1 | /* |
---|
2 | * jfdctflt.c |
---|
3 | * |
---|
4 | * Copyright (C) 1994-1996, Thomas G. Lane. |
---|
5 | * This file is part of the Independent JPEG Group's software. |
---|
6 | * For conditions of distribution and use, see the accompanying README file. |
---|
7 | * |
---|
8 | * This file contains a floating-point implementation of the |
---|
9 | * forward DCT (Discrete Cosine Transform). |
---|
10 | * |
---|
11 | * This implementation should be more accurate than either of the integer |
---|
12 | * DCT implementations. However, it may not give the same results on all |
---|
13 | * machines because of differences in roundoff behavior. Speed will depend |
---|
14 | * on the hardware's floating point capacity. |
---|
15 | * |
---|
16 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
---|
17 | * on each column. Direct algorithms are also available, but they are |
---|
18 | * much more complex and seem not to be any faster when reduced to code. |
---|
19 | * |
---|
20 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for |
---|
21 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
---|
22 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell |
---|
23 | * JPEG textbook (see REFERENCES section in file README). The following code |
---|
24 | * is based directly on figure 4-8 in P&M. |
---|
25 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is |
---|
26 | * possible to arrange the computation so that many of the multiplies are |
---|
27 | * simple scalings of the final outputs. These multiplies can then be |
---|
28 | * folded into the multiplications or divisions by the JPEG quantization |
---|
29 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds |
---|
30 | * to be done in the DCT itself. |
---|
31 | * The primary disadvantage of this method is that with a fixed-point |
---|
32 | * implementation, accuracy is lost due to imprecise representation of the |
---|
33 | * scaled quantization values. However, that problem does not arise if |
---|
34 | * we use floating point arithmetic. |
---|
35 | */ |
---|
36 | |
---|
37 | #define JPEG_INTERNALS |
---|
38 | #include "jinclude.h" |
---|
39 | #include "jpeglib.h" |
---|
40 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
---|
41 | |
---|
42 | #ifdef DCT_FLOAT_SUPPORTED |
---|
43 | |
---|
44 | |
---|
45 | /* |
---|
46 | * This module is specialized to the case DCTSIZE = 8. |
---|
47 | */ |
---|
48 | |
---|
49 | #if DCTSIZE != 8 |
---|
50 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
---|
51 | #endif |
---|
52 | |
---|
53 | |
---|
54 | /* |
---|
55 | * Perform the forward DCT on one block of samples. |
---|
56 | */ |
---|
57 | |
---|
58 | GLOBAL(void) |
---|
59 | jpeg_fdct_float (FAST_FLOAT * data) |
---|
60 | { |
---|
61 | FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
---|
62 | FAST_FLOAT tmp10, tmp11, tmp12, tmp13; |
---|
63 | FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; |
---|
64 | FAST_FLOAT *dataptr; |
---|
65 | int ctr; |
---|
66 | |
---|
67 | /* Pass 1: process rows. */ |
---|
68 | |
---|
69 | dataptr = data; |
---|
70 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
---|
71 | tmp0 = dataptr[0] + dataptr[7]; |
---|
72 | tmp7 = dataptr[0] - dataptr[7]; |
---|
73 | tmp1 = dataptr[1] + dataptr[6]; |
---|
74 | tmp6 = dataptr[1] - dataptr[6]; |
---|
75 | tmp2 = dataptr[2] + dataptr[5]; |
---|
76 | tmp5 = dataptr[2] - dataptr[5]; |
---|
77 | tmp3 = dataptr[3] + dataptr[4]; |
---|
78 | tmp4 = dataptr[3] - dataptr[4]; |
---|
79 | |
---|
80 | /* Even part */ |
---|
81 | |
---|
82 | tmp10 = tmp0 + tmp3; /* phase 2 */ |
---|
83 | tmp13 = tmp0 - tmp3; |
---|
84 | tmp11 = tmp1 + tmp2; |
---|
85 | tmp12 = tmp1 - tmp2; |
---|
86 | |
---|
87 | dataptr[0] = tmp10 + tmp11; /* phase 3 */ |
---|
88 | dataptr[4] = tmp10 - tmp11; |
---|
89 | |
---|
90 | z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ |
---|
91 | dataptr[2] = tmp13 + z1; /* phase 5 */ |
---|
92 | dataptr[6] = tmp13 - z1; |
---|
93 | |
---|
94 | /* Odd part */ |
---|
95 | |
---|
96 | tmp10 = tmp4 + tmp5; /* phase 2 */ |
---|
97 | tmp11 = tmp5 + tmp6; |
---|
98 | tmp12 = tmp6 + tmp7; |
---|
99 | |
---|
100 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ |
---|
101 | z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ |
---|
102 | z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ |
---|
103 | z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ |
---|
104 | z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ |
---|
105 | |
---|
106 | z11 = tmp7 + z3; /* phase 5 */ |
---|
107 | z13 = tmp7 - z3; |
---|
108 | |
---|
109 | dataptr[5] = z13 + z2; /* phase 6 */ |
---|
110 | dataptr[3] = z13 - z2; |
---|
111 | dataptr[1] = z11 + z4; |
---|
112 | dataptr[7] = z11 - z4; |
---|
113 | |
---|
114 | dataptr += DCTSIZE; /* advance pointer to next row */ |
---|
115 | } |
---|
116 | |
---|
117 | /* Pass 2: process columns. */ |
---|
118 | |
---|
119 | dataptr = data; |
---|
120 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
---|
121 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
---|
122 | tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
---|
123 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
---|
124 | tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
---|
125 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
---|
126 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
---|
127 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
---|
128 | tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
---|
129 | |
---|
130 | /* Even part */ |
---|
131 | |
---|
132 | tmp10 = tmp0 + tmp3; /* phase 2 */ |
---|
133 | tmp13 = tmp0 - tmp3; |
---|
134 | tmp11 = tmp1 + tmp2; |
---|
135 | tmp12 = tmp1 - tmp2; |
---|
136 | |
---|
137 | dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ |
---|
138 | dataptr[DCTSIZE*4] = tmp10 - tmp11; |
---|
139 | |
---|
140 | z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ |
---|
141 | dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ |
---|
142 | dataptr[DCTSIZE*6] = tmp13 - z1; |
---|
143 | |
---|
144 | /* Odd part */ |
---|
145 | |
---|
146 | tmp10 = tmp4 + tmp5; /* phase 2 */ |
---|
147 | tmp11 = tmp5 + tmp6; |
---|
148 | tmp12 = tmp6 + tmp7; |
---|
149 | |
---|
150 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ |
---|
151 | z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ |
---|
152 | z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ |
---|
153 | z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ |
---|
154 | z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ |
---|
155 | |
---|
156 | z11 = tmp7 + z3; /* phase 5 */ |
---|
157 | z13 = tmp7 - z3; |
---|
158 | |
---|
159 | dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ |
---|
160 | dataptr[DCTSIZE*3] = z13 - z2; |
---|
161 | dataptr[DCTSIZE*1] = z11 + z4; |
---|
162 | dataptr[DCTSIZE*7] = z11 - z4; |
---|
163 | |
---|
164 | dataptr++; /* advance pointer to next column */ |
---|
165 | } |
---|
166 | } |
---|
167 | |
---|
168 | #endif /* DCT_FLOAT_SUPPORTED */ |
---|