1 | /* mpz_powm(res,base,exp,mod) -- Set RES to (base**exp) mod MOD. |
---|
2 | |
---|
3 | Copyright 1991, 1993, 1994, 1996, 1997, 2000, 2001, 2002 Free Software |
---|
4 | Foundation, Inc. Contributed by Paul Zimmermann. |
---|
5 | |
---|
6 | This file is part of the GNU MP Library. |
---|
7 | |
---|
8 | The GNU MP Library is free software; you can redistribute it and/or modify |
---|
9 | it under the terms of the GNU Lesser General Public License as published by |
---|
10 | the Free Software Foundation; either version 2.1 of the License, or (at your |
---|
11 | option) any later version. |
---|
12 | |
---|
13 | The GNU MP Library is distributed in the hope that it will be useful, but |
---|
14 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
15 | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public |
---|
16 | License for more details. |
---|
17 | |
---|
18 | You should have received a copy of the GNU Lesser General Public License |
---|
19 | along with the GNU MP Library; see the file COPYING.LIB. If not, write to |
---|
20 | the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, |
---|
21 | MA 02111-1307, USA. */ |
---|
22 | |
---|
23 | |
---|
24 | #include "gmp.h" |
---|
25 | #include "gmp-impl.h" |
---|
26 | #include "longlong.h" |
---|
27 | #ifdef BERKELEY_MP |
---|
28 | #include "mp.h" |
---|
29 | #endif |
---|
30 | |
---|
31 | |
---|
32 | /* Set c <- tp/R^n mod m. |
---|
33 | tp should have space for 2*n+1 limbs; clobber its most significant limb. */ |
---|
34 | #if ! WANT_REDC_GLOBAL |
---|
35 | static |
---|
36 | #endif |
---|
37 | void |
---|
38 | redc (mp_ptr cp, mp_srcptr mp, mp_size_t n, mp_limb_t Nprim, mp_ptr tp) |
---|
39 | { |
---|
40 | mp_limb_t cy; |
---|
41 | mp_limb_t q; |
---|
42 | mp_size_t j; |
---|
43 | |
---|
44 | tp[2 * n] = 0; /* carry guard */ |
---|
45 | |
---|
46 | for (j = 0; j < n; j++) |
---|
47 | { |
---|
48 | q = tp[0] * Nprim; |
---|
49 | cy = mpn_addmul_1 (tp, mp, n, q); |
---|
50 | mpn_incr_u (tp + n, cy); |
---|
51 | tp++; |
---|
52 | } |
---|
53 | |
---|
54 | if (tp[n] != 0) |
---|
55 | mpn_sub_n (cp, tp, mp, n); |
---|
56 | else |
---|
57 | MPN_COPY (cp, tp, n); |
---|
58 | } |
---|
59 | |
---|
60 | /* Compute t = a mod m, a is defined by (ap,an), m is defined by (mp,mn), and |
---|
61 | t is defined by (tp,mn). */ |
---|
62 | static void |
---|
63 | reduce (mp_ptr tp, mp_srcptr ap, mp_size_t an, mp_srcptr mp, mp_size_t mn) |
---|
64 | { |
---|
65 | mp_ptr qp; |
---|
66 | TMP_DECL (marker); |
---|
67 | |
---|
68 | TMP_MARK (marker); |
---|
69 | qp = TMP_ALLOC_LIMBS (an - mn + 1); |
---|
70 | |
---|
71 | mpn_tdiv_qr (qp, tp, 0L, ap, an, mp, mn); |
---|
72 | |
---|
73 | TMP_FREE (marker); |
---|
74 | } |
---|
75 | |
---|
76 | #if REDUCE_EXPONENT |
---|
77 | /* Return the group order of the ring mod m. */ |
---|
78 | static mp_limb_t |
---|
79 | phi (mp_limb_t t) |
---|
80 | { |
---|
81 | mp_limb_t d, m, go; |
---|
82 | |
---|
83 | go = 1; |
---|
84 | |
---|
85 | if (t % 2 == 0) |
---|
86 | { |
---|
87 | t = t / 2; |
---|
88 | while (t % 2 == 0) |
---|
89 | { |
---|
90 | go *= 2; |
---|
91 | t = t / 2; |
---|
92 | } |
---|
93 | } |
---|
94 | for (d = 3;; d += 2) |
---|
95 | { |
---|
96 | m = d - 1; |
---|
97 | for (;;) |
---|
98 | { |
---|
99 | unsigned long int q = t / d; |
---|
100 | if (q < d) |
---|
101 | { |
---|
102 | if (t <= 1) |
---|
103 | return go; |
---|
104 | if (t == d) |
---|
105 | return go * m; |
---|
106 | return go * (t - 1); |
---|
107 | } |
---|
108 | if (t != q * d) |
---|
109 | break; |
---|
110 | go *= m; |
---|
111 | m = d; |
---|
112 | t = q; |
---|
113 | } |
---|
114 | } |
---|
115 | } |
---|
116 | #endif |
---|
117 | |
---|
118 | /* average number of calls to redc for an exponent of n bits |
---|
119 | with the sliding window algorithm of base 2^k: the optimal is |
---|
120 | obtained for the value of k which minimizes 2^(k-1)+n/(k+1): |
---|
121 | |
---|
122 | n\k 4 5 6 7 8 |
---|
123 | 128 156* 159 171 200 261 |
---|
124 | 256 309 307* 316 343 403 |
---|
125 | 512 617 607* 610 632 688 |
---|
126 | 1024 1231 1204 1195* 1207 1256 |
---|
127 | 2048 2461 2399 2366 2360* 2396 |
---|
128 | 4096 4918 4787 4707 4665* 4670 |
---|
129 | */ |
---|
130 | |
---|
131 | |
---|
132 | /* Use REDC instead of usual reduction for sizes < POWM_THRESHOLD. In REDC |
---|
133 | each modular multiplication costs about 2*n^2 limbs operations, whereas |
---|
134 | using usual reduction it costs 3*K(n), where K(n) is the cost of a |
---|
135 | multiplication using Karatsuba, and a division is assumed to cost 2*K(n), |
---|
136 | for example using Burnikel-Ziegler's algorithm. This gives a theoretical |
---|
137 | threshold of a*SQR_KARATSUBA_THRESHOLD, with a=(3/2)^(1/(2-ln(3)/ln(2))) ~ |
---|
138 | 2.66. */ |
---|
139 | /* For now, also disable REDC when MOD is even, as the inverse can't handle |
---|
140 | that. At some point, we might want to make the code faster for that case, |
---|
141 | perhaps using CRR. */ |
---|
142 | |
---|
143 | #ifndef POWM_THRESHOLD |
---|
144 | #define POWM_THRESHOLD ((8 * SQR_KARATSUBA_THRESHOLD) / 3) |
---|
145 | #endif |
---|
146 | |
---|
147 | #define HANDLE_NEGATIVE_EXPONENT 1 |
---|
148 | #undef REDUCE_EXPONENT |
---|
149 | |
---|
150 | void |
---|
151 | #ifndef BERKELEY_MP |
---|
152 | mpz_powm (mpz_ptr r, mpz_srcptr b, mpz_srcptr e, mpz_srcptr m) |
---|
153 | #else /* BERKELEY_MP */ |
---|
154 | pow (mpz_srcptr b, mpz_srcptr e, mpz_srcptr m, mpz_ptr r) |
---|
155 | #endif /* BERKELEY_MP */ |
---|
156 | { |
---|
157 | mp_ptr xp, tp, qp, gp, this_gp; |
---|
158 | mp_srcptr bp, ep, mp; |
---|
159 | mp_size_t bn, es, en, mn, xn; |
---|
160 | mp_limb_t invm, c; |
---|
161 | unsigned long int enb; |
---|
162 | mp_size_t i, K, j, l, k; |
---|
163 | int m_zero_cnt, e_zero_cnt; |
---|
164 | int sh; |
---|
165 | int use_redc; |
---|
166 | #if HANDLE_NEGATIVE_EXPONENT |
---|
167 | mpz_t new_b; |
---|
168 | #endif |
---|
169 | #if REDUCE_EXPONENT |
---|
170 | mpz_t new_e; |
---|
171 | #endif |
---|
172 | TMP_DECL (marker); |
---|
173 | |
---|
174 | mp = PTR(m); |
---|
175 | mn = ABSIZ (m); |
---|
176 | if (mn == 0) |
---|
177 | DIVIDE_BY_ZERO; |
---|
178 | |
---|
179 | TMP_MARK (marker); |
---|
180 | |
---|
181 | es = SIZ (e); |
---|
182 | if (es <= 0) |
---|
183 | { |
---|
184 | if (es == 0) |
---|
185 | { |
---|
186 | /* Exponent is zero, result is 1 mod m, i.e., 1 or 0 depending on if |
---|
187 | m equals 1. */ |
---|
188 | SIZ(r) = (mn == 1 && mp[0] == 1) ? 0 : 1; |
---|
189 | PTR(r)[0] = 1; |
---|
190 | TMP_FREE (marker); /* we haven't really allocated anything here */ |
---|
191 | return; |
---|
192 | } |
---|
193 | #if HANDLE_NEGATIVE_EXPONENT |
---|
194 | MPZ_TMP_INIT (new_b, mn + 1); |
---|
195 | |
---|
196 | if (! mpz_invert (new_b, b, m)) |
---|
197 | DIVIDE_BY_ZERO; |
---|
198 | b = new_b; |
---|
199 | es = -es; |
---|
200 | #else |
---|
201 | DIVIDE_BY_ZERO; |
---|
202 | #endif |
---|
203 | } |
---|
204 | en = es; |
---|
205 | |
---|
206 | #if REDUCE_EXPONENT |
---|
207 | /* Reduce exponent by dividing it by phi(m) when m small. */ |
---|
208 | if (mn == 1 && mp[0] < 0x7fffffffL && en * GMP_NUMB_BITS > 150) |
---|
209 | { |
---|
210 | MPZ_TMP_INIT (new_e, 2); |
---|
211 | mpz_mod_ui (new_e, e, phi (mp[0])); |
---|
212 | e = new_e; |
---|
213 | } |
---|
214 | #endif |
---|
215 | |
---|
216 | use_redc = mn < POWM_THRESHOLD && mp[0] % 2 != 0; |
---|
217 | if (use_redc) |
---|
218 | { |
---|
219 | /* invm = -1/m mod 2^BITS_PER_MP_LIMB, must have m odd */ |
---|
220 | modlimb_invert (invm, mp[0]); |
---|
221 | invm = -invm; |
---|
222 | } |
---|
223 | else |
---|
224 | { |
---|
225 | /* Normalize m (i.e. make its most significant bit set) as required by |
---|
226 | division functions below. */ |
---|
227 | count_leading_zeros (m_zero_cnt, mp[mn - 1]); |
---|
228 | m_zero_cnt -= GMP_NAIL_BITS; |
---|
229 | if (m_zero_cnt != 0) |
---|
230 | { |
---|
231 | mp_ptr new_mp; |
---|
232 | new_mp = TMP_ALLOC_LIMBS (mn); |
---|
233 | mpn_lshift (new_mp, mp, mn, m_zero_cnt); |
---|
234 | mp = new_mp; |
---|
235 | } |
---|
236 | } |
---|
237 | |
---|
238 | /* Determine optimal value of k, the number of exponent bits we look at |
---|
239 | at a time. */ |
---|
240 | count_leading_zeros (e_zero_cnt, PTR(e)[en - 1]); |
---|
241 | e_zero_cnt -= GMP_NAIL_BITS; |
---|
242 | enb = en * GMP_NUMB_BITS - e_zero_cnt; /* number of bits of exponent */ |
---|
243 | k = 1; |
---|
244 | K = 2; |
---|
245 | while (2 * enb > K * (2 + k * (3 + k))) |
---|
246 | { |
---|
247 | k++; |
---|
248 | K *= 2; |
---|
249 | } |
---|
250 | |
---|
251 | tp = TMP_ALLOC_LIMBS (2 * mn + 1); |
---|
252 | qp = TMP_ALLOC_LIMBS (mn + 1); |
---|
253 | |
---|
254 | gp = __GMP_ALLOCATE_FUNC_LIMBS (K / 2 * mn); |
---|
255 | |
---|
256 | /* Compute x*R^n where R=2^BITS_PER_MP_LIMB. */ |
---|
257 | bn = ABSIZ (b); |
---|
258 | bp = PTR(b); |
---|
259 | /* Handle |b| >= m by computing b mod m. FIXME: It is not strictly necessary |
---|
260 | for speed or correctness to do this when b and m have the same number of |
---|
261 | limbs, perhaps remove mpn_cmp call. */ |
---|
262 | if (bn > mn || (bn == mn && mpn_cmp (bp, mp, mn) >= 0)) |
---|
263 | { |
---|
264 | /* Reduce possibly huge base while moving it to gp[0]. Use a function |
---|
265 | call to reduce, since we don't want the quotient allocation to |
---|
266 | live until function return. */ |
---|
267 | if (use_redc) |
---|
268 | { |
---|
269 | reduce (tp + mn, bp, bn, mp, mn); /* b mod m */ |
---|
270 | MPN_ZERO (tp, mn); |
---|
271 | mpn_tdiv_qr (qp, gp, 0L, tp, 2 * mn, mp, mn); /* unnormnalized! */ |
---|
272 | } |
---|
273 | else |
---|
274 | { |
---|
275 | reduce (gp, bp, bn, mp, mn); |
---|
276 | } |
---|
277 | } |
---|
278 | else |
---|
279 | { |
---|
280 | /* |b| < m. We pad out operands to become mn limbs, which simplifies |
---|
281 | the rest of the function, but slows things down when the |b| << m. */ |
---|
282 | if (use_redc) |
---|
283 | { |
---|
284 | MPN_ZERO (tp, mn); |
---|
285 | MPN_COPY (tp + mn, bp, bn); |
---|
286 | MPN_ZERO (tp + mn + bn, mn - bn); |
---|
287 | mpn_tdiv_qr (qp, gp, 0L, tp, 2 * mn, mp, mn); |
---|
288 | } |
---|
289 | else |
---|
290 | { |
---|
291 | MPN_COPY (gp, bp, bn); |
---|
292 | MPN_ZERO (gp + bn, mn - bn); |
---|
293 | } |
---|
294 | } |
---|
295 | |
---|
296 | /* Compute xx^i for odd g < 2^i. */ |
---|
297 | |
---|
298 | xp = TMP_ALLOC_LIMBS (mn); |
---|
299 | mpn_sqr_n (tp, gp, mn); |
---|
300 | if (use_redc) |
---|
301 | redc (xp, mp, mn, invm, tp); /* xx = x^2*R^n */ |
---|
302 | else |
---|
303 | mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn); |
---|
304 | this_gp = gp; |
---|
305 | for (i = 1; i < K / 2; i++) |
---|
306 | { |
---|
307 | mpn_mul_n (tp, this_gp, xp, mn); |
---|
308 | this_gp += mn; |
---|
309 | if (use_redc) |
---|
310 | redc (this_gp, mp, mn, invm, tp); /* g[i] = x^(2i+1)*R^n */ |
---|
311 | else |
---|
312 | mpn_tdiv_qr (qp, this_gp, 0L, tp, 2 * mn, mp, mn); |
---|
313 | } |
---|
314 | |
---|
315 | /* Start the real stuff. */ |
---|
316 | ep = PTR (e); |
---|
317 | i = en - 1; /* current index */ |
---|
318 | c = ep[i]; /* current limb */ |
---|
319 | sh = GMP_NUMB_BITS - e_zero_cnt; /* significant bits in ep[i] */ |
---|
320 | sh -= k; /* index of lower bit of ep[i] to take into account */ |
---|
321 | if (sh < 0) |
---|
322 | { /* k-sh extra bits are needed */ |
---|
323 | if (i > 0) |
---|
324 | { |
---|
325 | i--; |
---|
326 | c <<= (-sh); |
---|
327 | sh += GMP_NUMB_BITS; |
---|
328 | c |= ep[i] >> sh; |
---|
329 | } |
---|
330 | } |
---|
331 | else |
---|
332 | c >>= sh; |
---|
333 | |
---|
334 | for (j = 0; c % 2 == 0; j++) |
---|
335 | c >>= 1; |
---|
336 | |
---|
337 | MPN_COPY (xp, gp + mn * (c >> 1), mn); |
---|
338 | while (--j >= 0) |
---|
339 | { |
---|
340 | mpn_sqr_n (tp, xp, mn); |
---|
341 | if (use_redc) |
---|
342 | redc (xp, mp, mn, invm, tp); |
---|
343 | else |
---|
344 | mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn); |
---|
345 | } |
---|
346 | |
---|
347 | while (i > 0 || sh > 0) |
---|
348 | { |
---|
349 | c = ep[i]; |
---|
350 | l = k; /* number of bits treated */ |
---|
351 | sh -= l; |
---|
352 | if (sh < 0) |
---|
353 | { |
---|
354 | if (i > 0) |
---|
355 | { |
---|
356 | i--; |
---|
357 | c <<= (-sh); |
---|
358 | sh += GMP_NUMB_BITS; |
---|
359 | c |= ep[i] >> sh; |
---|
360 | } |
---|
361 | else |
---|
362 | { |
---|
363 | l += sh; /* last chunk of bits from e; l < k */ |
---|
364 | } |
---|
365 | } |
---|
366 | else |
---|
367 | c >>= sh; |
---|
368 | c &= ((mp_limb_t) 1 << l) - 1; |
---|
369 | |
---|
370 | /* This while loop implements the sliding window improvement--loop while |
---|
371 | the most significant bit of c is zero, squaring xx as we go. */ |
---|
372 | while ((c >> (l - 1)) == 0 && (i > 0 || sh > 0)) |
---|
373 | { |
---|
374 | mpn_sqr_n (tp, xp, mn); |
---|
375 | if (use_redc) |
---|
376 | redc (xp, mp, mn, invm, tp); |
---|
377 | else |
---|
378 | mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn); |
---|
379 | if (sh != 0) |
---|
380 | { |
---|
381 | sh--; |
---|
382 | c = (c << 1) + ((ep[i] >> sh) & 1); |
---|
383 | } |
---|
384 | else |
---|
385 | { |
---|
386 | i--; |
---|
387 | sh = GMP_NUMB_BITS - 1; |
---|
388 | c = (c << 1) + (ep[i] >> sh); |
---|
389 | } |
---|
390 | } |
---|
391 | |
---|
392 | /* Replace xx by xx^(2^l)*x^c. */ |
---|
393 | if (c != 0) |
---|
394 | { |
---|
395 | for (j = 0; c % 2 == 0; j++) |
---|
396 | c >>= 1; |
---|
397 | |
---|
398 | /* c0 = c * 2^j, i.e. xx^(2^l)*x^c = (A^(2^(l - j))*c)^(2^j) */ |
---|
399 | l -= j; |
---|
400 | while (--l >= 0) |
---|
401 | { |
---|
402 | mpn_sqr_n (tp, xp, mn); |
---|
403 | if (use_redc) |
---|
404 | redc (xp, mp, mn, invm, tp); |
---|
405 | else |
---|
406 | mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn); |
---|
407 | } |
---|
408 | mpn_mul_n (tp, xp, gp + mn * (c >> 1), mn); |
---|
409 | if (use_redc) |
---|
410 | redc (xp, mp, mn, invm, tp); |
---|
411 | else |
---|
412 | mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn); |
---|
413 | } |
---|
414 | else |
---|
415 | j = l; /* case c=0 */ |
---|
416 | while (--j >= 0) |
---|
417 | { |
---|
418 | mpn_sqr_n (tp, xp, mn); |
---|
419 | if (use_redc) |
---|
420 | redc (xp, mp, mn, invm, tp); |
---|
421 | else |
---|
422 | mpn_tdiv_qr (qp, xp, 0L, tp, 2 * mn, mp, mn); |
---|
423 | } |
---|
424 | } |
---|
425 | |
---|
426 | if (use_redc) |
---|
427 | { |
---|
428 | /* Convert back xx to xx/R^n. */ |
---|
429 | MPN_COPY (tp, xp, mn); |
---|
430 | MPN_ZERO (tp + mn, mn); |
---|
431 | redc (xp, mp, mn, invm, tp); |
---|
432 | if (mpn_cmp (xp, mp, mn) >= 0) |
---|
433 | mpn_sub_n (xp, xp, mp, mn); |
---|
434 | } |
---|
435 | else |
---|
436 | { |
---|
437 | if (m_zero_cnt != 0) |
---|
438 | { |
---|
439 | mp_limb_t cy; |
---|
440 | cy = mpn_lshift (tp, xp, mn, m_zero_cnt); |
---|
441 | tp[mn] = cy; |
---|
442 | mpn_tdiv_qr (qp, xp, 0L, tp, mn + (cy != 0), mp, mn); |
---|
443 | mpn_rshift (xp, xp, mn, m_zero_cnt); |
---|
444 | } |
---|
445 | } |
---|
446 | xn = mn; |
---|
447 | MPN_NORMALIZE (xp, xn); |
---|
448 | |
---|
449 | if ((ep[0] & 1) && SIZ(b) < 0 && xn != 0) |
---|
450 | { |
---|
451 | mp = PTR(m); /* want original, unnormalized m */ |
---|
452 | mpn_sub (xp, mp, mn, xp, xn); |
---|
453 | xn = mn; |
---|
454 | MPN_NORMALIZE (xp, xn); |
---|
455 | } |
---|
456 | MPZ_REALLOC (r, xn); |
---|
457 | SIZ (r) = xn; |
---|
458 | MPN_COPY (PTR(r), xp, xn); |
---|
459 | |
---|
460 | __GMP_FREE_FUNC_LIMBS (gp, K / 2 * mn); |
---|
461 | TMP_FREE (marker); |
---|
462 | } |
---|