1 | /* Libart_LGPL - library of basic graphic primitives |
---|
2 | * Copyright (C) 1998 Raph Levien |
---|
3 | * |
---|
4 | * This library is free software; you can redistribute it and/or |
---|
5 | * modify it under the terms of the GNU Library General Public |
---|
6 | * License as published by the Free Software Foundation; either |
---|
7 | * version 2 of the License, or (at your option) any later version. |
---|
8 | * |
---|
9 | * This library is distributed in the hope that it will be useful, |
---|
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
12 | * Library General Public License for more details. |
---|
13 | * |
---|
14 | * You should have received a copy of the GNU Library General Public |
---|
15 | * License along with this library; if not, write to the |
---|
16 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
---|
17 | * Boston, MA 02111-1307, USA. |
---|
18 | */ |
---|
19 | |
---|
20 | /* Simple manipulations with affine transformations */ |
---|
21 | |
---|
22 | #include "config.h" |
---|
23 | #include "art_affine.h" |
---|
24 | #include "art_misc.h" /* for M_PI */ |
---|
25 | |
---|
26 | #include <math.h> |
---|
27 | #include <stdio.h> /* for sprintf */ |
---|
28 | #include <string.h> /* for strcpy */ |
---|
29 | |
---|
30 | |
---|
31 | /* According to a strict interpretation of the libart structure, this |
---|
32 | routine should go into its own module, art_point_affine. However, |
---|
33 | it's only two lines of code, and it can be argued that it is one of |
---|
34 | the natural basic functions of an affine transformation. |
---|
35 | */ |
---|
36 | |
---|
37 | /** |
---|
38 | * art_affine_point: Do an affine transformation of a point. |
---|
39 | * @dst: Where the result point is stored. |
---|
40 | * @src: The original point. |
---|
41 | @ @affine: The affine transformation. |
---|
42 | **/ |
---|
43 | void |
---|
44 | art_affine_point (ArtPoint *dst, const ArtPoint *src, |
---|
45 | const double affine[6]) |
---|
46 | { |
---|
47 | double x, y; |
---|
48 | |
---|
49 | x = src->x; |
---|
50 | y = src->y; |
---|
51 | dst->x = x * affine[0] + y * affine[2] + affine[4]; |
---|
52 | dst->y = x * affine[1] + y * affine[3] + affine[5]; |
---|
53 | } |
---|
54 | |
---|
55 | /** |
---|
56 | * art_affine_invert: Find the inverse of an affine transformation. |
---|
57 | * @dst: Where the resulting affine is stored. |
---|
58 | * @src: The original affine transformation. |
---|
59 | * |
---|
60 | * All non-degenerate affine transforms are invertible. If the original |
---|
61 | * affine is degenerate or nearly so, expect numerical instability and |
---|
62 | * very likely core dumps on Alpha and other fp-picky architectures. |
---|
63 | * Otherwise, @dst multiplied with @src, or @src multiplied with @dst |
---|
64 | * will be (to within roundoff error) the identity affine. |
---|
65 | **/ |
---|
66 | void |
---|
67 | art_affine_invert (double dst[6], const double src[6]) |
---|
68 | { |
---|
69 | double r_det; |
---|
70 | |
---|
71 | r_det = 1.0 / (src[0] * src[3] - src[1] * src[2]); |
---|
72 | dst[0] = src[3] * r_det; |
---|
73 | dst[1] = -src[1] * r_det; |
---|
74 | dst[2] = -src[2] * r_det; |
---|
75 | dst[3] = src[0] * r_det; |
---|
76 | dst[4] = -src[4] * dst[0] - src[5] * dst[2]; |
---|
77 | dst[5] = -src[4] * dst[1] - src[5] * dst[3]; |
---|
78 | } |
---|
79 | |
---|
80 | /** |
---|
81 | * art_affine_flip: Flip an affine transformation horizontally and/or vertically. |
---|
82 | * @dst_affine: Where the resulting affine is stored. |
---|
83 | * @src_affine: The original affine transformation. |
---|
84 | * @horiz: Whether or not to flip horizontally. |
---|
85 | * @vert: Whether or not to flip horizontally. |
---|
86 | * |
---|
87 | * Flips the affine transform. FALSE for both @horiz and @vert implements |
---|
88 | * a simple copy operation. TRUE for both @horiz and @vert is a |
---|
89 | * 180 degree rotation. It is ok for @src_affine and @dst_affine to |
---|
90 | * be equal pointers. |
---|
91 | **/ |
---|
92 | void |
---|
93 | art_affine_flip (double dst_affine[6], const double src_affine[6], int horz, int vert) |
---|
94 | { |
---|
95 | dst_affine[0] = horz ? - src_affine[0] : src_affine[0]; |
---|
96 | dst_affine[1] = horz ? - src_affine[1] : src_affine[1]; |
---|
97 | dst_affine[2] = vert ? - src_affine[2] : src_affine[2]; |
---|
98 | dst_affine[3] = vert ? - src_affine[3] : src_affine[3]; |
---|
99 | dst_affine[4] = horz ? - src_affine[4] : src_affine[4]; |
---|
100 | dst_affine[5] = vert ? - src_affine[5] : src_affine[5]; |
---|
101 | } |
---|
102 | |
---|
103 | #define EPSILON 1e-6 |
---|
104 | |
---|
105 | /* It's ridiculous I have to write this myself. This is hardcoded to |
---|
106 | six digits of precision, which is good enough for PostScript. |
---|
107 | |
---|
108 | The return value is the number of characters (i.e. strlen (str)). |
---|
109 | It is no more than 12. */ |
---|
110 | static int |
---|
111 | art_ftoa (char str[80], double x) |
---|
112 | { |
---|
113 | char *p = str; |
---|
114 | int i, j; |
---|
115 | |
---|
116 | p = str; |
---|
117 | if (fabs (x) < EPSILON / 2) |
---|
118 | { |
---|
119 | strcpy (str, "0"); |
---|
120 | return 1; |
---|
121 | } |
---|
122 | if (x < 0) |
---|
123 | { |
---|
124 | *p++ = '-'; |
---|
125 | x = -x; |
---|
126 | } |
---|
127 | if ((int)floor ((x + EPSILON / 2) < 1)) |
---|
128 | { |
---|
129 | *p++ = '0'; |
---|
130 | *p++ = '.'; |
---|
131 | i = sprintf (p, "%06d", (int)floor ((x + EPSILON / 2) * 1e6)); |
---|
132 | while (i && p[i - 1] == '0') |
---|
133 | i--; |
---|
134 | if (i == 0) |
---|
135 | i--; |
---|
136 | p += i; |
---|
137 | } |
---|
138 | else if (x < 1e6) |
---|
139 | { |
---|
140 | i = sprintf (p, "%d", (int)floor (x + EPSILON / 2)); |
---|
141 | p += i; |
---|
142 | if (i < 6) |
---|
143 | { |
---|
144 | int ix; |
---|
145 | |
---|
146 | *p++ = '.'; |
---|
147 | x -= floor (x + EPSILON / 2); |
---|
148 | for (j = i; j < 6; j++) |
---|
149 | x *= 10; |
---|
150 | ix = floor (x + 0.5); |
---|
151 | |
---|
152 | for (j = 0; j < i; j++) |
---|
153 | ix *= 10; |
---|
154 | |
---|
155 | /* A cheap hack, this routine can round wrong for fractions |
---|
156 | near one. */ |
---|
157 | if (ix == 1000000) |
---|
158 | ix = 999999; |
---|
159 | |
---|
160 | sprintf (p, "%06d", ix); |
---|
161 | i = 6 - i; |
---|
162 | while (i && p[i - 1] == '0') |
---|
163 | i--; |
---|
164 | if (i == 0) |
---|
165 | i--; |
---|
166 | p += i; |
---|
167 | } |
---|
168 | } |
---|
169 | else |
---|
170 | p += sprintf (p, "%g", x); |
---|
171 | |
---|
172 | *p = '\0'; |
---|
173 | return p - str; |
---|
174 | } |
---|
175 | |
---|
176 | |
---|
177 | |
---|
178 | #include <stdlib.h> |
---|
179 | /** |
---|
180 | * art_affine_to_string: Convert affine transformation to concise PostScript string representation. |
---|
181 | * @str: Where to store the resulting string. |
---|
182 | * @src: The affine transform. |
---|
183 | * |
---|
184 | * Converts an affine transform into a bit of PostScript code that |
---|
185 | * implements the transform. Special cases of scaling, rotation, and |
---|
186 | * translation are detected, and the corresponding PostScript |
---|
187 | * operators used (this greatly aids understanding the output |
---|
188 | * generated). The identity transform is mapped to the null string. |
---|
189 | **/ |
---|
190 | void |
---|
191 | art_affine_to_string (char str[128], const double src[6]) |
---|
192 | { |
---|
193 | char tmp[80]; |
---|
194 | int i, ix; |
---|
195 | |
---|
196 | #if 0 |
---|
197 | for (i = 0; i < 1000; i++) |
---|
198 | { |
---|
199 | double d = rand () * .1 / RAND_MAX; |
---|
200 | art_ftoa (tmp, d); |
---|
201 | printf ("%g %f %s\n", d, d, tmp); |
---|
202 | } |
---|
203 | #endif |
---|
204 | if (fabs (src[4]) < EPSILON && fabs (src[5]) < EPSILON) |
---|
205 | { |
---|
206 | /* could be scale or rotate */ |
---|
207 | if (fabs (src[1]) < EPSILON && fabs (src[2]) < EPSILON) |
---|
208 | { |
---|
209 | /* scale */ |
---|
210 | if (fabs (src[0] - 1) < EPSILON && fabs (src[3] - 1) < EPSILON) |
---|
211 | { |
---|
212 | /* identity transform */ |
---|
213 | str[0] = '\0'; |
---|
214 | return; |
---|
215 | } |
---|
216 | else |
---|
217 | { |
---|
218 | ix = 0; |
---|
219 | ix += art_ftoa (str + ix, src[0]); |
---|
220 | str[ix++] = ' '; |
---|
221 | ix += art_ftoa (str + ix, src[3]); |
---|
222 | strcpy (str + ix, " scale"); |
---|
223 | return; |
---|
224 | } |
---|
225 | } |
---|
226 | else |
---|
227 | { |
---|
228 | /* could be rotate */ |
---|
229 | if (fabs (src[0] - src[3]) < EPSILON && |
---|
230 | fabs (src[1] + src[2]) < EPSILON && |
---|
231 | fabs (src[0] * src[0] + src[1] * src[1] - 1) < 2 * EPSILON) |
---|
232 | { |
---|
233 | double theta; |
---|
234 | |
---|
235 | theta = (180 / M_PI) * atan2 (src[1], src[0]); |
---|
236 | art_ftoa (tmp, theta); |
---|
237 | sprintf (str, "%s rotate", tmp); |
---|
238 | return; |
---|
239 | } |
---|
240 | } |
---|
241 | } |
---|
242 | else |
---|
243 | { |
---|
244 | /* could be translate */ |
---|
245 | if (fabs (src[0] - 1) < EPSILON && fabs (src[1]) < EPSILON && |
---|
246 | fabs (src[2]) < EPSILON && fabs (src[3] - 1) < EPSILON) |
---|
247 | { |
---|
248 | ix = 0; |
---|
249 | ix += art_ftoa (str + ix, src[4]); |
---|
250 | str[ix++] = ' '; |
---|
251 | ix += art_ftoa (str + ix, src[5]); |
---|
252 | strcpy (str + ix, " translate"); |
---|
253 | return; |
---|
254 | } |
---|
255 | } |
---|
256 | |
---|
257 | ix = 0; |
---|
258 | str[ix++] = '['; |
---|
259 | str[ix++] = ' '; |
---|
260 | for (i = 0; i < 6; i++) |
---|
261 | { |
---|
262 | ix += art_ftoa (str + ix, src[i]); |
---|
263 | str[ix++] = ' '; |
---|
264 | } |
---|
265 | strcpy (str + ix, "] concat"); |
---|
266 | } |
---|
267 | |
---|
268 | /** |
---|
269 | * art_affine_multiply: Multiply two affine transformation matrices. |
---|
270 | * @dst: Where to store the result. |
---|
271 | * @src1: The first affine transform to multiply. |
---|
272 | * @src2: The second affine transform to multiply. |
---|
273 | * |
---|
274 | * Multiplies two affine transforms together, i.e. the resulting @dst |
---|
275 | * is equivalent to doing first @src1 then @src2. Note that the |
---|
276 | * PostScript concat operator multiplies on the left, i.e. "M concat" |
---|
277 | * is equivalent to "CTM = multiply (M, CTM)"; |
---|
278 | * |
---|
279 | * It is safe to call this function with @dst equal to @src1 or @src2. |
---|
280 | **/ |
---|
281 | void |
---|
282 | art_affine_multiply (double dst[6], const double src1[6], const double src2[6]) |
---|
283 | { |
---|
284 | double d0, d1, d2, d3, d4, d5; |
---|
285 | |
---|
286 | d0 = src1[0] * src2[0] + src1[1] * src2[2]; |
---|
287 | d1 = src1[0] * src2[1] + src1[1] * src2[3]; |
---|
288 | d2 = src1[2] * src2[0] + src1[3] * src2[2]; |
---|
289 | d3 = src1[2] * src2[1] + src1[3] * src2[3]; |
---|
290 | d4 = src1[4] * src2[0] + src1[5] * src2[2] + src2[4]; |
---|
291 | d5 = src1[4] * src2[1] + src1[5] * src2[3] + src2[5]; |
---|
292 | dst[0] = d0; |
---|
293 | dst[1] = d1; |
---|
294 | dst[2] = d2; |
---|
295 | dst[3] = d3; |
---|
296 | dst[4] = d4; |
---|
297 | dst[5] = d5; |
---|
298 | } |
---|
299 | |
---|
300 | /** |
---|
301 | * art_affine_identity: Set up the identity matrix. |
---|
302 | * @dst: Where to store the resulting affine transform. |
---|
303 | * |
---|
304 | * Sets up an identity matrix. |
---|
305 | **/ |
---|
306 | void |
---|
307 | art_affine_identity (double dst[6]) |
---|
308 | { |
---|
309 | dst[0] = 1; |
---|
310 | dst[1] = 0; |
---|
311 | dst[2] = 0; |
---|
312 | dst[3] = 1; |
---|
313 | dst[4] = 0; |
---|
314 | dst[5] = 0; |
---|
315 | } |
---|
316 | |
---|
317 | |
---|
318 | /** |
---|
319 | * art_affine_scale: Set up a scaling matrix. |
---|
320 | * @dst: Where to store the resulting affine transform. |
---|
321 | * @sx: X scale factor. |
---|
322 | * @sy: Y scale factor. |
---|
323 | * |
---|
324 | * Sets up a scaling matrix. |
---|
325 | **/ |
---|
326 | void |
---|
327 | art_affine_scale (double dst[6], double sx, double sy) |
---|
328 | { |
---|
329 | dst[0] = sx; |
---|
330 | dst[1] = 0; |
---|
331 | dst[2] = 0; |
---|
332 | dst[3] = sy; |
---|
333 | dst[4] = 0; |
---|
334 | dst[5] = 0; |
---|
335 | } |
---|
336 | |
---|
337 | /** |
---|
338 | * art_affine_rotate: Set up a rotation affine transform. |
---|
339 | * @dst: Where to store the resulting affine transform. |
---|
340 | * @theta: Rotation angle in degrees. |
---|
341 | * |
---|
342 | * Sets up a rotation matrix. In the standard libart coordinate |
---|
343 | * system, in which increasing y moves downward, this is a |
---|
344 | * counterclockwise rotation. In the standard PostScript coordinate |
---|
345 | * system, which is reversed in the y direction, it is a clockwise |
---|
346 | * rotation. |
---|
347 | **/ |
---|
348 | void |
---|
349 | art_affine_rotate (double dst[6], double theta) |
---|
350 | { |
---|
351 | double s, c; |
---|
352 | |
---|
353 | s = sin (theta * M_PI / 180.0); |
---|
354 | c = cos (theta * M_PI / 180.0); |
---|
355 | dst[0] = c; |
---|
356 | dst[1] = s; |
---|
357 | dst[2] = -s; |
---|
358 | dst[3] = c; |
---|
359 | dst[4] = 0; |
---|
360 | dst[5] = 0; |
---|
361 | } |
---|
362 | |
---|
363 | /** |
---|
364 | * art_affine_shear: Set up a shearing matrix. |
---|
365 | * @dst: Where to store the resulting affine transform. |
---|
366 | * @theta: Shear angle in degrees. |
---|
367 | * |
---|
368 | * Sets up a shearing matrix. In the standard libart coordinate system |
---|
369 | * and a small value for theta, || becomes \\. Horizontal lines remain |
---|
370 | * unchanged. |
---|
371 | **/ |
---|
372 | void |
---|
373 | art_affine_shear (double dst[6], double theta) |
---|
374 | { |
---|
375 | double t; |
---|
376 | |
---|
377 | t = tan (theta * M_PI / 180.0); |
---|
378 | dst[0] = 1; |
---|
379 | dst[1] = 0; |
---|
380 | dst[2] = t; |
---|
381 | dst[3] = 1; |
---|
382 | dst[4] = 0; |
---|
383 | dst[5] = 0; |
---|
384 | } |
---|
385 | |
---|
386 | /** |
---|
387 | * art_affine_translate: Set up a translation matrix. |
---|
388 | * @dst: Where to store the resulting affine transform. |
---|
389 | * @tx: X translation amount. |
---|
390 | * @tx: Y translation amount. |
---|
391 | * |
---|
392 | * Sets up a translation matrix. |
---|
393 | **/ |
---|
394 | void |
---|
395 | art_affine_translate (double dst[6], double tx, double ty) |
---|
396 | { |
---|
397 | dst[0] = 1; |
---|
398 | dst[1] = 0; |
---|
399 | dst[2] = 0; |
---|
400 | dst[3] = 1; |
---|
401 | dst[4] = tx; |
---|
402 | dst[5] = ty; |
---|
403 | } |
---|
404 | |
---|
405 | /** |
---|
406 | * art_affine_expansion: Find the affine's expansion factor. |
---|
407 | * @src: The affine transformation. |
---|
408 | * |
---|
409 | * Finds the expansion factor, i.e. the square root of the factor |
---|
410 | * by which the affine transform affects area. In an affine transform |
---|
411 | * composed of scaling, rotation, shearing, and translation, returns |
---|
412 | * the amount of scaling. |
---|
413 | * |
---|
414 | * Return value: the expansion factor. |
---|
415 | **/ |
---|
416 | double |
---|
417 | art_affine_expansion (const double src[6]) |
---|
418 | { |
---|
419 | return sqrt (fabs (src[0] * src[3] - src[1] * src[2])); |
---|
420 | } |
---|
421 | |
---|
422 | /** |
---|
423 | * art_affine_rectilinear: Determine whether the affine transformation is rectilinear. |
---|
424 | * @src: The original affine transformation. |
---|
425 | * |
---|
426 | * Determines whether @src is rectilinear, i.e. grid-aligned |
---|
427 | * rectangles are transformed to other grid-aligned rectangles. The |
---|
428 | * implementation has epsilon-tolerance for roundoff errors. |
---|
429 | * |
---|
430 | * Return value: TRUE if @src is rectilinear. |
---|
431 | **/ |
---|
432 | int |
---|
433 | art_affine_rectilinear (const double src[6]) |
---|
434 | { |
---|
435 | return ((fabs (src[1]) < EPSILON && fabs (src[2]) < EPSILON) || |
---|
436 | (fabs (src[0]) < EPSILON && fabs (src[3]) < EPSILON)); |
---|
437 | } |
---|
438 | |
---|
439 | /** |
---|
440 | * art_affine_equal: Determine whether two affine transformations are equal. |
---|
441 | * @matrix1: An affine transformation. |
---|
442 | * @matrix2: Another affine transformation. |
---|
443 | * |
---|
444 | * Determines whether @matrix1 and @matrix2 are equal, with |
---|
445 | * epsilon-tolerance for roundoff errors. |
---|
446 | * |
---|
447 | * Return value: TRUE if @matrix1 and @matrix2 are equal. |
---|
448 | **/ |
---|
449 | int |
---|
450 | art_affine_equal (double matrix1[6], double matrix2[6]) |
---|
451 | { |
---|
452 | return (fabs (matrix1[0] - matrix2[0]) < EPSILON && |
---|
453 | fabs (matrix1[1] - matrix2[1]) < EPSILON && |
---|
454 | fabs (matrix1[2] - matrix2[2]) < EPSILON && |
---|
455 | fabs (matrix1[3] - matrix2[3]) < EPSILON && |
---|
456 | fabs (matrix1[4] - matrix2[4]) < EPSILON && |
---|
457 | fabs (matrix1[5] - matrix2[5]) < EPSILON); |
---|
458 | } |
---|