source: trunk/third/jpeg/jfdctint.c @ 15227

Revision 15227, 10.8 KB checked in by ghudson, 24 years ago (diff)
This commit was generated by cvs2svn to compensate for changes in r15226, which included commits to RCS files with non-trunk default branches.
Line 
1/*
2 * jfdctint.c
3 *
4 * Copyright (C) 1991-1996, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains a slow-but-accurate integer implementation of the
9 * forward DCT (Discrete Cosine Transform).
10 *
11 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
12 * on each column.  Direct algorithms are also available, but they are
13 * much more complex and seem not to be any faster when reduced to code.
14 *
15 * This implementation is based on an algorithm described in
16 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
17 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
18 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
19 * The primary algorithm described there uses 11 multiplies and 29 adds.
20 * We use their alternate method with 12 multiplies and 32 adds.
21 * The advantage of this method is that no data path contains more than one
22 * multiplication; this allows a very simple and accurate implementation in
23 * scaled fixed-point arithmetic, with a minimal number of shifts.
24 */
25
26#define JPEG_INTERNALS
27#include "jinclude.h"
28#include "jpeglib.h"
29#include "jdct.h"               /* Private declarations for DCT subsystem */
30
31#ifdef DCT_ISLOW_SUPPORTED
32
33
34/*
35 * This module is specialized to the case DCTSIZE = 8.
36 */
37
38#if DCTSIZE != 8
39  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
40#endif
41
42
43/*
44 * The poop on this scaling stuff is as follows:
45 *
46 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
47 * larger than the true DCT outputs.  The final outputs are therefore
48 * a factor of N larger than desired; since N=8 this can be cured by
49 * a simple right shift at the end of the algorithm.  The advantage of
50 * this arrangement is that we save two multiplications per 1-D DCT,
51 * because the y0 and y4 outputs need not be divided by sqrt(N).
52 * In the IJG code, this factor of 8 is removed by the quantization step
53 * (in jcdctmgr.c), NOT in this module.
54 *
55 * We have to do addition and subtraction of the integer inputs, which
56 * is no problem, and multiplication by fractional constants, which is
57 * a problem to do in integer arithmetic.  We multiply all the constants
58 * by CONST_SCALE and convert them to integer constants (thus retaining
59 * CONST_BITS bits of precision in the constants).  After doing a
60 * multiplication we have to divide the product by CONST_SCALE, with proper
61 * rounding, to produce the correct output.  This division can be done
62 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
63 * as long as possible so that partial sums can be added together with
64 * full fractional precision.
65 *
66 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
67 * they are represented to better-than-integral precision.  These outputs
68 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
69 * with the recommended scaling.  (For 12-bit sample data, the intermediate
70 * array is INT32 anyway.)
71 *
72 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
73 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
74 * shows that the values given below are the most effective.
75 */
76
77#if BITS_IN_JSAMPLE == 8
78#define CONST_BITS  13
79#define PASS1_BITS  2
80#else
81#define CONST_BITS  13
82#define PASS1_BITS  1           /* lose a little precision to avoid overflow */
83#endif
84
85/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
86 * causing a lot of useless floating-point operations at run time.
87 * To get around this we use the following pre-calculated constants.
88 * If you change CONST_BITS you may want to add appropriate values.
89 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
90 */
91
92#if CONST_BITS == 13
93#define FIX_0_298631336  ((INT32)  2446)        /* FIX(0.298631336) */
94#define FIX_0_390180644  ((INT32)  3196)        /* FIX(0.390180644) */
95#define FIX_0_541196100  ((INT32)  4433)        /* FIX(0.541196100) */
96#define FIX_0_765366865  ((INT32)  6270)        /* FIX(0.765366865) */
97#define FIX_0_899976223  ((INT32)  7373)        /* FIX(0.899976223) */
98#define FIX_1_175875602  ((INT32)  9633)        /* FIX(1.175875602) */
99#define FIX_1_501321110  ((INT32)  12299)       /* FIX(1.501321110) */
100#define FIX_1_847759065  ((INT32)  15137)       /* FIX(1.847759065) */
101#define FIX_1_961570560  ((INT32)  16069)       /* FIX(1.961570560) */
102#define FIX_2_053119869  ((INT32)  16819)       /* FIX(2.053119869) */
103#define FIX_2_562915447  ((INT32)  20995)       /* FIX(2.562915447) */
104#define FIX_3_072711026  ((INT32)  25172)       /* FIX(3.072711026) */
105#else
106#define FIX_0_298631336  FIX(0.298631336)
107#define FIX_0_390180644  FIX(0.390180644)
108#define FIX_0_541196100  FIX(0.541196100)
109#define FIX_0_765366865  FIX(0.765366865)
110#define FIX_0_899976223  FIX(0.899976223)
111#define FIX_1_175875602  FIX(1.175875602)
112#define FIX_1_501321110  FIX(1.501321110)
113#define FIX_1_847759065  FIX(1.847759065)
114#define FIX_1_961570560  FIX(1.961570560)
115#define FIX_2_053119869  FIX(2.053119869)
116#define FIX_2_562915447  FIX(2.562915447)
117#define FIX_3_072711026  FIX(3.072711026)
118#endif
119
120
121/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
122 * For 8-bit samples with the recommended scaling, all the variable
123 * and constant values involved are no more than 16 bits wide, so a
124 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
125 * For 12-bit samples, a full 32-bit multiplication will be needed.
126 */
127
128#if BITS_IN_JSAMPLE == 8
129#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
130#else
131#define MULTIPLY(var,const)  ((var) * (const))
132#endif
133
134
135/*
136 * Perform the forward DCT on one block of samples.
137 */
138
139GLOBAL(void)
140jpeg_fdct_islow (DCTELEM * data)
141{
142  INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
143  INT32 tmp10, tmp11, tmp12, tmp13;
144  INT32 z1, z2, z3, z4, z5;
145  DCTELEM *dataptr;
146  int ctr;
147  SHIFT_TEMPS
148
149  /* Pass 1: process rows. */
150  /* Note results are scaled up by sqrt(8) compared to a true DCT; */
151  /* furthermore, we scale the results by 2**PASS1_BITS. */
152
153  dataptr = data;
154  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
155    tmp0 = dataptr[0] + dataptr[7];
156    tmp7 = dataptr[0] - dataptr[7];
157    tmp1 = dataptr[1] + dataptr[6];
158    tmp6 = dataptr[1] - dataptr[6];
159    tmp2 = dataptr[2] + dataptr[5];
160    tmp5 = dataptr[2] - dataptr[5];
161    tmp3 = dataptr[3] + dataptr[4];
162    tmp4 = dataptr[3] - dataptr[4];
163   
164    /* Even part per LL&M figure 1 --- note that published figure is faulty;
165     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
166     */
167   
168    tmp10 = tmp0 + tmp3;
169    tmp13 = tmp0 - tmp3;
170    tmp11 = tmp1 + tmp2;
171    tmp12 = tmp1 - tmp2;
172   
173    dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
174    dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
175   
176    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
177    dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
178                                   CONST_BITS-PASS1_BITS);
179    dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
180                                   CONST_BITS-PASS1_BITS);
181   
182    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
183     * cK represents cos(K*pi/16).
184     * i0..i3 in the paper are tmp4..tmp7 here.
185     */
186   
187    z1 = tmp4 + tmp7;
188    z2 = tmp5 + tmp6;
189    z3 = tmp4 + tmp6;
190    z4 = tmp5 + tmp7;
191    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
192   
193    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
194    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
195    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
196    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
197    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
198    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
199    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
200    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
201   
202    z3 += z5;
203    z4 += z5;
204   
205    dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
206    dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
207    dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
208    dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
209   
210    dataptr += DCTSIZE;         /* advance pointer to next row */
211  }
212
213  /* Pass 2: process columns.
214   * We remove the PASS1_BITS scaling, but leave the results scaled up
215   * by an overall factor of 8.
216   */
217
218  dataptr = data;
219  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
220    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
221    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
222    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
223    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
224    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
225    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
226    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
227    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
228   
229    /* Even part per LL&M figure 1 --- note that published figure is faulty;
230     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
231     */
232   
233    tmp10 = tmp0 + tmp3;
234    tmp13 = tmp0 - tmp3;
235    tmp11 = tmp1 + tmp2;
236    tmp12 = tmp1 - tmp2;
237   
238    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
239    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
240   
241    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
242    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
243                                           CONST_BITS+PASS1_BITS);
244    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
245                                           CONST_BITS+PASS1_BITS);
246   
247    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
248     * cK represents cos(K*pi/16).
249     * i0..i3 in the paper are tmp4..tmp7 here.
250     */
251   
252    z1 = tmp4 + tmp7;
253    z2 = tmp5 + tmp6;
254    z3 = tmp4 + tmp6;
255    z4 = tmp5 + tmp7;
256    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
257   
258    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
259    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
260    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
261    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
262    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
263    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
264    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
265    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
266   
267    z3 += z5;
268    z4 += z5;
269   
270    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
271                                           CONST_BITS+PASS1_BITS);
272    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
273                                           CONST_BITS+PASS1_BITS);
274    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
275                                           CONST_BITS+PASS1_BITS);
276    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
277                                           CONST_BITS+PASS1_BITS);
278   
279    dataptr++;                  /* advance pointer to next column */
280  }
281}
282
283#endif /* DCT_ISLOW_SUPPORTED */
Note: See TracBrowser for help on using the repository browser.