source: trunk/third/libart_lgpl/art_affine.c @ 18256

Revision 18256, 11.8 KB checked in by ghudson, 22 years ago (diff)
This commit was generated by cvs2svn to compensate for changes in r18255, which included commits to RCS files with non-trunk default branches.
Line 
1/* Libart_LGPL - library of basic graphic primitives
2 * Copyright (C) 1998 Raph Levien
3 *
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
8 *
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12 * Library General Public License for more details.
13 *
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 */
19
20/* Simple manipulations with affine transformations */
21
22#include "config.h"
23#include "art_affine.h"
24#include "art_misc.h" /* for M_PI */
25
26#include <math.h>
27#include <stdio.h> /* for sprintf */
28#include <string.h> /* for strcpy */
29
30
31/* According to a strict interpretation of the libart structure, this
32   routine should go into its own module, art_point_affine.  However,
33   it's only two lines of code, and it can be argued that it is one of
34   the natural basic functions of an affine transformation.
35*/
36
37/**
38 * art_affine_point: Do an affine transformation of a point.
39 * @dst: Where the result point is stored.
40 * @src: The original point.
41 @ @affine: The affine transformation.
42 **/
43void
44art_affine_point (ArtPoint *dst, const ArtPoint *src,
45                  const double affine[6])
46{
47  double x, y;
48
49  x = src->x;
50  y = src->y;
51  dst->x = x * affine[0] + y * affine[2] + affine[4];
52  dst->y = x * affine[1] + y * affine[3] + affine[5];
53}
54
55/**
56 * art_affine_invert: Find the inverse of an affine transformation.
57 * @dst: Where the resulting affine is stored.
58 * @src: The original affine transformation.
59 *
60 * All non-degenerate affine transforms are invertible. If the original
61 * affine is degenerate or nearly so, expect numerical instability and
62 * very likely core dumps on Alpha and other fp-picky architectures.
63 * Otherwise, @dst multiplied with @src, or @src multiplied with @dst
64 * will be (to within roundoff error) the identity affine.
65 **/
66void
67art_affine_invert (double dst[6], const double src[6])
68{
69  double r_det;
70
71  r_det = 1.0 / (src[0] * src[3] - src[1] * src[2]);
72  dst[0] = src[3] * r_det;
73  dst[1] = -src[1] * r_det;
74  dst[2] = -src[2] * r_det;
75  dst[3] = src[0] * r_det;
76  dst[4] = -src[4] * dst[0] - src[5] * dst[2];
77  dst[5] = -src[4] * dst[1] - src[5] * dst[3];
78}
79
80/**
81 * art_affine_flip: Flip an affine transformation horizontally and/or vertically.
82 * @dst_affine: Where the resulting affine is stored.
83 * @src_affine: The original affine transformation.
84 * @horiz: Whether or not to flip horizontally.
85 * @vert: Whether or not to flip horizontally.
86 *
87 * Flips the affine transform. FALSE for both @horiz and @vert implements
88 * a simple copy operation. TRUE for both @horiz and @vert is a
89 * 180 degree rotation. It is ok for @src_affine and @dst_affine to
90 * be equal pointers.
91 **/
92void
93art_affine_flip (double dst_affine[6], const double src_affine[6], int horz, int vert)
94{
95  dst_affine[0] = horz ? - src_affine[0] : src_affine[0];
96  dst_affine[1] = horz ? - src_affine[1] : src_affine[1];
97  dst_affine[2] = vert ? - src_affine[2] : src_affine[2];
98  dst_affine[3] = vert ? - src_affine[3] : src_affine[3];
99  dst_affine[4] = horz ? - src_affine[4] : src_affine[4];
100  dst_affine[5] = vert ? - src_affine[5] : src_affine[5];
101}
102
103#define EPSILON 1e-6
104
105/* It's ridiculous I have to write this myself. This is hardcoded to
106   six digits of precision, which is good enough for PostScript.
107
108   The return value is the number of characters (i.e. strlen (str)).
109   It is no more than 12. */
110static int
111art_ftoa (char str[80], double x)
112{
113  char *p = str;
114  int i, j;
115
116  p = str;
117  if (fabs (x) < EPSILON / 2)
118    {
119      strcpy (str, "0");
120      return 1;
121    }
122  if (x < 0)
123    {
124      *p++ = '-';
125      x = -x;
126    }
127  if ((int)floor ((x + EPSILON / 2) < 1))
128    {
129      *p++ = '0';
130      *p++ = '.';
131      i = sprintf (p, "%06d", (int)floor ((x + EPSILON / 2) * 1e6));
132      while (i && p[i - 1] == '0')
133        i--;
134      if (i == 0)
135        i--;
136      p += i;
137    }
138  else if (x < 1e6)
139    {
140      i = sprintf (p, "%d", (int)floor (x + EPSILON / 2));
141      p += i;
142      if (i < 6)
143        {
144          int ix;
145
146          *p++ = '.';
147          x -= floor (x + EPSILON / 2);
148          for (j = i; j < 6; j++)
149            x *= 10;
150          ix = floor (x + 0.5);
151
152          for (j = 0; j < i; j++)
153            ix *= 10;
154
155          /* A cheap hack, this routine can round wrong for fractions
156             near one. */
157          if (ix == 1000000)
158            ix = 999999;
159
160          sprintf (p, "%06d", ix);
161          i = 6 - i;
162          while (i && p[i - 1] == '0')
163            i--;
164          if (i == 0)
165            i--;
166          p += i;
167        }
168    }
169  else
170    p += sprintf (p, "%g", x);
171
172  *p = '\0';
173  return p - str;
174}
175
176
177
178#include <stdlib.h>
179/**
180 * art_affine_to_string: Convert affine transformation to concise PostScript string representation.
181 * @str: Where to store the resulting string.
182 * @src: The affine transform.
183 *
184 * Converts an affine transform into a bit of PostScript code that
185 * implements the transform. Special cases of scaling, rotation, and
186 * translation are detected, and the corresponding PostScript
187 * operators used (this greatly aids understanding the output
188 * generated). The identity transform is mapped to the null string.
189 **/
190void
191art_affine_to_string (char str[128], const double src[6])
192{
193  char tmp[80];
194  int i, ix;
195
196#if 0
197  for (i = 0; i < 1000; i++)
198    {
199      double d = rand () * .1 / RAND_MAX;
200      art_ftoa (tmp, d);
201      printf ("%g %f %s\n", d, d, tmp);
202    }
203#endif
204  if (fabs (src[4]) < EPSILON && fabs (src[5]) < EPSILON)
205    {
206      /* could be scale or rotate */
207      if (fabs (src[1]) < EPSILON && fabs (src[2]) < EPSILON)
208        {
209          /* scale */
210          if (fabs (src[0] - 1) < EPSILON && fabs (src[3] - 1) < EPSILON)
211            {
212              /* identity transform */
213              str[0] = '\0';
214              return;
215            }
216          else
217            {
218              ix = 0;
219              ix += art_ftoa (str + ix, src[0]);
220              str[ix++] = ' ';
221              ix += art_ftoa (str + ix, src[3]);
222              strcpy (str + ix, " scale");
223              return;
224            }
225        }
226      else
227        {
228          /* could be rotate */
229          if (fabs (src[0] - src[3]) < EPSILON &&
230              fabs (src[1] + src[2]) < EPSILON &&
231              fabs (src[0] * src[0] + src[1] * src[1] - 1) < 2 * EPSILON)
232            {
233              double theta;
234
235              theta = (180 / M_PI) * atan2 (src[1], src[0]);
236              art_ftoa (tmp, theta);
237              sprintf (str, "%s rotate", tmp);
238              return;
239            }
240        }
241    }
242  else
243    {
244      /* could be translate */
245      if (fabs (src[0] - 1) < EPSILON && fabs (src[1]) < EPSILON &&
246          fabs (src[2]) < EPSILON && fabs (src[3] - 1) < EPSILON)
247        {
248          ix = 0;
249          ix += art_ftoa (str + ix, src[4]);
250          str[ix++] = ' ';
251          ix += art_ftoa (str + ix, src[5]);
252          strcpy (str + ix, " translate");
253          return;
254        }
255    }
256
257  ix = 0;
258  str[ix++] = '[';
259  str[ix++] = ' ';
260  for (i = 0; i < 6; i++)
261    {
262      ix += art_ftoa (str + ix, src[i]);
263      str[ix++] = ' ';
264    }
265  strcpy (str + ix, "] concat");
266}
267
268/**
269 * art_affine_multiply: Multiply two affine transformation matrices.
270 * @dst: Where to store the result.
271 * @src1: The first affine transform to multiply.
272 * @src2: The second affine transform to multiply.
273 *
274 * Multiplies two affine transforms together, i.e. the resulting @dst
275 * is equivalent to doing first @src1 then @src2. Note that the
276 * PostScript concat operator multiplies on the left, i.e.  "M concat"
277 * is equivalent to "CTM = multiply (M, CTM)";
278 *
279 * It is safe to call this function with @dst equal to @src1 or @src2.
280 **/
281void
282art_affine_multiply (double dst[6], const double src1[6], const double src2[6])
283{
284  double d0, d1, d2, d3, d4, d5;
285
286  d0 = src1[0] * src2[0] + src1[1] * src2[2];
287  d1 = src1[0] * src2[1] + src1[1] * src2[3];
288  d2 = src1[2] * src2[0] + src1[3] * src2[2];
289  d3 = src1[2] * src2[1] + src1[3] * src2[3];
290  d4 = src1[4] * src2[0] + src1[5] * src2[2] + src2[4];
291  d5 = src1[4] * src2[1] + src1[5] * src2[3] + src2[5];
292  dst[0] = d0;
293  dst[1] = d1;
294  dst[2] = d2;
295  dst[3] = d3;
296  dst[4] = d4;
297  dst[5] = d5;
298}
299
300/**
301 * art_affine_identity: Set up the identity matrix.
302 * @dst: Where to store the resulting affine transform.
303 *
304 * Sets up an identity matrix.
305 **/
306void
307art_affine_identity (double dst[6])
308{
309  dst[0] = 1;
310  dst[1] = 0;
311  dst[2] = 0;
312  dst[3] = 1;
313  dst[4] = 0;
314  dst[5] = 0;
315}
316
317
318/**
319 * art_affine_scale: Set up a scaling matrix.
320 * @dst: Where to store the resulting affine transform.
321 * @sx: X scale factor.
322 * @sy: Y scale factor.
323 *
324 * Sets up a scaling matrix.
325 **/
326void
327art_affine_scale (double dst[6], double sx, double sy)
328{
329  dst[0] = sx;
330  dst[1] = 0;
331  dst[2] = 0;
332  dst[3] = sy;
333  dst[4] = 0;
334  dst[5] = 0;
335}
336
337/**
338 * art_affine_rotate: Set up a rotation affine transform.
339 * @dst: Where to store the resulting affine transform.
340 * @theta: Rotation angle in degrees.
341 *
342 * Sets up a rotation matrix. In the standard libart coordinate
343 * system, in which increasing y moves downward, this is a
344 * counterclockwise rotation. In the standard PostScript coordinate
345 * system, which is reversed in the y direction, it is a clockwise
346 * rotation.
347 **/
348void
349art_affine_rotate (double dst[6], double theta)
350{
351  double s, c;
352
353  s = sin (theta * M_PI / 180.0);
354  c = cos (theta * M_PI / 180.0);
355  dst[0] = c;
356  dst[1] = s;
357  dst[2] = -s;
358  dst[3] = c;
359  dst[4] = 0;
360  dst[5] = 0;
361}
362
363/**
364 * art_affine_shear: Set up a shearing matrix.
365 * @dst: Where to store the resulting affine transform.
366 * @theta: Shear angle in degrees.
367 *
368 * Sets up a shearing matrix. In the standard libart coordinate system
369 * and a small value for theta, || becomes \\. Horizontal lines remain
370 * unchanged.
371 **/
372void
373art_affine_shear (double dst[6], double theta)
374{
375  double t;
376
377  t = tan (theta * M_PI / 180.0);
378  dst[0] = 1;
379  dst[1] = 0;
380  dst[2] = t;
381  dst[3] = 1;
382  dst[4] = 0;
383  dst[5] = 0;
384}
385
386/**
387 * art_affine_translate: Set up a translation matrix.
388 * @dst: Where to store the resulting affine transform.
389 * @tx: X translation amount.
390 * @tx: Y translation amount.
391 *
392 * Sets up a translation matrix.
393 **/
394void
395art_affine_translate (double dst[6], double tx, double ty)
396{
397  dst[0] = 1;
398  dst[1] = 0;
399  dst[2] = 0;
400  dst[3] = 1;
401  dst[4] = tx;
402  dst[5] = ty;
403}
404
405/**
406 * art_affine_expansion: Find the affine's expansion factor.
407 * @src: The affine transformation.
408 *
409 * Finds the expansion factor, i.e. the square root of the factor
410 * by which the affine transform affects area. In an affine transform
411 * composed of scaling, rotation, shearing, and translation, returns
412 * the amount of scaling.
413 *
414 * Return value: the expansion factor.
415 **/
416double
417art_affine_expansion (const double src[6])
418{
419  return sqrt (fabs (src[0] * src[3] - src[1] * src[2]));
420}
421
422/**
423 * art_affine_rectilinear: Determine whether the affine transformation is rectilinear.
424 * @src: The original affine transformation.
425 *
426 * Determines whether @src is rectilinear, i.e.  grid-aligned
427 * rectangles are transformed to other grid-aligned rectangles.  The
428 * implementation has epsilon-tolerance for roundoff errors.
429 *
430 * Return value: TRUE if @src is rectilinear.
431 **/
432int
433art_affine_rectilinear (const double src[6])
434{
435  return ((fabs (src[1]) < EPSILON && fabs (src[2]) < EPSILON) ||
436          (fabs (src[0]) < EPSILON && fabs (src[3]) < EPSILON));
437}
438
439/**
440 * art_affine_equal: Determine whether two affine transformations are equal.
441 * @matrix1: An affine transformation.
442 * @matrix2: Another affine transformation.
443 *
444 * Determines whether @matrix1 and @matrix2 are equal, with
445 * epsilon-tolerance for roundoff errors.
446 *
447 * Return value: TRUE if @matrix1 and @matrix2 are equal.
448 **/
449int
450art_affine_equal (double matrix1[6], double matrix2[6])
451{
452  return (fabs (matrix1[0] - matrix2[0]) < EPSILON &&
453          fabs (matrix1[1] - matrix2[1]) < EPSILON &&
454          fabs (matrix1[2] - matrix2[2]) < EPSILON &&
455          fabs (matrix1[3] - matrix2[3]) < EPSILON &&
456          fabs (matrix1[4] - matrix2[4]) < EPSILON &&
457          fabs (matrix1[5] - matrix2[5]) < EPSILON);
458}
Note: See TracBrowser for help on using the repository browser.