
189
190          if (r != 1)
191            dev_urandom_exists = FALSE;
192
193          do
194            {
195              errno = 0;
196              fclose (dev_urandom);
197            }
198          while G_UNLIKELY (errno == EINTR);
199        }       
200      else
201        dev_urandom_exists = FALSE;
202    }
203#else
204  static gboolean dev_urandom_exists = FALSE;
205#endif
206
207  if (!dev_urandom_exists)
208    { 
209      g_get_current_time (&now);
210      seed[0] = now.tv_sec;
211      seed[1] = now.tv_usec;
212      seed[2] = getpid ();
213#ifdef G_OS_UNIX
214      seed[3] = getppid ();
215#else
216      seed[3] = 0;
217#endif
218    }
219
220  return g_rand_new_with_seed_array (seed, 4);
221}
222
223/**
224 * g_rand_free:
225 * @rand_: a #GRand.
226 *
227 * Frees the memory allocated for the #GRand.
228 **/
229void
230g_rand_free (GRand* rand)
231{
232  g_return_if_fail (rand != NULL);
233
234  g_free (rand);
235}
236
237/**
238 * g_rand_copy:
239 * @rand_: a #GRand.
240 *
241 * Copies a #GRand into a new one with the same exact state as before.
242 * This way you can take a snapshot of the random number generator for
243 * replaying later.
244 *
245 * Return value: the new #GRand.
246 *
247 * Since: 2.4
248 **/
249GRand *
250g_rand_copy (GRand* rand)
251{
252  GRand* new_rand;
253
254  g_return_val_if_fail (rand != NULL, NULL);
255
256  new_rand = g_new0 (GRand, 1);
257  memcpy (new_rand, rand, sizeof (GRand));
258
259  return new_rand;
260}
261
262/**
263 * g_rand_set_seed:
264 * @rand_: a #GRand.
265 * @seed: a value to reinitialize the random number generator.
266 *
267 * Sets the seed for the random number generator #GRand to @seed.
268 **/
269void
270g_rand_set_seed (GRand* rand, guint32 seed)
271{
272  g_return_if_fail (rand != NULL);
273
274  switch (get_random_version ())
275    {
276    case 20:
277      /* setting initial seeds to mt[N] using         */
278      /* the generator Line 25 of Table 1 in          */
279      /* [KNUTH 1981, The Art of Computer Programming */
280      /*    Vol. 2 (2nd Ed.), pp102]                  */
281     
282      if (seed == 0) /* This would make the PRNG procude only zeros */
283        seed = 0x6b842128; /* Just set it to another number */
284     
285      rand->mt[0]= seed;
286      for (rand->mti=1; rand->mti<N; rand->mti++)
287        rand->mt[rand->mti] = (69069 * rand->mt[rand->mti-1]);
288     
289      break;
290    case 22:
291      /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
292      /* In the previous version (see above), MSBs of the    */
293      /* seed affect only MSBs of the array mt[].            */
294     
295      rand->mt[0]= seed;
296      for (rand->mti=1; rand->mti<N; rand->mti++)
297        rand->mt[rand->mti] = 1812433253UL *
298          (rand->mt[rand->mti-1] ^ (rand->mt[rand->mti-1] >> 30)) + rand->mti;
299      break;
300    default:
301      g_assert_not_reached ();
302    }
303}
304
305/**
306 * g_rand_set_seed_array:
307 * @rand_: a #GRand.
308 * @seed: array to initialize with
309 * @seed_length: length of array
310 *
311 * Initializes the random number generator by an array of
312 * longs.  Array can be of arbitrary size, though only the
313 * first 624 values are taken.  This function is useful
314 * if you have many low entropy seeds, or if you require more then
315 * 32bits of actual entropy for your application.
316 *
317 * Since: 2.4
318 **/
319void
320g_rand_set_seed_array (GRand* rand, const guint32 *seed, guint seed_length)
321{
322  int i, j, k;
323
324  g_return_if_fail (rand != NULL);
325  g_return_if_fail (seed_length >= 1);
326
327  g_rand_set_seed (rand, 19650218UL);
328
329  i=1; j=0;
330  k = (N>seed_length ? N : seed_length);
331  for (; k; k--)
332    {
333      rand->mt[i] = (rand->mt[i] ^
334                     ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1664525UL))
335              + seed[j] + j; /* non linear */
336      rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
337      i++; j++;
338      if (i>=N)
339        {
340          rand->mt[0] = rand->mt[N-1];
341          i=1;
342        }
343      if (j>=seed_length)
344        j=0;
345    }
346  for (k=N-1; k; k--)
347    {
348      rand->mt[i] = (rand->mt[i] ^
349                     ((rand->mt[i-1] ^ (rand->mt[i-1] >> 30)) * 1566083941UL))
350              - i; /* non linear */
351      rand->mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
352      i++;
353      if (i>=N)
354        {
355          rand->mt[0] = rand->mt[N-1];
356          i=1;
357        }
358    }
359
360  rand->mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
361}
362
363/**
364 * g_rand_int:
365 * @rand_: a #GRand.
366 *
367 * Returns the next random #guint32 from @rand_ equally distributed over
368 * the range [0..2^32-1].
369 *
370 * Return value: A random number.
371 **/
372guint32
373g_rand_int (GRand* rand)
374{
375  guint32 y;
376  static const guint32 mag01[2]={0x0, MATRIX_A};
377  /* mag01[x] = x * MATRIX_A  for x=0,1 */
378
379  g_return_val_if_fail (rand != NULL, 0);
380
381  if (rand->mti >= N) { /* generate N words at one time */
382    int kk;
383   
384    for (kk=0;kk<N-M;kk++) {
385      y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
386      rand->mt[kk] = rand->mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];
387    }
388    for (;kk<N-1;kk++) {
389      y = (rand->mt[kk]&UPPER_MASK)|(rand->mt[kk+1]&LOWER_MASK);
390      rand->mt[kk] = rand->mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1];
391    }
392    y = (rand->mt[N-1]&UPPER_MASK)|(rand->mt[0]&LOWER_MASK);
393    rand->mt[N-1] = rand->mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];
394   
395    rand->mti = 0;
396  }
397 
398  y = rand->mt[rand->mti++];
399  y ^= TEMPERING_SHIFT_U(y);
400  y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
401  y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
402  y ^= TEMPERING_SHIFT_L(y);
403 
404  return y;
405}
406
407/* transform [0..2^32] -> [0..1] */
408#define G_RAND_DOUBLE_TRANSFORM 2.3283064365386962890625e-10
409
410/**
411 * g_rand_int_range:
412 * @rand_: a #GRand.
413 * @begin: lower closed bound of the interval.
414 * @end: upper open bound of the interval.
415 *
416 * Returns the next random #gint32 from @rand_ equally distributed over
417 * the range [@begin..@end-1].
418 *
419 * Return value: A random number.
420 **/
421gint32
422g_rand_int_range (GRand* rand, gint32 begin, gint32 end)
423{
424  guint32 dist = end - begin;
425  guint32 random;
426
427  g_return_val_if_fail (rand != NULL, begin);
428  g_return_val_if_fail (end > begin, begin);
429
430  switch (get_random_version ())
431    {
432    case 20:
433      if (dist <= 0x10000L) /* 2^16 */
434        {
435          /* This method, which only calls g_rand_int once is only good
436           * for (end - begin) <= 2^16, because we only have 32 bits set
437           * from the one call to g_rand_int (). */
438         
439          /* we are using (trans + trans * trans), because g_rand_int only
440           * covers [0..2^32-1] and thus g_rand_int * trans only covers
441           * [0..1-2^-32], but the biggest double < 1 is 1-2^-52.
442           */
443         
444          gdouble double_rand = g_rand_int (rand) *
445            (G_RAND_DOUBLE_TRANSFORM +
446             G_RAND_DOUBLE_TRANSFORM * G_RAND_DOUBLE_TRANSFORM);
447         
448          random = (gint32) (double_rand * dist);
449        }
450      else
451        {
452          /* Now we use g_rand_double_range (), which will set 52 bits for
453             us, so that it is safe to round and still get a decent
454             distribution */
455          random = (gint32) g_rand_double_range (rand, 0, dist);
456        }
457      break;
458    case 22:
459      if (dist == 0)
460        random = 0;
461      else
462        {
463          /* maxvalue is set to the predecessor of the greatest
464           * multiple of dist less or equal 2^32. */
465          guint32 maxvalue;
466          if (dist <= 0x80000000u) /* 2^31 */
467            {
468              /* maxvalue = 2^32 - 1 - (2^32 % dist) */
469              guint32 leftover = (0x80000000u % dist) * 2;
470              if (leftover >= dist) leftover -= dist;
471              maxvalue = 0xffffffffu - leftover;
472            }
473          else
474            maxvalue = dist - 1;
475         
476          do
477            random = g_rand_int (rand);
478          while (random > maxvalue);
479         
480          random %= dist;
481        }
482      break;
483    default:
484      random = 0;               /* Quiet GCC */
485      g_assert_not_reached ();
486    }     
487 
488  return begin + random;
489}
490
491/**
492 * g_rand_double:
493 * @rand_: a #GRand.
494 *
495 * Returns the next random #gdouble from @rand_ equally distributed over
496 * the range [0..1).
497 *
498 * Return value: A random number.
499 **/
500gdouble
501g_rand_double (GRand* rand)
502{   
503  /* We set all 52 bits after the point for this, not only the first
504     32. Thats why we need two calls to g_rand_int */
505  gdouble retval = g_rand_int (rand) * G_RAND_DOUBLE_TRANSFORM;
506  retval = (retval + g_rand_int (rand)) * G_RAND_DOUBLE_TRANSFORM;
507
508  /* The following might happen due to very bad rounding luck, but
509   * actually this should be more than rare, we just try again then */
510  if (retval >= 1.0)
511    return g_rand_double (rand);
512
513  return retval;
514}
515
516/**
517 * g_rand_double_range:
518 * @rand_: a #GRand.
519 * @begin: lower closed bound of the interval.
520 * @end: upper open bound of the interval.
521 *
522 * Returns the next random #gdouble from @rand_ equally distributed over
523 * the range [@begin..@end).
524 *
525 * Return value: A random number.
526 **/
527gdouble
528g_rand_double_range (GRand* rand, gdouble begin, gdouble end)
529{
530  return g_rand_double (rand) * (end - begin) + begin;
531}
532
533/**
534 * g_random_int:
535 *
536 * Return a random #guint32 equally distributed over the range
537 * [0..2^32-1].
538 *
539 * Return value: A random number.
540 **/
541guint32
542g_random_int (void)
543{
544  guint32 result;
545  G_LOCK (global_random);
546  if (!global_random)
547    global_random = g_rand_new ();
548 
549  result = g_rand_int (global_random);
550  G_UNLOCK (global_random);
551  return result;
552}
553
554/**
555 * g_random_int_range:
556 * @begin: lower closed bound of the interval.
557 * @end: upper open bound of the interval.
558 *
559 * Returns a random #gint32 equally distributed over the range
560 * [@begin..@end-1].
561 *
562 * Return value: A random number.
563 **/
564gint32
565g_random_int_range (gint32 begin, gint32 end)
566{
567  gint32 result;
568  G_LOCK (global_random);
569  if (!global_random)
570    global_random = g_rand_new ();
571 
572  result = g_rand_int_range (global_random, begin, end);
573  G_UNLOCK (global_random);
574  return result;
575}
576
577/**
578 * g_random_double:
579 *
580 * Returns a random #gdouble equally distributed over the range [0..1).
581 *
582 * Return value: A random number.
583 **/
584gdouble
585g_random_double (void)
586{
587  double result;
588  G_LOCK (global_random);
589  if (!global_random)
590    global_random = g_rand_new ();
591 
592  result = g_rand_double (global_random);
593  G_UNLOCK (global_random);
594  return result;
595}
596
597/**
598 * g_random_double_range:
599 * @begin: lower closed bound of the interval.
600 * @end: upper open bound of the interval.
601 *
602 * Returns a random #gdouble equally distributed over the range [@begin..@end).
603 *
604 * Return value: A random number.
605 **/
606gdouble
607g_random_double_range (gdouble begin, gdouble end)
608{
609  double result;
610  G_LOCK (global_random);
611  if (!global_random)
612    global_random = g_rand_new ();
613 
614  result = g_rand_double_range (global_random, begin, end);
615  G_UNLOCK (global_random);
616  return result;
617}
618
619/**
620 * g_random_set_seed:
621 * @seed: a value to reinitialize the global random number generator.
622 *
623 * Sets the seed for the global random number generator, which is used
624 * by the <function>g_random_*</function> functions, to @seed.
625 **/
626void
627g_random_set_seed (guint32 seed)
628{
629  G_LOCK (global_random);
630  if (!global_random)
631    global_random = g_rand_new_with_seed (seed);
632  else
633    g_rand_set_seed (global_random, seed);
634  G_UNLOCK (global_random);
635}
636
Note: See TracBrowser for help on using the repository browser.