1 | /* mpz_bin_uiui - compute n over k. |
---|
2 | |
---|
3 | Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. |
---|
4 | |
---|
5 | This file is part of the GNU MP Library. |
---|
6 | |
---|
7 | The GNU MP Library is free software; you can redistribute it and/or modify |
---|
8 | it under the terms of the GNU Lesser General Public License as published by |
---|
9 | the Free Software Foundation; either version 2.1 of the License, or (at your |
---|
10 | option) any later version. |
---|
11 | |
---|
12 | The GNU MP Library is distributed in the hope that it will be useful, but |
---|
13 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
14 | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public |
---|
15 | License for more details. |
---|
16 | |
---|
17 | You should have received a copy of the GNU Lesser General Public License |
---|
18 | along with the GNU MP Library; see the file COPYING.LIB. If not, write to |
---|
19 | the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, |
---|
20 | MA 02111-1307, USA. */ |
---|
21 | |
---|
22 | #include "gmp.h" |
---|
23 | #include "gmp-impl.h" |
---|
24 | #include "longlong.h" |
---|
25 | |
---|
26 | |
---|
27 | /* Enhancement: It ought to be possible to calculate the size of the final |
---|
28 | result in advance, to a rough approximation at least, and use it to do |
---|
29 | just one realloc. Stirling's approximation n! ~= sqrt(2*pi*n)*(n/e)^n |
---|
30 | (Knuth section 1.2.5) might be of use. */ |
---|
31 | |
---|
32 | /* "inc" in the main loop allocates a chunk more space if not already |
---|
33 | enough, so as to avoid repeated reallocs. The final step on the other |
---|
34 | hand requires only one more limb. */ |
---|
35 | #define MULDIV(inc) \ |
---|
36 | do { \ |
---|
37 | ASSERT (rsize <= ralloc); \ |
---|
38 | \ |
---|
39 | if (rsize == ralloc) \ |
---|
40 | { \ |
---|
41 | mp_size_t new_ralloc = ralloc + (inc); \ |
---|
42 | rp = __GMP_REALLOCATE_FUNC_LIMBS (rp, ralloc, new_ralloc); \ |
---|
43 | ralloc = new_ralloc; \ |
---|
44 | } \ |
---|
45 | \ |
---|
46 | rp[rsize] = mpn_mul_1 (rp, rp, rsize, nacc); \ |
---|
47 | MPN_DIVREM_OR_DIVEXACT_1 (rp, rp, rsize+1, kacc); \ |
---|
48 | rsize += (rp[rsize] != 0); \ |
---|
49 | \ |
---|
50 | } while (0) |
---|
51 | |
---|
52 | void |
---|
53 | mpz_bin_uiui (mpz_ptr r, unsigned long int n, unsigned long int k) |
---|
54 | { |
---|
55 | unsigned long int i, j; |
---|
56 | mp_limb_t nacc, kacc; |
---|
57 | unsigned long int cnt; |
---|
58 | mp_size_t rsize, ralloc; |
---|
59 | mp_ptr rp; |
---|
60 | |
---|
61 | /* bin(n,k) = 0 if k>n. */ |
---|
62 | if (n < k) |
---|
63 | { |
---|
64 | SIZ(r) = 0; |
---|
65 | return; |
---|
66 | } |
---|
67 | |
---|
68 | rp = PTR(r); |
---|
69 | |
---|
70 | /* Rewrite bin(n,k) as bin(n,n-k) if that is smaller. */ |
---|
71 | k = MIN (k, n-k); |
---|
72 | |
---|
73 | /* bin(n,0) = 1 */ |
---|
74 | if (k == 0) |
---|
75 | { |
---|
76 | SIZ(r) = 1; |
---|
77 | rp[0] = 1; |
---|
78 | return; |
---|
79 | } |
---|
80 | |
---|
81 | j = n - k + 1; |
---|
82 | rp[0] = j; |
---|
83 | rsize = 1; |
---|
84 | ralloc = ALLOC(r); |
---|
85 | |
---|
86 | /* Initialize accumulators. */ |
---|
87 | nacc = 1; |
---|
88 | kacc = 1; |
---|
89 | |
---|
90 | cnt = 0; |
---|
91 | for (i = 2; i <= k; i++) |
---|
92 | { |
---|
93 | mp_limb_t n1, n0, k1, k0; |
---|
94 | |
---|
95 | j++; |
---|
96 | #if 0 |
---|
97 | /* Remove common multiples of 2. This will allow us to accumulate |
---|
98 | more in nacc and kacc before we need a bignum step. It would make |
---|
99 | sense to cancel factors of 3, 5, etc too, but this would be best |
---|
100 | handled by sieving out factors. Alternatively, we could perform a |
---|
101 | gcd of the accumulators just as they have overflown, and keep |
---|
102 | accumulating until the gcd doesn't remove a significant factor. */ |
---|
103 | while (((nacc | kacc) & 1) == 0) |
---|
104 | { |
---|
105 | nacc >>= 1; |
---|
106 | kacc >>= 1; |
---|
107 | } |
---|
108 | #else |
---|
109 | cnt = ((nacc | kacc) & 1) ^ 1; |
---|
110 | nacc >>= cnt; |
---|
111 | kacc >>= cnt; |
---|
112 | #endif |
---|
113 | /* Accumulate next multiples. */ |
---|
114 | umul_ppmm (n1, n0, nacc, j << GMP_NAIL_BITS); |
---|
115 | umul_ppmm (k1, k0, kacc, i << GMP_NAIL_BITS); |
---|
116 | n0 >>= GMP_NAIL_BITS; |
---|
117 | k0 >>= GMP_NAIL_BITS; |
---|
118 | if (n1 != 0) |
---|
119 | { |
---|
120 | /* Accumulator overflow. Perform bignum step. */ |
---|
121 | MULDIV (32); |
---|
122 | nacc = j; |
---|
123 | kacc = i; |
---|
124 | } |
---|
125 | else |
---|
126 | { |
---|
127 | ASSERT (k1 == 0); /* n>=k, so high k zero when high n zero */ |
---|
128 | |
---|
129 | /* Save new products in accumulators to keep accumulating. */ |
---|
130 | nacc = n0; |
---|
131 | kacc = k0; |
---|
132 | } |
---|
133 | } |
---|
134 | |
---|
135 | /* Take care of whatever is left in accumulators. */ |
---|
136 | MULDIV (1); |
---|
137 | |
---|
138 | ALLOC(r) = ralloc; |
---|
139 | SIZ(r) = rsize; |
---|
140 | PTR(r) = rp; |
---|
141 | } |
---|