1 | /* Use mpz_kronecker_ui() to calculate an estimate for the quadratic |
---|
2 | class number h(d), for a given negative fundamental discriminant, using |
---|
3 | Dirichlet's analytic formula. |
---|
4 | |
---|
5 | Copyright 1999, 2000, 2001 Free Software Foundation, Inc. |
---|
6 | |
---|
7 | This file is part of the GNU MP Library. |
---|
8 | |
---|
9 | This program is free software; you can redistribute it and/or modify it |
---|
10 | under the terms of the GNU General Public License as published by the Free |
---|
11 | Software Foundation; either version 2 of the License, or (at your option) |
---|
12 | any later version. |
---|
13 | |
---|
14 | This program is distributed in the hope that it will be useful, but WITHOUT |
---|
15 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
---|
16 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
---|
17 | more details. |
---|
18 | |
---|
19 | You should have received a copy of the GNU General Public License along with |
---|
20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
---|
21 | Place - Suite 330, Boston, MA 02111-1307, USA. */ |
---|
22 | |
---|
23 | |
---|
24 | /* Usage: qcn <discriminant>... |
---|
25 | |
---|
26 | A fundamental discriminant means one of the form D or 4*D with D |
---|
27 | square-free. Each argument is checked to see it's congruent to 0 or 1 |
---|
28 | mod 4 (as all discriminants must be), and that it's negative, but there's |
---|
29 | no check on D being square-free. |
---|
30 | |
---|
31 | This program is a bit of a toy, there are better methods for calculating |
---|
32 | the class number and class group structure. |
---|
33 | |
---|
34 | Reference: |
---|
35 | |
---|
36 | Daniel Shanks, "Class Number, A Theory of Factorization, and Genera", |
---|
37 | Proc. Symp. Pure Math., vol 20, 1970, pages 415-440. |
---|
38 | |
---|
39 | */ |
---|
40 | |
---|
41 | #include <math.h> |
---|
42 | #include <stdio.h> |
---|
43 | |
---|
44 | #include "gmp.h" |
---|
45 | |
---|
46 | #ifndef M_PI |
---|
47 | #define M_PI 3.14159265358979323846 |
---|
48 | #endif |
---|
49 | |
---|
50 | |
---|
51 | /* A simple but slow primality test. */ |
---|
52 | int |
---|
53 | prime_p (unsigned long n) |
---|
54 | { |
---|
55 | unsigned long i, limit; |
---|
56 | |
---|
57 | if (n == 2) |
---|
58 | return 1; |
---|
59 | if (n < 2 || !(n&1)) |
---|
60 | return 0; |
---|
61 | |
---|
62 | limit = (unsigned long) floor (sqrt ((double) n)); |
---|
63 | for (i = 3; i <= limit; i+=2) |
---|
64 | if ((n % i) == 0) |
---|
65 | return 0; |
---|
66 | |
---|
67 | return 1; |
---|
68 | } |
---|
69 | |
---|
70 | |
---|
71 | /* The formula is as follows, with d < 0. |
---|
72 | |
---|
73 | w * sqrt(-d) inf p |
---|
74 | h(d) = ------------ * product -------- |
---|
75 | 2 * pi p=2 p - (d/p) |
---|
76 | |
---|
77 | |
---|
78 | (d/p) is the Kronecker symbol and the product is over primes p. w is 6 |
---|
79 | when d=-3, 4 when d=-4, or 2 otherwise. |
---|
80 | |
---|
81 | Calculating the product up to p=infinity would take a long time, so for |
---|
82 | the estimate primes up to 132,000 are used. Shanks found this giving an |
---|
83 | accuracy of about 1 part in 1000, in normal cases. */ |
---|
84 | |
---|
85 | double |
---|
86 | qcn_estimate (mpz_t d) |
---|
87 | { |
---|
88 | #define P_LIMIT 132000 |
---|
89 | |
---|
90 | double h; |
---|
91 | unsigned long p; |
---|
92 | |
---|
93 | /* p=2 */ |
---|
94 | h = sqrt (-mpz_get_d (d)) / M_PI |
---|
95 | * 2.0 / (2.0 - mpz_kronecker_ui (d, 2)); |
---|
96 | |
---|
97 | if (mpz_cmp_si (d, -3) == 0) h *= 3; |
---|
98 | else if (mpz_cmp_si (d, -4) == 0) h *= 2; |
---|
99 | |
---|
100 | for (p = 3; p < P_LIMIT; p += 2) |
---|
101 | if (prime_p (p)) |
---|
102 | h *= (double) p / (double) (p - mpz_kronecker_ui (d, p)); |
---|
103 | |
---|
104 | return h; |
---|
105 | } |
---|
106 | |
---|
107 | |
---|
108 | void |
---|
109 | qcn_str (char *num) |
---|
110 | { |
---|
111 | mpz_t z; |
---|
112 | |
---|
113 | mpz_init_set_str (z, num, 0); |
---|
114 | |
---|
115 | if (mpz_sgn (z) >= 0) |
---|
116 | { |
---|
117 | mpz_out_str (stdout, 0, z); |
---|
118 | printf (" is not supported (negatives only)\n"); |
---|
119 | } |
---|
120 | else if (mpz_fdiv_ui (z, 4) != 0 && mpz_fdiv_ui (z, 4) != 1) |
---|
121 | { |
---|
122 | mpz_out_str (stdout, 0, z); |
---|
123 | printf (" is not a discriminant (must == 0 or 1 mod 4)\n"); |
---|
124 | } |
---|
125 | else |
---|
126 | { |
---|
127 | printf ("h("); |
---|
128 | mpz_out_str (stdout, 0, z); |
---|
129 | printf (") approx %.1f\n", qcn_estimate (z)); |
---|
130 | } |
---|
131 | mpz_clear (z); |
---|
132 | } |
---|
133 | |
---|
134 | |
---|
135 | int |
---|
136 | main (int argc, char *argv[]) |
---|
137 | { |
---|
138 | int i; |
---|
139 | |
---|
140 | if (argc < 2) |
---|
141 | { |
---|
142 | qcn_str ("-85702502803"); /* is 16259 */ |
---|
143 | qcn_str ("-328878692999"); /* is 1499699 */ |
---|
144 | qcn_str ("-928185925902146563"); /* is 52739552 */ |
---|
145 | qcn_str ("-84148631888752647283"); /* is 496652272 */ |
---|
146 | } |
---|
147 | else |
---|
148 | { |
---|
149 | for (i = 1; i < argc; i++) |
---|
150 | qcn_str (argv[i]); |
---|
151 | } |
---|
152 | |
---|
153 | return 0; |
---|
154 | } |
---|