1 | /* _gmp_rand (rp, state, nbits) -- Generate a random bitstream of |
---|
2 | length NBITS in RP. RP must have enough space allocated to hold |
---|
3 | NBITS. |
---|
4 | |
---|
5 | Copyright 1999, 2000, 2001, 2002, 2004 Free Software Foundation, Inc. |
---|
6 | |
---|
7 | This file is part of the GNU MP Library. |
---|
8 | |
---|
9 | The GNU MP Library is free software; you can redistribute it and/or modify |
---|
10 | it under the terms of the GNU Lesser General Public License as published by |
---|
11 | the Free Software Foundation; either version 2.1 of the License, or (at your |
---|
12 | option) any later version. |
---|
13 | |
---|
14 | The GNU MP Library is distributed in the hope that it will be useful, but |
---|
15 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
16 | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public |
---|
17 | License for more details. |
---|
18 | |
---|
19 | You should have received a copy of the GNU Lesser General Public License |
---|
20 | along with the GNU MP Library; see the file COPYING.LIB. If not, write to |
---|
21 | the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, |
---|
22 | MA 02111-1307, USA. */ |
---|
23 | |
---|
24 | #include "gmp.h" |
---|
25 | #include "gmp-impl.h" |
---|
26 | #include "longlong.h" |
---|
27 | |
---|
28 | /* For linear congruential (LC), we use one of algorithms (1) or (2). |
---|
29 | (gmp-3.0 uses algorithm (1) with 'm' as a power of 2.) |
---|
30 | |
---|
31 | LC algorithm (1). |
---|
32 | |
---|
33 | X = (aX + c) mod m |
---|
34 | |
---|
35 | [D. Knuth, "The Art of Computer Programming: Volume 2, Seminumerical Algorithms", |
---|
36 | Third Edition, Addison Wesley, 1998, pp. 184-185.] |
---|
37 | |
---|
38 | X is the seed and the result |
---|
39 | a is chosen so that |
---|
40 | a mod 8 = 5 [3.2.1.2] and [3.2.1.3] |
---|
41 | .01m < a < .99m |
---|
42 | its binary or decimal digits is not a simple, regular pattern |
---|
43 | it has no large quotients when Euclid's algorithm is used to find |
---|
44 | gcd(a, m) [3.3.3] |
---|
45 | it passes the spectral test [3.3.4] |
---|
46 | it passes several tests of [3.3.2] |
---|
47 | c has no factor in common with m (c=1 or c=a can be good) |
---|
48 | m is large (2^30) |
---|
49 | is a power of 2 [3.2.1.1] |
---|
50 | |
---|
51 | The least significant digits of the generated number are not very |
---|
52 | random. It should be regarded as a random fraction X/m. To get a |
---|
53 | random integer between 0 and n-1, multiply X/m by n and truncate. |
---|
54 | (Don't use X/n [ex 3.4.1-3]) |
---|
55 | |
---|
56 | The ``accuracy'' in t dimensions is one part in ``the t'th root of m'' [3.3.4]. |
---|
57 | |
---|
58 | Don't generate more than about m/1000 numbers without changing a, c, or m. |
---|
59 | |
---|
60 | The sequence length depends on chosen a,c,m. |
---|
61 | |
---|
62 | |
---|
63 | LC algorithm (2). |
---|
64 | |
---|
65 | X = a * (X mod q) - r * (long) (X/q) |
---|
66 | if X<0 then X+=m |
---|
67 | |
---|
68 | [Knuth, pp. 185-186.] |
---|
69 | |
---|
70 | X is the seed and the result |
---|
71 | as a seed is nonzero and less than m |
---|
72 | a is a primitive root of m (which means that a^2 <= m) |
---|
73 | q is (long) m / a |
---|
74 | r is m mod a |
---|
75 | m is a prime number near the largest easily computed integer |
---|
76 | |
---|
77 | which gives |
---|
78 | |
---|
79 | X = a * (X % ((long) m / a)) - |
---|
80 | (M % a) * ((long) (X / ((long) m / a))) |
---|
81 | |
---|
82 | Since m is prime, the least-significant bits of X are just as random as |
---|
83 | the most-significant bits. */ |
---|
84 | |
---|
85 | |
---|
86 | /* lc (rp, state) -- Generate next number in LC sequence. Return the |
---|
87 | number of valid bits in the result. NOTE: If 'm' is a power of 2 |
---|
88 | (m2exp != 0), discard the lower half of the result. */ |
---|
89 | |
---|
90 | static |
---|
91 | unsigned long int |
---|
92 | lc (mp_ptr rp, gmp_randstate_t rstate) |
---|
93 | { |
---|
94 | mp_ptr tp, seedp, ap; |
---|
95 | mp_size_t ta; |
---|
96 | mp_size_t tn, seedn, an; |
---|
97 | unsigned long int m2exp; |
---|
98 | mp_limb_t c; |
---|
99 | TMP_DECL (mark); |
---|
100 | |
---|
101 | /* Zero out the limbs _gmp_rand below expects us to write. This is a hack |
---|
102 | to cover the seedn==0 case, and in case tn < cn due to small "a" and |
---|
103 | seed. (Incidentally, the "return m2exp" for the seedn==0 case is |
---|
104 | bogus, _gmp_rand ignores the return, it expects and looks at just |
---|
105 | "m2exp/2" always.) */ |
---|
106 | { |
---|
107 | int chunk_nbits = rstate->_mp_algdata._mp_lc->_mp_m2exp / 2; |
---|
108 | mp_size_t cn = (chunk_nbits + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS; |
---|
109 | MPN_ZERO (rp, cn); |
---|
110 | } |
---|
111 | |
---|
112 | m2exp = rstate->_mp_algdata._mp_lc->_mp_m2exp; |
---|
113 | |
---|
114 | /* The code below assumes the mod part is a power of two. Make sure |
---|
115 | that is the case. */ |
---|
116 | ASSERT_ALWAYS (m2exp != 0); |
---|
117 | |
---|
118 | c = (mp_limb_t) rstate->_mp_algdata._mp_lc->_mp_c; |
---|
119 | |
---|
120 | seedp = PTR (rstate->_mp_seed); |
---|
121 | seedn = SIZ (rstate->_mp_seed); |
---|
122 | |
---|
123 | ap = PTR (rstate->_mp_algdata._mp_lc->_mp_a); |
---|
124 | an = SIZ (rstate->_mp_algdata._mp_lc->_mp_a); |
---|
125 | |
---|
126 | if (seedn == 0 || an == 0) |
---|
127 | { |
---|
128 | /* Seed is 0. Result is C % M. Assume table is sensibly stored, |
---|
129 | with C smaller than M*/ |
---|
130 | *rp = c; |
---|
131 | |
---|
132 | /* Discard the lower m2exp/2 bits of result. */ |
---|
133 | { |
---|
134 | unsigned long int bits = m2exp / 2; |
---|
135 | mp_size_t xn = bits / GMP_NUMB_BITS; |
---|
136 | if (bits >= GMP_LIMB_BITS) |
---|
137 | *rp = 0; |
---|
138 | else |
---|
139 | *rp >>= bits; |
---|
140 | } |
---|
141 | |
---|
142 | *seedp = c; |
---|
143 | SIZ (rstate->_mp_seed) = 1; |
---|
144 | return m2exp; |
---|
145 | } |
---|
146 | |
---|
147 | /* Allocate temporary storage. Let there be room for calculation of |
---|
148 | (A * seed + C) % M, or M if bigger than that. */ |
---|
149 | |
---|
150 | TMP_MARK (mark); |
---|
151 | ta = an + seedn + 1; |
---|
152 | tp = (mp_ptr) TMP_ALLOC (ta * BYTES_PER_MP_LIMB); |
---|
153 | |
---|
154 | /* t = a * seed */ |
---|
155 | if (seedn >= an) |
---|
156 | mpn_mul (tp, seedp, seedn, ap, an); |
---|
157 | else |
---|
158 | mpn_mul (tp, ap, an, seedp, seedn); |
---|
159 | tn = an + seedn; |
---|
160 | |
---|
161 | /* t = t + c */ |
---|
162 | tp[tn] = 0; /* sentinel, stops MPN_INCR_U */ |
---|
163 | MPN_INCR_U (tp, tn, c); |
---|
164 | |
---|
165 | if (tn > m2exp / GMP_NUMB_BITS) |
---|
166 | { |
---|
167 | /* t = t % m */ |
---|
168 | tp[m2exp / GMP_NUMB_BITS] &= ((mp_limb_t) 1 << m2exp % GMP_NUMB_BITS) - 1; |
---|
169 | tn = (m2exp + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS; |
---|
170 | } |
---|
171 | |
---|
172 | /* Save result as next seed. */ |
---|
173 | MPN_COPY (PTR (rstate->_mp_seed), tp, tn); |
---|
174 | SIZ (rstate->_mp_seed) = tn; |
---|
175 | |
---|
176 | { |
---|
177 | /* Discard the lower m2exp/2 bits of result. */ |
---|
178 | unsigned long int bits = m2exp / 2; |
---|
179 | mp_size_t xn = bits / GMP_NUMB_BITS; |
---|
180 | |
---|
181 | tn -= xn; |
---|
182 | if (tn > 0) |
---|
183 | { |
---|
184 | unsigned int cnt = bits % GMP_NUMB_BITS; |
---|
185 | if (cnt != 0) |
---|
186 | { |
---|
187 | mpn_rshift (tp, tp + xn, tn, cnt); |
---|
188 | MPN_COPY_INCR (rp, tp, xn + 1); |
---|
189 | } |
---|
190 | else /* Even limb boundary. */ |
---|
191 | MPN_COPY_INCR (rp, tp + xn, tn); |
---|
192 | } |
---|
193 | } |
---|
194 | |
---|
195 | TMP_FREE (mark); |
---|
196 | |
---|
197 | /* Return number of valid bits in the result. */ |
---|
198 | return (m2exp + 1) / 2; |
---|
199 | } |
---|
200 | |
---|
201 | #ifdef RAWRANDEBUG |
---|
202 | /* Set even bits to EVENBITS and odd bits to ! EVENBITS in RP. |
---|
203 | Number of bits is m2exp in state. */ |
---|
204 | /* FIXME: Remove. */ |
---|
205 | unsigned long int |
---|
206 | lc_test (mp_ptr rp, gmp_randstate_t s, const int evenbits) |
---|
207 | { |
---|
208 | unsigned long int rn, nbits; |
---|
209 | int f; |
---|
210 | |
---|
211 | nbits = s->_mp_algdata._mp_lc->_mp_m2exp / 2; |
---|
212 | rn = nbits / GMP_NUMB_BITS + (nbits % GMP_NUMB_BITS != 0); |
---|
213 | MPN_ZERO (rp, rn); |
---|
214 | |
---|
215 | for (f = 0; f < nbits; f++) |
---|
216 | { |
---|
217 | mpn_lshift (rp, rp, rn, 1); |
---|
218 | if (f % 2 == ! evenbits) |
---|
219 | rp[0] += 1; |
---|
220 | } |
---|
221 | |
---|
222 | return nbits; |
---|
223 | } |
---|
224 | #endif /* RAWRANDEBUG */ |
---|
225 | |
---|
226 | void |
---|
227 | _gmp_rand (mp_ptr rp, gmp_randstate_t rstate, unsigned long int nbits) |
---|
228 | { |
---|
229 | mp_size_t rn; /* Size of R. */ |
---|
230 | |
---|
231 | rn = (nbits + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS; |
---|
232 | |
---|
233 | switch (rstate->_mp_alg) |
---|
234 | { |
---|
235 | case GMP_RAND_ALG_LC: |
---|
236 | { |
---|
237 | unsigned long int rbitpos; |
---|
238 | int chunk_nbits; |
---|
239 | mp_ptr tp; |
---|
240 | mp_size_t tn; |
---|
241 | TMP_DECL (lcmark); |
---|
242 | |
---|
243 | TMP_MARK (lcmark); |
---|
244 | |
---|
245 | chunk_nbits = rstate->_mp_algdata._mp_lc->_mp_m2exp / 2; |
---|
246 | tn = (chunk_nbits + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS; |
---|
247 | |
---|
248 | tp = (mp_ptr) TMP_ALLOC (tn * BYTES_PER_MP_LIMB); |
---|
249 | |
---|
250 | rbitpos = 0; |
---|
251 | while (rbitpos + chunk_nbits <= nbits) |
---|
252 | { |
---|
253 | mp_ptr r2p = rp + rbitpos / GMP_NUMB_BITS; |
---|
254 | |
---|
255 | if (rbitpos % GMP_NUMB_BITS != 0) |
---|
256 | { |
---|
257 | mp_limb_t savelimb, rcy; |
---|
258 | /* Target of of new chunk is not bit aligned. Use temp space |
---|
259 | and align things by shifting it up. */ |
---|
260 | lc (tp, rstate); |
---|
261 | savelimb = r2p[0]; |
---|
262 | rcy = mpn_lshift (r2p, tp, tn, rbitpos % GMP_NUMB_BITS); |
---|
263 | r2p[0] |= savelimb; |
---|
264 | /* bogus */ if ((chunk_nbits % GMP_NUMB_BITS + rbitpos % GMP_NUMB_BITS) |
---|
265 | > GMP_NUMB_BITS) |
---|
266 | r2p[tn] = rcy; |
---|
267 | } |
---|
268 | else |
---|
269 | { |
---|
270 | /* Target of of new chunk is bit aligned. Let `lc' put bits |
---|
271 | directly into our target variable. */ |
---|
272 | lc (r2p, rstate); |
---|
273 | } |
---|
274 | rbitpos += chunk_nbits; |
---|
275 | } |
---|
276 | |
---|
277 | /* Handle last [0..chunk_nbits) bits. */ |
---|
278 | if (rbitpos != nbits) |
---|
279 | { |
---|
280 | mp_ptr r2p = rp + rbitpos / GMP_NUMB_BITS; |
---|
281 | int last_nbits = nbits - rbitpos; |
---|
282 | tn = (last_nbits + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS; |
---|
283 | lc (tp, rstate); |
---|
284 | if (rbitpos % GMP_NUMB_BITS != 0) |
---|
285 | { |
---|
286 | mp_limb_t savelimb, rcy; |
---|
287 | /* Target of of new chunk is not bit aligned. Use temp space |
---|
288 | and align things by shifting it up. */ |
---|
289 | savelimb = r2p[0]; |
---|
290 | rcy = mpn_lshift (r2p, tp, tn, rbitpos % GMP_NUMB_BITS); |
---|
291 | r2p[0] |= savelimb; |
---|
292 | if (rbitpos + tn * GMP_NUMB_BITS - rbitpos % GMP_NUMB_BITS < nbits) |
---|
293 | r2p[tn] = rcy; |
---|
294 | } |
---|
295 | else |
---|
296 | { |
---|
297 | MPN_COPY (r2p, tp, tn); |
---|
298 | } |
---|
299 | /* Mask off top bits if needed. */ |
---|
300 | if (nbits % GMP_NUMB_BITS != 0) |
---|
301 | rp[nbits / GMP_NUMB_BITS] |
---|
302 | &= ~ ((~(mp_limb_t) 0) << nbits % GMP_NUMB_BITS); |
---|
303 | } |
---|
304 | |
---|
305 | TMP_FREE (lcmark); |
---|
306 | break; |
---|
307 | } |
---|
308 | |
---|
309 | default: |
---|
310 | ASSERT (0); |
---|
311 | break; |
---|
312 | } |
---|
313 | } |
---|