1 | /* |
---|
2 | * jidctflt.c |
---|
3 | * |
---|
4 | * Copyright (C) 1994-1998, Thomas G. Lane. |
---|
5 | * This file is part of the Independent JPEG Group's software. |
---|
6 | * For conditions of distribution and use, see the accompanying README file. |
---|
7 | * |
---|
8 | * This file contains a floating-point implementation of the |
---|
9 | * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
---|
10 | * must also perform dequantization of the input coefficients. |
---|
11 | * |
---|
12 | * This implementation should be more accurate than either of the integer |
---|
13 | * IDCT implementations. However, it may not give the same results on all |
---|
14 | * machines because of differences in roundoff behavior. Speed will depend |
---|
15 | * on the hardware's floating point capacity. |
---|
16 | * |
---|
17 | * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
---|
18 | * on each row (or vice versa, but it's more convenient to emit a row at |
---|
19 | * a time). Direct algorithms are also available, but they are much more |
---|
20 | * complex and seem not to be any faster when reduced to code. |
---|
21 | * |
---|
22 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for |
---|
23 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
---|
24 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell |
---|
25 | * JPEG textbook (see REFERENCES section in file README). The following code |
---|
26 | * is based directly on figure 4-8 in P&M. |
---|
27 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is |
---|
28 | * possible to arrange the computation so that many of the multiplies are |
---|
29 | * simple scalings of the final outputs. These multiplies can then be |
---|
30 | * folded into the multiplications or divisions by the JPEG quantization |
---|
31 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds |
---|
32 | * to be done in the DCT itself. |
---|
33 | * The primary disadvantage of this method is that with a fixed-point |
---|
34 | * implementation, accuracy is lost due to imprecise representation of the |
---|
35 | * scaled quantization values. However, that problem does not arise if |
---|
36 | * we use floating point arithmetic. |
---|
37 | */ |
---|
38 | |
---|
39 | #define JPEG_INTERNALS |
---|
40 | #include "jinclude.h" |
---|
41 | #include "jpeglib.h" |
---|
42 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
---|
43 | |
---|
44 | #ifdef DCT_FLOAT_SUPPORTED |
---|
45 | |
---|
46 | |
---|
47 | /* |
---|
48 | * This module is specialized to the case DCTSIZE = 8. |
---|
49 | */ |
---|
50 | |
---|
51 | #if DCTSIZE != 8 |
---|
52 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
---|
53 | #endif |
---|
54 | |
---|
55 | |
---|
56 | /* Dequantize a coefficient by multiplying it by the multiplier-table |
---|
57 | * entry; produce a float result. |
---|
58 | */ |
---|
59 | |
---|
60 | #define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval)) |
---|
61 | |
---|
62 | |
---|
63 | /* |
---|
64 | * Perform dequantization and inverse DCT on one block of coefficients. |
---|
65 | */ |
---|
66 | |
---|
67 | GLOBAL(void) |
---|
68 | jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
---|
69 | JCOEFPTR coef_block, |
---|
70 | JSAMPARRAY output_buf, JDIMENSION output_col) |
---|
71 | { |
---|
72 | FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
---|
73 | FAST_FLOAT tmp10, tmp11, tmp12, tmp13; |
---|
74 | FAST_FLOAT z5, z10, z11, z12, z13; |
---|
75 | JCOEFPTR inptr; |
---|
76 | FLOAT_MULT_TYPE * quantptr; |
---|
77 | FAST_FLOAT * wsptr; |
---|
78 | JSAMPROW outptr; |
---|
79 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
---|
80 | int ctr; |
---|
81 | FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ |
---|
82 | SHIFT_TEMPS |
---|
83 | |
---|
84 | /* Pass 1: process columns from input, store into work array. */ |
---|
85 | |
---|
86 | inptr = coef_block; |
---|
87 | quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; |
---|
88 | wsptr = workspace; |
---|
89 | for (ctr = DCTSIZE; ctr > 0; ctr--) { |
---|
90 | /* Due to quantization, we will usually find that many of the input |
---|
91 | * coefficients are zero, especially the AC terms. We can exploit this |
---|
92 | * by short-circuiting the IDCT calculation for any column in which all |
---|
93 | * the AC terms are zero. In that case each output is equal to the |
---|
94 | * DC coefficient (with scale factor as needed). |
---|
95 | * With typical images and quantization tables, half or more of the |
---|
96 | * column DCT calculations can be simplified this way. |
---|
97 | */ |
---|
98 | |
---|
99 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
---|
100 | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
---|
101 | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
---|
102 | inptr[DCTSIZE*7] == 0) { |
---|
103 | /* AC terms all zero */ |
---|
104 | FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
---|
105 | |
---|
106 | wsptr[DCTSIZE*0] = dcval; |
---|
107 | wsptr[DCTSIZE*1] = dcval; |
---|
108 | wsptr[DCTSIZE*2] = dcval; |
---|
109 | wsptr[DCTSIZE*3] = dcval; |
---|
110 | wsptr[DCTSIZE*4] = dcval; |
---|
111 | wsptr[DCTSIZE*5] = dcval; |
---|
112 | wsptr[DCTSIZE*6] = dcval; |
---|
113 | wsptr[DCTSIZE*7] = dcval; |
---|
114 | |
---|
115 | inptr++; /* advance pointers to next column */ |
---|
116 | quantptr++; |
---|
117 | wsptr++; |
---|
118 | continue; |
---|
119 | } |
---|
120 | |
---|
121 | /* Even part */ |
---|
122 | |
---|
123 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
---|
124 | tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
---|
125 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
---|
126 | tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
---|
127 | |
---|
128 | tmp10 = tmp0 + tmp2; /* phase 3 */ |
---|
129 | tmp11 = tmp0 - tmp2; |
---|
130 | |
---|
131 | tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
---|
132 | tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ |
---|
133 | |
---|
134 | tmp0 = tmp10 + tmp13; /* phase 2 */ |
---|
135 | tmp3 = tmp10 - tmp13; |
---|
136 | tmp1 = tmp11 + tmp12; |
---|
137 | tmp2 = tmp11 - tmp12; |
---|
138 | |
---|
139 | /* Odd part */ |
---|
140 | |
---|
141 | tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
---|
142 | tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
---|
143 | tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
---|
144 | tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
---|
145 | |
---|
146 | z13 = tmp6 + tmp5; /* phase 6 */ |
---|
147 | z10 = tmp6 - tmp5; |
---|
148 | z11 = tmp4 + tmp7; |
---|
149 | z12 = tmp4 - tmp7; |
---|
150 | |
---|
151 | tmp7 = z11 + z13; /* phase 5 */ |
---|
152 | tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ |
---|
153 | |
---|
154 | z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ |
---|
155 | tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ |
---|
156 | tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ |
---|
157 | |
---|
158 | tmp6 = tmp12 - tmp7; /* phase 2 */ |
---|
159 | tmp5 = tmp11 - tmp6; |
---|
160 | tmp4 = tmp10 + tmp5; |
---|
161 | |
---|
162 | wsptr[DCTSIZE*0] = tmp0 + tmp7; |
---|
163 | wsptr[DCTSIZE*7] = tmp0 - tmp7; |
---|
164 | wsptr[DCTSIZE*1] = tmp1 + tmp6; |
---|
165 | wsptr[DCTSIZE*6] = tmp1 - tmp6; |
---|
166 | wsptr[DCTSIZE*2] = tmp2 + tmp5; |
---|
167 | wsptr[DCTSIZE*5] = tmp2 - tmp5; |
---|
168 | wsptr[DCTSIZE*4] = tmp3 + tmp4; |
---|
169 | wsptr[DCTSIZE*3] = tmp3 - tmp4; |
---|
170 | |
---|
171 | inptr++; /* advance pointers to next column */ |
---|
172 | quantptr++; |
---|
173 | wsptr++; |
---|
174 | } |
---|
175 | |
---|
176 | /* Pass 2: process rows from work array, store into output array. */ |
---|
177 | /* Note that we must descale the results by a factor of 8 == 2**3. */ |
---|
178 | |
---|
179 | wsptr = workspace; |
---|
180 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
---|
181 | outptr = output_buf[ctr] + output_col; |
---|
182 | /* Rows of zeroes can be exploited in the same way as we did with columns. |
---|
183 | * However, the column calculation has created many nonzero AC terms, so |
---|
184 | * the simplification applies less often (typically 5% to 10% of the time). |
---|
185 | * And testing floats for zero is relatively expensive, so we don't bother. |
---|
186 | */ |
---|
187 | |
---|
188 | /* Even part */ |
---|
189 | |
---|
190 | tmp10 = wsptr[0] + wsptr[4]; |
---|
191 | tmp11 = wsptr[0] - wsptr[4]; |
---|
192 | |
---|
193 | tmp13 = wsptr[2] + wsptr[6]; |
---|
194 | tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13; |
---|
195 | |
---|
196 | tmp0 = tmp10 + tmp13; |
---|
197 | tmp3 = tmp10 - tmp13; |
---|
198 | tmp1 = tmp11 + tmp12; |
---|
199 | tmp2 = tmp11 - tmp12; |
---|
200 | |
---|
201 | /* Odd part */ |
---|
202 | |
---|
203 | z13 = wsptr[5] + wsptr[3]; |
---|
204 | z10 = wsptr[5] - wsptr[3]; |
---|
205 | z11 = wsptr[1] + wsptr[7]; |
---|
206 | z12 = wsptr[1] - wsptr[7]; |
---|
207 | |
---|
208 | tmp7 = z11 + z13; |
---|
209 | tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); |
---|
210 | |
---|
211 | z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ |
---|
212 | tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */ |
---|
213 | tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */ |
---|
214 | |
---|
215 | tmp6 = tmp12 - tmp7; |
---|
216 | tmp5 = tmp11 - tmp6; |
---|
217 | tmp4 = tmp10 + tmp5; |
---|
218 | |
---|
219 | /* Final output stage: scale down by a factor of 8 and range-limit */ |
---|
220 | |
---|
221 | outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3) |
---|
222 | & RANGE_MASK]; |
---|
223 | outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3) |
---|
224 | & RANGE_MASK]; |
---|
225 | outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3) |
---|
226 | & RANGE_MASK]; |
---|
227 | outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3) |
---|
228 | & RANGE_MASK]; |
---|
229 | outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3) |
---|
230 | & RANGE_MASK]; |
---|
231 | outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3) |
---|
232 | & RANGE_MASK]; |
---|
233 | outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3) |
---|
234 | & RANGE_MASK]; |
---|
235 | outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3) |
---|
236 | & RANGE_MASK]; |
---|
237 | |
---|
238 | wsptr += DCTSIZE; /* advance pointer to next row */ |
---|
239 | } |
---|
240 | } |
---|
241 | |
---|
242 | #endif /* DCT_FLOAT_SUPPORTED */ |
---|