1 | /* Libart_LGPL - library of basic graphic primitives |
---|
2 | * Copyright (C) 1998-2000 Raph Levien |
---|
3 | * |
---|
4 | * This library is free software; you can redistribute it and/or |
---|
5 | * modify it under the terms of the GNU Library General Public |
---|
6 | * License as published by the Free Software Foundation; either |
---|
7 | * version 2 of the License, or (at your option) any later version. |
---|
8 | * |
---|
9 | * This library is distributed in the hope that it will be useful, |
---|
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
12 | * Library General Public License for more details. |
---|
13 | * |
---|
14 | * You should have received a copy of the GNU Library General Public |
---|
15 | * License along with this library; if not, write to the |
---|
16 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
---|
17 | * Boston, MA 02111-1307, USA. |
---|
18 | */ |
---|
19 | |
---|
20 | |
---|
21 | #include "config.h" |
---|
22 | #include "art_svp_vpath_stroke.h" |
---|
23 | |
---|
24 | #include <stdlib.h> |
---|
25 | #include <math.h> |
---|
26 | |
---|
27 | #include "art_misc.h" |
---|
28 | |
---|
29 | #include "art_vpath.h" |
---|
30 | #include "art_svp.h" |
---|
31 | #ifdef ART_USE_NEW_INTERSECTOR |
---|
32 | #include "art_svp_intersect.h" |
---|
33 | #else |
---|
34 | #include "art_svp_wind.h" |
---|
35 | #endif |
---|
36 | #include "art_svp_vpath.h" |
---|
37 | |
---|
38 | #define EPSILON 1e-6 |
---|
39 | #define EPSILON_2 1e-12 |
---|
40 | |
---|
41 | #define yes_OPTIMIZE_INNER |
---|
42 | |
---|
43 | /* Render an arc segment starting at (xc + x0, yc + y0) to (xc + x1, |
---|
44 | yc + y1), centered at (xc, yc), and with given radius. Both x0^2 + |
---|
45 | y0^2 and x1^2 + y1^2 should be equal to radius^2. |
---|
46 | |
---|
47 | A positive value of radius means curve to the left, negative means |
---|
48 | curve to the right. |
---|
49 | */ |
---|
50 | static void |
---|
51 | art_svp_vpath_stroke_arc (ArtVpath **p_vpath, int *pn, int *pn_max, |
---|
52 | double xc, double yc, |
---|
53 | double x0, double y0, |
---|
54 | double x1, double y1, |
---|
55 | double radius, |
---|
56 | double flatness) |
---|
57 | { |
---|
58 | double theta; |
---|
59 | double th_0, th_1; |
---|
60 | int n_pts; |
---|
61 | int i; |
---|
62 | double aradius; |
---|
63 | |
---|
64 | aradius = fabs (radius); |
---|
65 | theta = 2 * M_SQRT2 * sqrt (flatness / aradius); |
---|
66 | th_0 = atan2 (y0, x0); |
---|
67 | th_1 = atan2 (y1, x1); |
---|
68 | if (radius > 0) |
---|
69 | { |
---|
70 | /* curve to the left */ |
---|
71 | if (th_0 < th_1) th_0 += M_PI * 2; |
---|
72 | n_pts = ceil ((th_0 - th_1) / theta); |
---|
73 | } |
---|
74 | else |
---|
75 | { |
---|
76 | /* curve to the right */ |
---|
77 | if (th_1 < th_0) th_1 += M_PI * 2; |
---|
78 | n_pts = ceil ((th_1 - th_0) / theta); |
---|
79 | } |
---|
80 | #ifdef VERBOSE |
---|
81 | printf ("start %f %f; th_0 = %f, th_1 = %f, r = %f, theta = %f\n", x0, y0, th_0, th_1, radius, theta); |
---|
82 | #endif |
---|
83 | art_vpath_add_point (p_vpath, pn, pn_max, |
---|
84 | ART_LINETO, xc + x0, yc + y0); |
---|
85 | for (i = 1; i < n_pts; i++) |
---|
86 | { |
---|
87 | theta = th_0 + (th_1 - th_0) * i / n_pts; |
---|
88 | art_vpath_add_point (p_vpath, pn, pn_max, |
---|
89 | ART_LINETO, xc + cos (theta) * aradius, |
---|
90 | yc + sin (theta) * aradius); |
---|
91 | #ifdef VERBOSE |
---|
92 | printf ("mid %f %f\n", cos (theta) * radius, sin (theta) * radius); |
---|
93 | #endif |
---|
94 | } |
---|
95 | art_vpath_add_point (p_vpath, pn, pn_max, |
---|
96 | ART_LINETO, xc + x1, yc + y1); |
---|
97 | #ifdef VERBOSE |
---|
98 | printf ("end %f %f\n", x1, y1); |
---|
99 | #endif |
---|
100 | } |
---|
101 | |
---|
102 | /* Assume that forw and rev are at point i0. Bring them to i1, |
---|
103 | joining with the vector i1 - i2. |
---|
104 | |
---|
105 | This used to be true, but isn't now that the stroke_raw code is |
---|
106 | filtering out (near)zero length vectors: {It so happens that all |
---|
107 | invocations of this function maintain the precondition i1 = i0 + 1, |
---|
108 | so we could decrease the number of arguments by one. We haven't |
---|
109 | done that here, though.} |
---|
110 | |
---|
111 | forw is to the line's right and rev is to its left. |
---|
112 | |
---|
113 | Precondition: no zero-length vectors, otherwise a divide by |
---|
114 | zero will happen. */ |
---|
115 | static void |
---|
116 | render_seg (ArtVpath **p_forw, int *pn_forw, int *pn_forw_max, |
---|
117 | ArtVpath **p_rev, int *pn_rev, int *pn_rev_max, |
---|
118 | ArtVpath *vpath, int i0, int i1, int i2, |
---|
119 | ArtPathStrokeJoinType join, |
---|
120 | double line_width, double miter_limit, double flatness) |
---|
121 | { |
---|
122 | double dx0, dy0; |
---|
123 | double dx1, dy1; |
---|
124 | double dlx0, dly0; |
---|
125 | double dlx1, dly1; |
---|
126 | double dmx, dmy; |
---|
127 | double dmr2; |
---|
128 | double scale; |
---|
129 | double cross; |
---|
130 | |
---|
131 | #ifdef VERBOSE |
---|
132 | printf ("join style = %d\n", join); |
---|
133 | #endif |
---|
134 | |
---|
135 | /* The vectors of the lines from i0 to i1 and i1 to i2. */ |
---|
136 | dx0 = vpath[i1].x - vpath[i0].x; |
---|
137 | dy0 = vpath[i1].y - vpath[i0].y; |
---|
138 | |
---|
139 | dx1 = vpath[i2].x - vpath[i1].x; |
---|
140 | dy1 = vpath[i2].y - vpath[i1].y; |
---|
141 | |
---|
142 | /* Set dl[xy]0 to the vector from i0 to i1, rotated counterclockwise |
---|
143 | 90 degrees, and scaled to the length of line_width. */ |
---|
144 | scale = line_width / sqrt (dx0 * dx0 + dy0 * dy0); |
---|
145 | dlx0 = dy0 * scale; |
---|
146 | dly0 = -dx0 * scale; |
---|
147 | |
---|
148 | /* Set dl[xy]1 to the vector from i1 to i2, rotated counterclockwise |
---|
149 | 90 degrees, and scaled to the length of line_width. */ |
---|
150 | scale = line_width / sqrt (dx1 * dx1 + dy1 * dy1); |
---|
151 | dlx1 = dy1 * scale; |
---|
152 | dly1 = -dx1 * scale; |
---|
153 | |
---|
154 | #ifdef VERBOSE |
---|
155 | printf ("%% render_seg: (%g, %g) - (%g, %g) - (%g, %g)\n", |
---|
156 | vpath[i0].x, vpath[i0].y, |
---|
157 | vpath[i1].x, vpath[i1].y, |
---|
158 | vpath[i2].x, vpath[i2].y); |
---|
159 | |
---|
160 | printf ("%% render_seg: d[xy]0 = (%g, %g), dl[xy]0 = (%g, %g)\n", |
---|
161 | dx0, dy0, dlx0, dly0); |
---|
162 | |
---|
163 | printf ("%% render_seg: d[xy]1 = (%g, %g), dl[xy]1 = (%g, %g)\n", |
---|
164 | dx1, dy1, dlx1, dly1); |
---|
165 | #endif |
---|
166 | |
---|
167 | /* now, forw's last point is expected to be colinear along d[xy]0 |
---|
168 | to point i0 - dl[xy]0, and rev with i0 + dl[xy]0. */ |
---|
169 | |
---|
170 | /* positive for positive area (i.e. left turn) */ |
---|
171 | cross = dx1 * dy0 - dx0 * dy1; |
---|
172 | |
---|
173 | dmx = (dlx0 + dlx1) * 0.5; |
---|
174 | dmy = (dly0 + dly1) * 0.5; |
---|
175 | dmr2 = dmx * dmx + dmy * dmy; |
---|
176 | |
---|
177 | if (join == ART_PATH_STROKE_JOIN_MITER && |
---|
178 | dmr2 * miter_limit * miter_limit < line_width * line_width) |
---|
179 | join = ART_PATH_STROKE_JOIN_BEVEL; |
---|
180 | |
---|
181 | /* the case when dmr2 is zero or very small bothers me |
---|
182 | (i.e. near a 180 degree angle) |
---|
183 | ALEX: So, we avoid the optimization when dmr2 is very small. This should |
---|
184 | be safe since dmx/y is only used in optimization and in MITER case, and MITER |
---|
185 | should be converted to BEVEL when dmr2 is very small. */ |
---|
186 | if (dmr2 > EPSILON_2) |
---|
187 | { |
---|
188 | scale = line_width * line_width / dmr2; |
---|
189 | dmx *= scale; |
---|
190 | dmy *= scale; |
---|
191 | } |
---|
192 | |
---|
193 | if (cross * cross < EPSILON_2 && dx0 * dx1 + dy0 * dy1 >= 0) |
---|
194 | { |
---|
195 | /* going straight */ |
---|
196 | #ifdef VERBOSE |
---|
197 | printf ("%% render_seg: straight\n"); |
---|
198 | #endif |
---|
199 | art_vpath_add_point (p_forw, pn_forw, pn_forw_max, |
---|
200 | ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0); |
---|
201 | art_vpath_add_point (p_rev, pn_rev, pn_rev_max, |
---|
202 | ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0); |
---|
203 | } |
---|
204 | else if (cross > 0) |
---|
205 | { |
---|
206 | /* left turn, forw is outside and rev is inside */ |
---|
207 | |
---|
208 | #ifdef VERBOSE |
---|
209 | printf ("%% render_seg: left\n"); |
---|
210 | #endif |
---|
211 | if ( |
---|
212 | #ifdef NO_OPTIMIZE_INNER |
---|
213 | 0 && |
---|
214 | #endif |
---|
215 | (dmr2 > EPSILON_2) && |
---|
216 | /* check that i1 + dm[xy] is inside i0-i1 rectangle */ |
---|
217 | (dx0 + dmx) * dx0 + (dy0 + dmy) * dy0 > 0 && |
---|
218 | /* and that i1 + dm[xy] is inside i1-i2 rectangle */ |
---|
219 | ((dx1 - dmx) * dx1 + (dy1 - dmy) * dy1 > 0) |
---|
220 | #ifdef PEDANTIC_INNER |
---|
221 | && |
---|
222 | /* check that i1 + dl[xy]1 is inside i0-i1 rectangle */ |
---|
223 | (dx0 + dlx1) * dx0 + (dy0 + dly1) * dy0 > 0 && |
---|
224 | /* and that i1 + dl[xy]0 is inside i1-i2 rectangle */ |
---|
225 | ((dx1 - dlx0) * dx1 + (dy1 - dly0) * dy1 > 0) |
---|
226 | #endif |
---|
227 | ) |
---|
228 | { |
---|
229 | /* can safely add single intersection point */ |
---|
230 | art_vpath_add_point (p_rev, pn_rev, pn_rev_max, |
---|
231 | ART_LINETO, vpath[i1].x + dmx, vpath[i1].y + dmy); |
---|
232 | } |
---|
233 | else |
---|
234 | { |
---|
235 | /* need to loop-de-loop the inside */ |
---|
236 | art_vpath_add_point (p_rev, pn_rev, pn_rev_max, |
---|
237 | ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0); |
---|
238 | art_vpath_add_point (p_rev, pn_rev, pn_rev_max, |
---|
239 | ART_LINETO, vpath[i1].x, vpath[i1].y); |
---|
240 | art_vpath_add_point (p_rev, pn_rev, pn_rev_max, |
---|
241 | ART_LINETO, vpath[i1].x + dlx1, vpath[i1].y + dly1); |
---|
242 | } |
---|
243 | |
---|
244 | if (join == ART_PATH_STROKE_JOIN_BEVEL) |
---|
245 | { |
---|
246 | /* bevel */ |
---|
247 | art_vpath_add_point (p_forw, pn_forw, pn_forw_max, |
---|
248 | ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0); |
---|
249 | art_vpath_add_point (p_forw, pn_forw, pn_forw_max, |
---|
250 | ART_LINETO, vpath[i1].x - dlx1, vpath[i1].y - dly1); |
---|
251 | } |
---|
252 | else if (join == ART_PATH_STROKE_JOIN_MITER) |
---|
253 | { |
---|
254 | art_vpath_add_point (p_forw, pn_forw, pn_forw_max, |
---|
255 | ART_LINETO, vpath[i1].x - dmx, vpath[i1].y - dmy); |
---|
256 | } |
---|
257 | else if (join == ART_PATH_STROKE_JOIN_ROUND) |
---|
258 | art_svp_vpath_stroke_arc (p_forw, pn_forw, pn_forw_max, |
---|
259 | vpath[i1].x, vpath[i1].y, |
---|
260 | -dlx0, -dly0, |
---|
261 | -dlx1, -dly1, |
---|
262 | line_width, |
---|
263 | flatness); |
---|
264 | } |
---|
265 | else |
---|
266 | { |
---|
267 | /* right turn, rev is outside and forw is inside */ |
---|
268 | #ifdef VERBOSE |
---|
269 | printf ("%% render_seg: right\n"); |
---|
270 | #endif |
---|
271 | |
---|
272 | if ( |
---|
273 | #ifdef NO_OPTIMIZE_INNER |
---|
274 | 0 && |
---|
275 | #endif |
---|
276 | (dmr2 > EPSILON_2) && |
---|
277 | /* check that i1 - dm[xy] is inside i0-i1 rectangle */ |
---|
278 | (dx0 - dmx) * dx0 + (dy0 - dmy) * dy0 > 0 && |
---|
279 | /* and that i1 - dm[xy] is inside i1-i2 rectangle */ |
---|
280 | ((dx1 + dmx) * dx1 + (dy1 + dmy) * dy1 > 0) |
---|
281 | #ifdef PEDANTIC_INNER |
---|
282 | && |
---|
283 | /* check that i1 - dl[xy]1 is inside i0-i1 rectangle */ |
---|
284 | (dx0 - dlx1) * dx0 + (dy0 - dly1) * dy0 > 0 && |
---|
285 | /* and that i1 - dl[xy]0 is inside i1-i2 rectangle */ |
---|
286 | ((dx1 + dlx0) * dx1 + (dy1 + dly0) * dy1 > 0) |
---|
287 | #endif |
---|
288 | ) |
---|
289 | { |
---|
290 | /* can safely add single intersection point */ |
---|
291 | art_vpath_add_point (p_forw, pn_forw, pn_forw_max, |
---|
292 | ART_LINETO, vpath[i1].x - dmx, vpath[i1].y - dmy); |
---|
293 | } |
---|
294 | else |
---|
295 | { |
---|
296 | /* need to loop-de-loop the inside */ |
---|
297 | art_vpath_add_point (p_forw, pn_forw, pn_forw_max, |
---|
298 | ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0); |
---|
299 | art_vpath_add_point (p_forw, pn_forw, pn_forw_max, |
---|
300 | ART_LINETO, vpath[i1].x, vpath[i1].y); |
---|
301 | art_vpath_add_point (p_forw, pn_forw, pn_forw_max, |
---|
302 | ART_LINETO, vpath[i1].x - dlx1, vpath[i1].y - dly1); |
---|
303 | } |
---|
304 | |
---|
305 | if (join == ART_PATH_STROKE_JOIN_BEVEL) |
---|
306 | { |
---|
307 | /* bevel */ |
---|
308 | art_vpath_add_point (p_rev, pn_rev, pn_rev_max, |
---|
309 | ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0); |
---|
310 | art_vpath_add_point (p_rev, pn_rev, pn_rev_max, |
---|
311 | ART_LINETO, vpath[i1].x + dlx1, vpath[i1].y + dly1); |
---|
312 | } |
---|
313 | else if (join == ART_PATH_STROKE_JOIN_MITER) |
---|
314 | { |
---|
315 | art_vpath_add_point (p_rev, pn_rev, pn_rev_max, |
---|
316 | ART_LINETO, vpath[i1].x + dmx, vpath[i1].y + dmy); |
---|
317 | } |
---|
318 | else if (join == ART_PATH_STROKE_JOIN_ROUND) |
---|
319 | art_svp_vpath_stroke_arc (p_rev, pn_rev, pn_rev_max, |
---|
320 | vpath[i1].x, vpath[i1].y, |
---|
321 | dlx0, dly0, |
---|
322 | dlx1, dly1, |
---|
323 | -line_width, |
---|
324 | flatness); |
---|
325 | |
---|
326 | } |
---|
327 | } |
---|
328 | |
---|
329 | /* caps i1, under the assumption of a vector from i0 */ |
---|
330 | static void |
---|
331 | render_cap (ArtVpath **p_result, int *pn_result, int *pn_result_max, |
---|
332 | ArtVpath *vpath, int i0, int i1, |
---|
333 | ArtPathStrokeCapType cap, double line_width, double flatness) |
---|
334 | { |
---|
335 | double dx0, dy0; |
---|
336 | double dlx0, dly0; |
---|
337 | double scale; |
---|
338 | int n_pts; |
---|
339 | int i; |
---|
340 | |
---|
341 | dx0 = vpath[i1].x - vpath[i0].x; |
---|
342 | dy0 = vpath[i1].y - vpath[i0].y; |
---|
343 | |
---|
344 | /* Set dl[xy]0 to the vector from i0 to i1, rotated counterclockwise |
---|
345 | 90 degrees, and scaled to the length of line_width. */ |
---|
346 | scale = line_width / sqrt (dx0 * dx0 + dy0 * dy0); |
---|
347 | dlx0 = dy0 * scale; |
---|
348 | dly0 = -dx0 * scale; |
---|
349 | |
---|
350 | #ifdef VERBOSE |
---|
351 | printf ("cap style = %d\n", cap); |
---|
352 | #endif |
---|
353 | |
---|
354 | switch (cap) |
---|
355 | { |
---|
356 | case ART_PATH_STROKE_CAP_BUTT: |
---|
357 | art_vpath_add_point (p_result, pn_result, pn_result_max, |
---|
358 | ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0); |
---|
359 | art_vpath_add_point (p_result, pn_result, pn_result_max, |
---|
360 | ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0); |
---|
361 | break; |
---|
362 | case ART_PATH_STROKE_CAP_ROUND: |
---|
363 | n_pts = ceil (M_PI / (2.0 * M_SQRT2 * sqrt (flatness / line_width))); |
---|
364 | art_vpath_add_point (p_result, pn_result, pn_result_max, |
---|
365 | ART_LINETO, vpath[i1].x - dlx0, vpath[i1].y - dly0); |
---|
366 | for (i = 1; i < n_pts; i++) |
---|
367 | { |
---|
368 | double theta, c_th, s_th; |
---|
369 | |
---|
370 | theta = M_PI * i / n_pts; |
---|
371 | c_th = cos (theta); |
---|
372 | s_th = sin (theta); |
---|
373 | art_vpath_add_point (p_result, pn_result, pn_result_max, |
---|
374 | ART_LINETO, |
---|
375 | vpath[i1].x - dlx0 * c_th - dly0 * s_th, |
---|
376 | vpath[i1].y - dly0 * c_th + dlx0 * s_th); |
---|
377 | } |
---|
378 | art_vpath_add_point (p_result, pn_result, pn_result_max, |
---|
379 | ART_LINETO, vpath[i1].x + dlx0, vpath[i1].y + dly0); |
---|
380 | break; |
---|
381 | case ART_PATH_STROKE_CAP_SQUARE: |
---|
382 | art_vpath_add_point (p_result, pn_result, pn_result_max, |
---|
383 | ART_LINETO, |
---|
384 | vpath[i1].x - dlx0 - dly0, |
---|
385 | vpath[i1].y - dly0 + dlx0); |
---|
386 | art_vpath_add_point (p_result, pn_result, pn_result_max, |
---|
387 | ART_LINETO, |
---|
388 | vpath[i1].x + dlx0 - dly0, |
---|
389 | vpath[i1].y + dly0 + dlx0); |
---|
390 | break; |
---|
391 | } |
---|
392 | } |
---|
393 | |
---|
394 | /** |
---|
395 | * art_svp_from_vpath_raw: Stroke a vector path, raw version |
---|
396 | * @vpath: #ArtVPath to stroke. |
---|
397 | * @join: Join style. |
---|
398 | * @cap: Cap style. |
---|
399 | * @line_width: Width of stroke. |
---|
400 | * @miter_limit: Miter limit. |
---|
401 | * @flatness: Flatness. |
---|
402 | * |
---|
403 | * Exactly the same as art_svp_vpath_stroke(), except that the resulting |
---|
404 | * stroke outline may self-intersect and have regions of winding number |
---|
405 | * greater than 1. |
---|
406 | * |
---|
407 | * Return value: Resulting raw stroked outline in svp format. |
---|
408 | **/ |
---|
409 | ArtVpath * |
---|
410 | art_svp_vpath_stroke_raw (ArtVpath *vpath, |
---|
411 | ArtPathStrokeJoinType join, |
---|
412 | ArtPathStrokeCapType cap, |
---|
413 | double line_width, |
---|
414 | double miter_limit, |
---|
415 | double flatness) |
---|
416 | { |
---|
417 | int begin_idx, end_idx; |
---|
418 | int i; |
---|
419 | ArtVpath *forw, *rev; |
---|
420 | int n_forw, n_rev; |
---|
421 | int n_forw_max, n_rev_max; |
---|
422 | ArtVpath *result; |
---|
423 | int n_result, n_result_max; |
---|
424 | double half_lw = 0.5 * line_width; |
---|
425 | int closed; |
---|
426 | int last, this, next, second; |
---|
427 | double dx, dy; |
---|
428 | |
---|
429 | n_forw_max = 16; |
---|
430 | forw = art_new (ArtVpath, n_forw_max); |
---|
431 | |
---|
432 | n_rev_max = 16; |
---|
433 | rev = art_new (ArtVpath, n_rev_max); |
---|
434 | |
---|
435 | n_result = 0; |
---|
436 | n_result_max = 16; |
---|
437 | result = art_new (ArtVpath, n_result_max); |
---|
438 | |
---|
439 | for (begin_idx = 0; vpath[begin_idx].code != ART_END; begin_idx = end_idx) |
---|
440 | { |
---|
441 | n_forw = 0; |
---|
442 | n_rev = 0; |
---|
443 | |
---|
444 | closed = (vpath[begin_idx].code == ART_MOVETO); |
---|
445 | |
---|
446 | /* we don't know what the first point joins with until we get to the |
---|
447 | last point and see if it's closed. So we start with the second |
---|
448 | line in the path. |
---|
449 | |
---|
450 | Note: this is not strictly true (we now know it's closed from |
---|
451 | the opening pathcode), but why fix code that isn't broken? |
---|
452 | */ |
---|
453 | |
---|
454 | this = begin_idx; |
---|
455 | /* skip over identical points at the beginning of the subpath */ |
---|
456 | for (i = this + 1; vpath[i].code == ART_LINETO; i++) |
---|
457 | { |
---|
458 | dx = vpath[i].x - vpath[this].x; |
---|
459 | dy = vpath[i].y - vpath[this].y; |
---|
460 | if (dx * dx + dy * dy > EPSILON_2) |
---|
461 | break; |
---|
462 | } |
---|
463 | next = i; |
---|
464 | second = next; |
---|
465 | |
---|
466 | /* invariant: this doesn't coincide with next */ |
---|
467 | while (vpath[next].code == ART_LINETO) |
---|
468 | { |
---|
469 | last = this; |
---|
470 | this = next; |
---|
471 | /* skip over identical points after the beginning of the subpath */ |
---|
472 | for (i = this + 1; vpath[i].code == ART_LINETO; i++) |
---|
473 | { |
---|
474 | dx = vpath[i].x - vpath[this].x; |
---|
475 | dy = vpath[i].y - vpath[this].y; |
---|
476 | if (dx * dx + dy * dy > EPSILON_2) |
---|
477 | break; |
---|
478 | } |
---|
479 | next = i; |
---|
480 | if (vpath[next].code != ART_LINETO) |
---|
481 | { |
---|
482 | /* reached end of path */ |
---|
483 | /* make "closed" detection conform to PostScript |
---|
484 | semantics (i.e. explicit closepath code rather than |
---|
485 | just the fact that end of the path is the beginning) */ |
---|
486 | if (closed && |
---|
487 | vpath[this].x == vpath[begin_idx].x && |
---|
488 | vpath[this].y == vpath[begin_idx].y) |
---|
489 | { |
---|
490 | int j; |
---|
491 | |
---|
492 | /* path is closed, render join to beginning */ |
---|
493 | render_seg (&forw, &n_forw, &n_forw_max, |
---|
494 | &rev, &n_rev, &n_rev_max, |
---|
495 | vpath, last, this, second, |
---|
496 | join, half_lw, miter_limit, flatness); |
---|
497 | |
---|
498 | #ifdef VERBOSE |
---|
499 | printf ("%% forw %d, rev %d\n", n_forw, n_rev); |
---|
500 | #endif |
---|
501 | /* do forward path */ |
---|
502 | art_vpath_add_point (&result, &n_result, &n_result_max, |
---|
503 | ART_MOVETO, forw[n_forw - 1].x, |
---|
504 | forw[n_forw - 1].y); |
---|
505 | for (j = 0; j < n_forw; j++) |
---|
506 | art_vpath_add_point (&result, &n_result, &n_result_max, |
---|
507 | ART_LINETO, forw[j].x, |
---|
508 | forw[j].y); |
---|
509 | |
---|
510 | /* do reverse path, reversed */ |
---|
511 | art_vpath_add_point (&result, &n_result, &n_result_max, |
---|
512 | ART_MOVETO, rev[0].x, |
---|
513 | rev[0].y); |
---|
514 | for (j = n_rev - 1; j >= 0; j--) |
---|
515 | art_vpath_add_point (&result, &n_result, &n_result_max, |
---|
516 | ART_LINETO, rev[j].x, |
---|
517 | rev[j].y); |
---|
518 | } |
---|
519 | else |
---|
520 | { |
---|
521 | /* path is open */ |
---|
522 | int j; |
---|
523 | |
---|
524 | /* add to forw rather than result to ensure that |
---|
525 | forw has at least one point. */ |
---|
526 | render_cap (&forw, &n_forw, &n_forw_max, |
---|
527 | vpath, last, this, |
---|
528 | cap, half_lw, flatness); |
---|
529 | art_vpath_add_point (&result, &n_result, &n_result_max, |
---|
530 | ART_MOVETO, forw[0].x, |
---|
531 | forw[0].y); |
---|
532 | for (j = 1; j < n_forw; j++) |
---|
533 | art_vpath_add_point (&result, &n_result, &n_result_max, |
---|
534 | ART_LINETO, forw[j].x, |
---|
535 | forw[j].y); |
---|
536 | for (j = n_rev - 1; j >= 0; j--) |
---|
537 | art_vpath_add_point (&result, &n_result, &n_result_max, |
---|
538 | ART_LINETO, rev[j].x, |
---|
539 | rev[j].y); |
---|
540 | render_cap (&result, &n_result, &n_result_max, |
---|
541 | vpath, second, begin_idx, |
---|
542 | cap, half_lw, flatness); |
---|
543 | art_vpath_add_point (&result, &n_result, &n_result_max, |
---|
544 | ART_LINETO, forw[0].x, |
---|
545 | forw[0].y); |
---|
546 | } |
---|
547 | } |
---|
548 | else |
---|
549 | render_seg (&forw, &n_forw, &n_forw_max, |
---|
550 | &rev, &n_rev, &n_rev_max, |
---|
551 | vpath, last, this, next, |
---|
552 | join, half_lw, miter_limit, flatness); |
---|
553 | } |
---|
554 | end_idx = next; |
---|
555 | } |
---|
556 | |
---|
557 | art_free (forw); |
---|
558 | art_free (rev); |
---|
559 | #ifdef VERBOSE |
---|
560 | printf ("%% n_result = %d\n", n_result); |
---|
561 | #endif |
---|
562 | art_vpath_add_point (&result, &n_result, &n_result_max, ART_END, 0, 0); |
---|
563 | return result; |
---|
564 | } |
---|
565 | |
---|
566 | #define noVERBOSE |
---|
567 | |
---|
568 | #ifdef VERBOSE |
---|
569 | |
---|
570 | #define XOFF 50 |
---|
571 | #define YOFF 700 |
---|
572 | |
---|
573 | static void |
---|
574 | print_ps_vpath (ArtVpath *vpath) |
---|
575 | { |
---|
576 | int i; |
---|
577 | |
---|
578 | for (i = 0; vpath[i].code != ART_END; i++) |
---|
579 | { |
---|
580 | switch (vpath[i].code) |
---|
581 | { |
---|
582 | case ART_MOVETO: |
---|
583 | printf ("%g %g moveto\n", XOFF + vpath[i].x, YOFF - vpath[i].y); |
---|
584 | break; |
---|
585 | case ART_LINETO: |
---|
586 | printf ("%g %g lineto\n", XOFF + vpath[i].x, YOFF - vpath[i].y); |
---|
587 | break; |
---|
588 | default: |
---|
589 | break; |
---|
590 | } |
---|
591 | } |
---|
592 | printf ("stroke showpage\n"); |
---|
593 | } |
---|
594 | |
---|
595 | static void |
---|
596 | print_ps_svp (ArtSVP *vpath) |
---|
597 | { |
---|
598 | int i, j; |
---|
599 | |
---|
600 | printf ("%% begin\n"); |
---|
601 | for (i = 0; i < vpath->n_segs; i++) |
---|
602 | { |
---|
603 | printf ("%g setgray\n", vpath->segs[i].dir ? 0.7 : 0); |
---|
604 | for (j = 0; j < vpath->segs[i].n_points; j++) |
---|
605 | { |
---|
606 | printf ("%g %g %s\n", |
---|
607 | XOFF + vpath->segs[i].points[j].x, |
---|
608 | YOFF - vpath->segs[i].points[j].y, |
---|
609 | j ? "lineto" : "moveto"); |
---|
610 | } |
---|
611 | printf ("stroke\n"); |
---|
612 | } |
---|
613 | |
---|
614 | printf ("showpage\n"); |
---|
615 | } |
---|
616 | #endif |
---|
617 | |
---|
618 | /* Render a vector path into a stroked outline. |
---|
619 | |
---|
620 | Status of this routine: |
---|
621 | |
---|
622 | Basic correctness: Only miter and bevel line joins are implemented, |
---|
623 | and only butt line caps. Otherwise, seems to be fine. |
---|
624 | |
---|
625 | Numerical stability: We cheat (adding random perturbation). Thus, |
---|
626 | it seems very likely that no numerical stability problems will be |
---|
627 | seen in practice. |
---|
628 | |
---|
629 | Speed: Should be pretty good. |
---|
630 | |
---|
631 | Precision: The perturbation fuzzes the coordinates slightly, |
---|
632 | but not enough to be visible. */ |
---|
633 | /** |
---|
634 | * art_svp_vpath_stroke: Stroke a vector path. |
---|
635 | * @vpath: #ArtVPath to stroke. |
---|
636 | * @join: Join style. |
---|
637 | * @cap: Cap style. |
---|
638 | * @line_width: Width of stroke. |
---|
639 | * @miter_limit: Miter limit. |
---|
640 | * @flatness: Flatness. |
---|
641 | * |
---|
642 | * Computes an svp representing the stroked outline of @vpath. The |
---|
643 | * width of the stroked line is @line_width. |
---|
644 | * |
---|
645 | * Lines are joined according to the @join rule. Possible values are |
---|
646 | * ART_PATH_STROKE_JOIN_MITER (for mitered joins), |
---|
647 | * ART_PATH_STROKE_JOIN_ROUND (for round joins), and |
---|
648 | * ART_PATH_STROKE_JOIN_BEVEL (for bevelled joins). The mitered join |
---|
649 | * is converted to a bevelled join if the miter would extend to a |
---|
650 | * distance of more than @miter_limit * @line_width from the actual |
---|
651 | * join point. |
---|
652 | * |
---|
653 | * If there are open subpaths, the ends of these subpaths are capped |
---|
654 | * according to the @cap rule. Possible values are |
---|
655 | * ART_PATH_STROKE_CAP_BUTT (squared cap, extends exactly to end |
---|
656 | * point), ART_PATH_STROKE_CAP_ROUND (rounded half-circle centered at |
---|
657 | * the end point), and ART_PATH_STROKE_CAP_SQUARE (squared cap, |
---|
658 | * extending half @line_width past the end point). |
---|
659 | * |
---|
660 | * The @flatness parameter controls the accuracy of the rendering. It |
---|
661 | * is most important for determining the number of points to use to |
---|
662 | * approximate circular arcs for round lines and joins. In general, the |
---|
663 | * resulting vector path will be within @flatness pixels of the "ideal" |
---|
664 | * path containing actual circular arcs. I reserve the right to use |
---|
665 | * the @flatness parameter to convert bevelled joins to miters for very |
---|
666 | * small turn angles, as this would reduce the number of points in the |
---|
667 | * resulting outline path. |
---|
668 | * |
---|
669 | * The resulting path is "clean" with respect to self-intersections, i.e. |
---|
670 | * the winding number is 0 or 1 at each point. |
---|
671 | * |
---|
672 | * Return value: Resulting stroked outline in svp format. |
---|
673 | **/ |
---|
674 | ArtSVP * |
---|
675 | art_svp_vpath_stroke (ArtVpath *vpath, |
---|
676 | ArtPathStrokeJoinType join, |
---|
677 | ArtPathStrokeCapType cap, |
---|
678 | double line_width, |
---|
679 | double miter_limit, |
---|
680 | double flatness) |
---|
681 | { |
---|
682 | #ifdef ART_USE_NEW_INTERSECTOR |
---|
683 | ArtVpath *vpath_stroke; |
---|
684 | ArtSVP *svp, *svp2; |
---|
685 | ArtSvpWriter *swr; |
---|
686 | |
---|
687 | vpath_stroke = art_svp_vpath_stroke_raw (vpath, join, cap, |
---|
688 | line_width, miter_limit, flatness); |
---|
689 | #ifdef VERBOSE |
---|
690 | print_ps_vpath (vpath_stroke); |
---|
691 | #endif |
---|
692 | svp = art_svp_from_vpath (vpath_stroke); |
---|
693 | #ifdef VERBOSE |
---|
694 | print_ps_svp (svp); |
---|
695 | #endif |
---|
696 | art_free (vpath_stroke); |
---|
697 | |
---|
698 | swr = art_svp_writer_rewind_new (ART_WIND_RULE_NONZERO); |
---|
699 | art_svp_intersector (svp, swr); |
---|
700 | |
---|
701 | svp2 = art_svp_writer_rewind_reap (swr); |
---|
702 | #ifdef VERBOSE |
---|
703 | print_ps_svp (svp2); |
---|
704 | #endif |
---|
705 | art_svp_free (svp); |
---|
706 | return svp2; |
---|
707 | #else |
---|
708 | ArtVpath *vpath_stroke, *vpath2; |
---|
709 | ArtSVP *svp, *svp2, *svp3; |
---|
710 | |
---|
711 | vpath_stroke = art_svp_vpath_stroke_raw (vpath, join, cap, |
---|
712 | line_width, miter_limit, flatness); |
---|
713 | #ifdef VERBOSE |
---|
714 | print_ps_vpath (vpath_stroke); |
---|
715 | #endif |
---|
716 | vpath2 = art_vpath_perturb (vpath_stroke); |
---|
717 | #ifdef VERBOSE |
---|
718 | print_ps_vpath (vpath2); |
---|
719 | #endif |
---|
720 | art_free (vpath_stroke); |
---|
721 | svp = art_svp_from_vpath (vpath2); |
---|
722 | #ifdef VERBOSE |
---|
723 | print_ps_svp (svp); |
---|
724 | #endif |
---|
725 | art_free (vpath2); |
---|
726 | svp2 = art_svp_uncross (svp); |
---|
727 | #ifdef VERBOSE |
---|
728 | print_ps_svp (svp2); |
---|
729 | #endif |
---|
730 | art_svp_free (svp); |
---|
731 | svp3 = art_svp_rewind_uncrossed (svp2, ART_WIND_RULE_NONZERO); |
---|
732 | #ifdef VERBOSE |
---|
733 | print_ps_svp (svp3); |
---|
734 | #endif |
---|
735 | art_svp_free (svp2); |
---|
736 | |
---|
737 | return svp3; |
---|
738 | #endif |
---|
739 | } |
---|