[23095] | 1 | /* RSA.C - RSA routines for RSAREF |
---|
| 2 | */ |
---|
| 3 | |
---|
| 4 | /* Copyright (C) RSA Laboratories, a division of RSA Data Security, |
---|
| 5 | Inc., created 1991. All rights reserved. |
---|
| 6 | */ |
---|
| 7 | |
---|
| 8 | #include "global.h" |
---|
| 9 | #include "rsaref.h" |
---|
| 10 | #include "r_random.h" |
---|
| 11 | #include "rsa.h" |
---|
| 12 | #include "nn.h" |
---|
| 13 | |
---|
| 14 | static int RSAPublicBlock PROTO_LIST |
---|
| 15 | ((unsigned char *, unsigned int *, unsigned char *, unsigned int, |
---|
| 16 | R_RSA_PUBLIC_KEY *)); |
---|
| 17 | static int RSAPrivateBlock PROTO_LIST |
---|
| 18 | ((unsigned char *, unsigned int *, unsigned char *, unsigned int, |
---|
| 19 | R_RSA_PRIVATE_KEY *)); |
---|
| 20 | |
---|
| 21 | /* RSA public-key encryption, according to PKCS #1. |
---|
| 22 | */ |
---|
| 23 | int RSAPublicEncrypt |
---|
| 24 | (output, outputLen, input, inputLen, publicKey, randomStruct) |
---|
| 25 | unsigned char *output; /* output block */ |
---|
| 26 | unsigned int *outputLen; /* length of output block */ |
---|
| 27 | unsigned char *input; /* input block */ |
---|
| 28 | unsigned int inputLen; /* length of input block */ |
---|
| 29 | R_RSA_PUBLIC_KEY *publicKey; /* RSA public key */ |
---|
| 30 | R_RANDOM_STRUCT *randomStruct; /* random structure */ |
---|
| 31 | { |
---|
| 32 | int status; |
---|
| 33 | unsigned char byte, pkcsBlock[MAX_RSA_MODULUS_LEN]; |
---|
| 34 | unsigned int i, modulusLen; |
---|
| 35 | |
---|
| 36 | modulusLen = (publicKey->bits + 7) / 8; |
---|
| 37 | if (inputLen + 11 > modulusLen) |
---|
| 38 | return (RE_LEN); |
---|
| 39 | |
---|
| 40 | pkcsBlock[0] = 0; |
---|
| 41 | /* block type 2 */ |
---|
| 42 | pkcsBlock[1] = 2; |
---|
| 43 | |
---|
| 44 | for (i = 2; i < modulusLen - inputLen - 1; i++) { |
---|
| 45 | /* Find nonzero random byte. |
---|
| 46 | */ |
---|
| 47 | do { |
---|
| 48 | R_GenerateBytes (&byte, 1, randomStruct); |
---|
| 49 | } while (byte == 0); |
---|
| 50 | pkcsBlock[i] = byte; |
---|
| 51 | } |
---|
| 52 | /* separator */ |
---|
| 53 | pkcsBlock[i++] = 0; |
---|
| 54 | |
---|
| 55 | R_memcpy ((POINTER)&pkcsBlock[i], (POINTER)input, inputLen); |
---|
| 56 | |
---|
| 57 | status = RSAPublicBlock |
---|
| 58 | (output, outputLen, pkcsBlock, modulusLen, publicKey); |
---|
| 59 | |
---|
| 60 | /* Zeroize sensitive information. |
---|
| 61 | */ |
---|
| 62 | byte = 0; |
---|
| 63 | R_memset ((POINTER)pkcsBlock, 0, sizeof (pkcsBlock)); |
---|
| 64 | |
---|
| 65 | return (status); |
---|
| 66 | } |
---|
| 67 | |
---|
| 68 | /* RSA public-key decryption, according to PKCS #1. |
---|
| 69 | */ |
---|
| 70 | int RSAPublicDecrypt (output, outputLen, input, inputLen, publicKey) |
---|
| 71 | unsigned char *output; /* output block */ |
---|
| 72 | unsigned int *outputLen; /* length of output block */ |
---|
| 73 | unsigned char *input; /* input block */ |
---|
| 74 | unsigned int inputLen; /* length of input block */ |
---|
| 75 | R_RSA_PUBLIC_KEY *publicKey; /* RSA public key */ |
---|
| 76 | { |
---|
| 77 | int status; |
---|
| 78 | unsigned char pkcsBlock[MAX_RSA_MODULUS_LEN]; |
---|
| 79 | unsigned int i, modulusLen, pkcsBlockLen; |
---|
| 80 | |
---|
| 81 | modulusLen = (publicKey->bits + 7) / 8; |
---|
| 82 | if (inputLen > modulusLen) |
---|
| 83 | return (RE_LEN); |
---|
| 84 | |
---|
| 85 | if (status = RSAPublicBlock |
---|
| 86 | (pkcsBlock, &pkcsBlockLen, input, inputLen, publicKey)) |
---|
| 87 | return (status); |
---|
| 88 | |
---|
| 89 | if (pkcsBlockLen != modulusLen) |
---|
| 90 | return (RE_LEN); |
---|
| 91 | |
---|
| 92 | /* Require block type 1. |
---|
| 93 | */ |
---|
| 94 | if ((pkcsBlock[0] != 0) || (pkcsBlock[1] != 1)) |
---|
| 95 | return (RE_DATA); |
---|
| 96 | |
---|
| 97 | for (i = 2; i < modulusLen-1; i++) |
---|
| 98 | if (pkcsBlock[i] != 0xff) |
---|
| 99 | break; |
---|
| 100 | |
---|
| 101 | /* separator */ |
---|
| 102 | if (pkcsBlock[i++] != 0) |
---|
| 103 | return (RE_DATA); |
---|
| 104 | |
---|
| 105 | *outputLen = modulusLen - i; |
---|
| 106 | |
---|
| 107 | if (*outputLen + 11 > modulusLen) |
---|
| 108 | return (RE_DATA); |
---|
| 109 | |
---|
| 110 | R_memcpy ((POINTER)output, (POINTER)&pkcsBlock[i], *outputLen); |
---|
| 111 | |
---|
| 112 | /* Zeroize potentially sensitive information. |
---|
| 113 | */ |
---|
| 114 | R_memset ((POINTER)pkcsBlock, 0, sizeof (pkcsBlock)); |
---|
| 115 | |
---|
| 116 | return (0); |
---|
| 117 | } |
---|
| 118 | |
---|
| 119 | /* RSA private-key encryption, according to PKCS #1. |
---|
| 120 | */ |
---|
| 121 | int RSAPrivateEncrypt (output, outputLen, input, inputLen, privateKey) |
---|
| 122 | unsigned char *output; /* output block */ |
---|
| 123 | unsigned int *outputLen; /* length of output block */ |
---|
| 124 | unsigned char *input; /* input block */ |
---|
| 125 | unsigned int inputLen; /* length of input block */ |
---|
| 126 | R_RSA_PRIVATE_KEY *privateKey; /* RSA private key */ |
---|
| 127 | { |
---|
| 128 | int status; |
---|
| 129 | unsigned char pkcsBlock[MAX_RSA_MODULUS_LEN]; |
---|
| 130 | unsigned int i, modulusLen; |
---|
| 131 | |
---|
| 132 | modulusLen = (privateKey->bits + 7) / 8; |
---|
| 133 | if (inputLen + 11 > modulusLen) |
---|
| 134 | return (RE_LEN); |
---|
| 135 | |
---|
| 136 | pkcsBlock[0] = 0; |
---|
| 137 | /* block type 1 */ |
---|
| 138 | pkcsBlock[1] = 1; |
---|
| 139 | |
---|
| 140 | for (i = 2; i < modulusLen - inputLen - 1; i++) |
---|
| 141 | pkcsBlock[i] = 0xff; |
---|
| 142 | |
---|
| 143 | /* separator */ |
---|
| 144 | pkcsBlock[i++] = 0; |
---|
| 145 | |
---|
| 146 | R_memcpy ((POINTER)&pkcsBlock[i], (POINTER)input, inputLen); |
---|
| 147 | |
---|
| 148 | status = RSAPrivateBlock |
---|
| 149 | (output, outputLen, pkcsBlock, modulusLen, privateKey); |
---|
| 150 | |
---|
| 151 | /* Zeroize potentially sensitive information. |
---|
| 152 | */ |
---|
| 153 | R_memset ((POINTER)pkcsBlock, 0, sizeof (pkcsBlock)); |
---|
| 154 | |
---|
| 155 | return (status); |
---|
| 156 | } |
---|
| 157 | |
---|
| 158 | /* RSA private-key decryption, according to PKCS #1. |
---|
| 159 | */ |
---|
| 160 | int RSAPrivateDecrypt (output, outputLen, input, inputLen, privateKey) |
---|
| 161 | unsigned char *output; /* output block */ |
---|
| 162 | unsigned int *outputLen; /* length of output block */ |
---|
| 163 | unsigned char *input; /* input block */ |
---|
| 164 | unsigned int inputLen; /* length of input block */ |
---|
| 165 | R_RSA_PRIVATE_KEY *privateKey; /* RSA private key */ |
---|
| 166 | { |
---|
| 167 | int status; |
---|
| 168 | unsigned char pkcsBlock[MAX_RSA_MODULUS_LEN]; |
---|
| 169 | unsigned int i, modulusLen, pkcsBlockLen; |
---|
| 170 | |
---|
| 171 | modulusLen = (privateKey->bits + 7) / 8; |
---|
| 172 | if (inputLen > modulusLen) |
---|
| 173 | return (RE_LEN); |
---|
| 174 | |
---|
| 175 | if (status = RSAPrivateBlock |
---|
| 176 | (pkcsBlock, &pkcsBlockLen, input, inputLen, privateKey)) |
---|
| 177 | return (status); |
---|
| 178 | |
---|
| 179 | if (pkcsBlockLen != modulusLen) |
---|
| 180 | return (RE_LEN); |
---|
| 181 | |
---|
| 182 | /* Require block type 2. |
---|
| 183 | */ |
---|
| 184 | if ((pkcsBlock[0] != 0) || (pkcsBlock[1] != 2)) |
---|
| 185 | return (RE_DATA); |
---|
| 186 | |
---|
| 187 | for (i = 2; i < modulusLen-1; i++) |
---|
| 188 | /* separator */ |
---|
| 189 | if (pkcsBlock[i] == 0) |
---|
| 190 | break; |
---|
| 191 | |
---|
| 192 | i++; |
---|
| 193 | if (i >= modulusLen) |
---|
| 194 | return (RE_DATA); |
---|
| 195 | |
---|
| 196 | *outputLen = modulusLen - i; |
---|
| 197 | |
---|
| 198 | if (*outputLen + 11 > modulusLen) |
---|
| 199 | return (RE_DATA); |
---|
| 200 | |
---|
| 201 | R_memcpy ((POINTER)output, (POINTER)&pkcsBlock[i], *outputLen); |
---|
| 202 | |
---|
| 203 | /* Zeroize sensitive information. |
---|
| 204 | */ |
---|
| 205 | R_memset ((POINTER)pkcsBlock, 0, sizeof (pkcsBlock)); |
---|
| 206 | |
---|
| 207 | return (0); |
---|
| 208 | } |
---|
| 209 | |
---|
| 210 | /* Raw RSA public-key operation. Output has same length as modulus. |
---|
| 211 | |
---|
| 212 | Assumes inputLen < length of modulus. |
---|
| 213 | Requires input < modulus. |
---|
| 214 | */ |
---|
| 215 | static int RSAPublicBlock (output, outputLen, input, inputLen, publicKey) |
---|
| 216 | unsigned char *output; /* output block */ |
---|
| 217 | unsigned int *outputLen; /* length of output block */ |
---|
| 218 | unsigned char *input; /* input block */ |
---|
| 219 | unsigned int inputLen; /* length of input block */ |
---|
| 220 | R_RSA_PUBLIC_KEY *publicKey; /* RSA public key */ |
---|
| 221 | { |
---|
| 222 | NN_DIGIT c[MAX_NN_DIGITS], e[MAX_NN_DIGITS], m[MAX_NN_DIGITS], |
---|
| 223 | n[MAX_NN_DIGITS]; |
---|
| 224 | unsigned int eDigits, nDigits; |
---|
| 225 | |
---|
| 226 | NN_Decode (m, MAX_NN_DIGITS, input, inputLen); |
---|
| 227 | NN_Decode (n, MAX_NN_DIGITS, publicKey->modulus, MAX_RSA_MODULUS_LEN); |
---|
| 228 | NN_Decode (e, MAX_NN_DIGITS, publicKey->exponent, MAX_RSA_MODULUS_LEN); |
---|
| 229 | nDigits = NN_Digits (n, MAX_NN_DIGITS); |
---|
| 230 | eDigits = NN_Digits (e, MAX_NN_DIGITS); |
---|
| 231 | |
---|
| 232 | if (NN_Cmp (m, n, nDigits) >= 0) |
---|
| 233 | return (RE_DATA); |
---|
| 234 | |
---|
| 235 | /* Compute c = m^e mod n. |
---|
| 236 | */ |
---|
| 237 | NN_ModExp (c, m, e, eDigits, n, nDigits); |
---|
| 238 | |
---|
| 239 | *outputLen = (publicKey->bits + 7) / 8; |
---|
| 240 | NN_Encode (output, *outputLen, c, nDigits); |
---|
| 241 | |
---|
| 242 | /* Zeroize sensitive information. |
---|
| 243 | */ |
---|
| 244 | R_memset ((POINTER)c, 0, sizeof (c)); |
---|
| 245 | R_memset ((POINTER)m, 0, sizeof (m)); |
---|
| 246 | |
---|
| 247 | return (0); |
---|
| 248 | } |
---|
| 249 | |
---|
| 250 | /* Raw RSA private-key operation. Output has same length as modulus. |
---|
| 251 | |
---|
| 252 | Assumes inputLen < length of modulus. |
---|
| 253 | Requires input < modulus. |
---|
| 254 | */ |
---|
| 255 | static int RSAPrivateBlock (output, outputLen, input, inputLen, privateKey) |
---|
| 256 | unsigned char *output; /* output block */ |
---|
| 257 | unsigned int *outputLen; /* length of output block */ |
---|
| 258 | unsigned char *input; /* input block */ |
---|
| 259 | unsigned int inputLen; /* length of input block */ |
---|
| 260 | R_RSA_PRIVATE_KEY *privateKey; /* RSA private key */ |
---|
| 261 | { |
---|
| 262 | NN_DIGIT c[MAX_NN_DIGITS], cP[MAX_NN_DIGITS], cQ[MAX_NN_DIGITS], |
---|
| 263 | dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS], mP[MAX_NN_DIGITS], |
---|
| 264 | mQ[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], q[MAX_NN_DIGITS], |
---|
| 265 | qInv[MAX_NN_DIGITS], t[MAX_NN_DIGITS]; |
---|
| 266 | unsigned int cDigits, nDigits, pDigits; |
---|
| 267 | |
---|
| 268 | NN_Decode (c, MAX_NN_DIGITS, input, inputLen); |
---|
| 269 | NN_Decode (n, MAX_NN_DIGITS, privateKey->modulus, MAX_RSA_MODULUS_LEN); |
---|
| 270 | NN_Decode (p, MAX_NN_DIGITS, privateKey->prime[0], MAX_RSA_PRIME_LEN); |
---|
| 271 | NN_Decode (q, MAX_NN_DIGITS, privateKey->prime[1], MAX_RSA_PRIME_LEN); |
---|
| 272 | NN_Decode |
---|
| 273 | (dP, MAX_NN_DIGITS, privateKey->primeExponent[0], MAX_RSA_PRIME_LEN); |
---|
| 274 | NN_Decode |
---|
| 275 | (dQ, MAX_NN_DIGITS, privateKey->primeExponent[1], MAX_RSA_PRIME_LEN); |
---|
| 276 | NN_Decode (qInv, MAX_NN_DIGITS, privateKey->coefficient, MAX_RSA_PRIME_LEN); |
---|
| 277 | cDigits = NN_Digits (c, MAX_NN_DIGITS); |
---|
| 278 | nDigits = NN_Digits (n, MAX_NN_DIGITS); |
---|
| 279 | pDigits = NN_Digits (p, MAX_NN_DIGITS); |
---|
| 280 | |
---|
| 281 | if (NN_Cmp (c, n, nDigits) >= 0) |
---|
| 282 | return (RE_DATA); |
---|
| 283 | |
---|
| 284 | /* Compute mP = cP^dP mod p and mQ = cQ^dQ mod q. (Assumes q has |
---|
| 285 | length at most pDigits, i.e., p > q.) |
---|
| 286 | */ |
---|
| 287 | NN_Mod (cP, c, cDigits, p, pDigits); |
---|
| 288 | NN_Mod (cQ, c, cDigits, q, pDigits); |
---|
| 289 | NN_ModExp (mP, cP, dP, pDigits, p, pDigits); |
---|
| 290 | NN_AssignZero (mQ, nDigits); |
---|
| 291 | NN_ModExp (mQ, cQ, dQ, pDigits, q, pDigits); |
---|
| 292 | |
---|
| 293 | /* Chinese Remainder Theorem: |
---|
| 294 | m = ((((mP - mQ) mod p) * qInv) mod p) * q + mQ. |
---|
| 295 | */ |
---|
| 296 | if (NN_Cmp (mP, mQ, pDigits) >= 0) |
---|
| 297 | NN_Sub (t, mP, mQ, pDigits); |
---|
| 298 | else { |
---|
| 299 | NN_Sub (t, mQ, mP, pDigits); |
---|
| 300 | NN_Sub (t, p, t, pDigits); |
---|
| 301 | } |
---|
| 302 | NN_ModMult (t, t, qInv, p, pDigits); |
---|
| 303 | NN_Mult (t, t, q, pDigits); |
---|
| 304 | NN_Add (t, t, mQ, nDigits); |
---|
| 305 | |
---|
| 306 | *outputLen = (privateKey->bits + 7) / 8; |
---|
| 307 | NN_Encode (output, *outputLen, t, nDigits); |
---|
| 308 | |
---|
| 309 | /* Zeroize sensitive information. |
---|
| 310 | */ |
---|
| 311 | R_memset ((POINTER)c, 0, sizeof (c)); |
---|
| 312 | R_memset ((POINTER)cP, 0, sizeof (cP)); |
---|
| 313 | R_memset ((POINTER)cQ, 0, sizeof (cQ)); |
---|
| 314 | R_memset ((POINTER)dP, 0, sizeof (dP)); |
---|
| 315 | R_memset ((POINTER)dQ, 0, sizeof (dQ)); |
---|
| 316 | R_memset ((POINTER)mP, 0, sizeof (mP)); |
---|
| 317 | R_memset ((POINTER)mQ, 0, sizeof (mQ)); |
---|
| 318 | R_memset ((POINTER)p, 0, sizeof (p)); |
---|
| 319 | R_memset ((POINTER)q, 0, sizeof (q)); |
---|
| 320 | R_memset ((POINTER)qInv, 0, sizeof (qInv)); |
---|
| 321 | R_memset ((POINTER)t, 0, sizeof (t)); |
---|
| 322 | |
---|
| 323 | return (0); |
---|
| 324 | } |
---|