source: trunk/third/perl/pod/perltie.pod @ 20075

Revision 20075, 35.0 KB checked in by zacheiss, 21 years ago (diff)
This commit was generated by cvs2svn to compensate for changes in r20074, which included commits to RCS files with non-trunk default branches.
Line 
1=head1 NAME
2
3perltie - how to hide an object class in a simple variable
4
5=head1 SYNOPSIS
6
7 tie VARIABLE, CLASSNAME, LIST
8
9 $object = tied VARIABLE
10
11 untie VARIABLE
12
13=head1 DESCRIPTION
14
15Prior to release 5.0 of Perl, a programmer could use dbmopen()
16to connect an on-disk database in the standard Unix dbm(3x)
17format magically to a %HASH in their program.  However, their Perl was either
18built with one particular dbm library or another, but not both, and
19you couldn't extend this mechanism to other packages or types of variables.
20
21Now you can.
22
23The tie() function binds a variable to a class (package) that will provide
24the implementation for access methods for that variable.  Once this magic
25has been performed, accessing a tied variable automatically triggers
26method calls in the proper class.  The complexity of the class is
27hidden behind magic methods calls.  The method names are in ALL CAPS,
28which is a convention that Perl uses to indicate that they're called
29implicitly rather than explicitly--just like the BEGIN() and END()
30functions.
31
32In the tie() call, C<VARIABLE> is the name of the variable to be
33enchanted.  C<CLASSNAME> is the name of a class implementing objects of
34the correct type.  Any additional arguments in the C<LIST> are passed to
35the appropriate constructor method for that class--meaning TIESCALAR(),
36TIEARRAY(), TIEHASH(), or TIEHANDLE().  (Typically these are arguments
37such as might be passed to the dbminit() function of C.) The object
38returned by the "new" method is also returned by the tie() function,
39which would be useful if you wanted to access other methods in
40C<CLASSNAME>. (You don't actually have to return a reference to a right
41"type" (e.g., HASH or C<CLASSNAME>) so long as it's a properly blessed
42object.)  You can also retrieve a reference to the underlying object
43using the tied() function.
44
45Unlike dbmopen(), the tie() function will not C<use> or C<require> a module
46for you--you need to do that explicitly yourself.
47
48=head2 Tying Scalars
49
50A class implementing a tied scalar should define the following methods:
51TIESCALAR, FETCH, STORE, and possibly UNTIE and/or DESTROY.
52
53Let's look at each in turn, using as an example a tie class for
54scalars that allows the user to do something like:
55
56    tie $his_speed, 'Nice', getppid();
57    tie $my_speed,  'Nice', $$;
58
59And now whenever either of those variables is accessed, its current
60system priority is retrieved and returned.  If those variables are set,
61then the process's priority is changed!
62
63We'll use Jarkko Hietaniemi <F<jhi@iki.fi>>'s BSD::Resource class (not
64included) to access the PRIO_PROCESS, PRIO_MIN, and PRIO_MAX constants
65from your system, as well as the getpriority() and setpriority() system
66calls.  Here's the preamble of the class.
67
68    package Nice;
69    use Carp;
70    use BSD::Resource;
71    use strict;
72    $Nice::DEBUG = 0 unless defined $Nice::DEBUG;
73
74=over 4
75
76=item TIESCALAR classname, LIST
77
78This is the constructor for the class.  That means it is
79expected to return a blessed reference to a new scalar
80(probably anonymous) that it's creating.  For example:
81
82    sub TIESCALAR {
83        my $class = shift;
84        my $pid = shift || $$; # 0 means me
85
86        if ($pid !~ /^\d+$/) {
87            carp "Nice::Tie::Scalar got non-numeric pid $pid" if $^W;
88            return undef;
89        }
90
91        unless (kill 0, $pid) { # EPERM or ERSCH, no doubt
92            carp "Nice::Tie::Scalar got bad pid $pid: $!" if $^W;
93            return undef;
94        }
95
96        return bless \$pid, $class;
97    }
98
99This tie class has chosen to return an error rather than raising an
100exception if its constructor should fail.  While this is how dbmopen() works,
101other classes may well not wish to be so forgiving.  It checks the global
102variable C<$^W> to see whether to emit a bit of noise anyway.
103
104=item FETCH this
105
106This method will be triggered every time the tied variable is accessed
107(read).  It takes no arguments beyond its self reference, which is the
108object representing the scalar we're dealing with.  Because in this case
109we're using just a SCALAR ref for the tied scalar object, a simple $$self
110allows the method to get at the real value stored there.  In our example
111below, that real value is the process ID to which we've tied our variable.
112
113    sub FETCH {
114        my $self = shift;
115        confess "wrong type" unless ref $self;
116        croak "usage error" if @_;
117        my $nicety;
118        local($!) = 0;
119        $nicety = getpriority(PRIO_PROCESS, $$self);
120        if ($!) { croak "getpriority failed: $!" }
121        return $nicety;
122    }
123
124This time we've decided to blow up (raise an exception) if the renice
125fails--there's no place for us to return an error otherwise, and it's
126probably the right thing to do.
127
128=item STORE this, value
129
130This method will be triggered every time the tied variable is set
131(assigned).  Beyond its self reference, it also expects one (and only one)
132argument--the new value the user is trying to assign. Don't worry about
133returning a value from STORE -- the semantic of assignment returning the
134assigned value is implemented with FETCH.
135
136    sub STORE {
137        my $self = shift;
138        confess "wrong type" unless ref $self;
139        my $new_nicety = shift;
140        croak "usage error" if @_;
141
142        if ($new_nicety < PRIO_MIN) {
143            carp sprintf
144              "WARNING: priority %d less than minimum system priority %d",
145                  $new_nicety, PRIO_MIN if $^W;
146            $new_nicety = PRIO_MIN;
147        }
148
149        if ($new_nicety > PRIO_MAX) {
150            carp sprintf
151              "WARNING: priority %d greater than maximum system priority %d",
152                  $new_nicety, PRIO_MAX if $^W;
153            $new_nicety = PRIO_MAX;
154        }
155
156        unless (defined setpriority(PRIO_PROCESS, $$self, $new_nicety)) {
157            confess "setpriority failed: $!";
158        }
159    }
160
161=item UNTIE this
162
163This method will be triggered when the C<untie> occurs. This can be useful
164if the class needs to know when no further calls will be made. (Except DESTROY
165of course.) See L<The C<untie> Gotcha> below for more details.
166
167=item DESTROY this
168
169This method will be triggered when the tied variable needs to be destructed.
170As with other object classes, such a method is seldom necessary, because Perl
171deallocates its moribund object's memory for you automatically--this isn't
172C++, you know.  We'll use a DESTROY method here for debugging purposes only.
173
174    sub DESTROY {
175        my $self = shift;
176        confess "wrong type" unless ref $self;
177        carp "[ Nice::DESTROY pid $$self ]" if $Nice::DEBUG;
178    }
179
180=back
181
182That's about all there is to it.  Actually, it's more than all there
183is to it, because we've done a few nice things here for the sake
184of completeness, robustness, and general aesthetics.  Simpler
185TIESCALAR classes are certainly possible.
186
187=head2 Tying Arrays
188
189A class implementing a tied ordinary array should define the following
190methods: TIEARRAY, FETCH, STORE, FETCHSIZE, STORESIZE and perhaps UNTIE and/or DESTROY.
191
192FETCHSIZE and STORESIZE are used to provide C<$#array> and
193equivalent C<scalar(@array)> access.
194
195The methods POP, PUSH, SHIFT, UNSHIFT, SPLICE, DELETE, and EXISTS are
196required if the perl operator with the corresponding (but lowercase) name
197is to operate on the tied array. The B<Tie::Array> class can be used as a
198base class to implement the first five of these in terms of the basic
199methods above.  The default implementations of DELETE and EXISTS in
200B<Tie::Array> simply C<croak>.
201
202In addition EXTEND will be called when perl would have pre-extended
203allocation in a real array.
204
205For this discussion, we'll implement an array whose elements are a fixed
206size at creation.  If you try to create an element larger than the fixed
207size, you'll take an exception.  For example:
208
209    use FixedElem_Array;
210    tie @array, 'FixedElem_Array', 3;
211    $array[0] = 'cat';  # ok.
212    $array[1] = 'dogs'; # exception, length('dogs') > 3.
213
214The preamble code for the class is as follows:
215
216    package FixedElem_Array;
217    use Carp;
218    use strict;
219
220=over 4
221
222=item TIEARRAY classname, LIST
223
224This is the constructor for the class.  That means it is expected to
225return a blessed reference through which the new array (probably an
226anonymous ARRAY ref) will be accessed.
227
228In our example, just to show you that you don't I<really> have to return an
229ARRAY reference, we'll choose a HASH reference to represent our object.
230A HASH works out well as a generic record type: the C<{ELEMSIZE}> field will
231store the maximum element size allowed, and the C<{ARRAY}> field will hold the
232true ARRAY ref.  If someone outside the class tries to dereference the
233object returned (doubtless thinking it an ARRAY ref), they'll blow up.
234This just goes to show you that you should respect an object's privacy.
235
236    sub TIEARRAY {
237      my $class    = shift;
238      my $elemsize = shift;
239      if ( @_ || $elemsize =~ /\D/ ) {
240        croak "usage: tie ARRAY, '" . __PACKAGE__ . "', elem_size";
241      }
242      return bless {
243        ELEMSIZE => $elemsize,
244        ARRAY    => [],
245      }, $class;
246    }
247
248=item FETCH this, index
249
250This method will be triggered every time an individual element the tied array
251is accessed (read).  It takes one argument beyond its self reference: the
252index whose value we're trying to fetch.
253
254    sub FETCH {
255      my $self  = shift;
256      my $index = shift;
257      return $self->{ARRAY}->[$index];
258    }
259
260If a negative array index is used to read from an array, the index
261will be translated to a positive one internally by calling FETCHSIZE
262before being passed to FETCH.  You may disable this feature by
263assigning a true value to the variable C<$NEGATIVE_INDICES> in the
264tied array class.
265
266As you may have noticed, the name of the FETCH method (et al.) is the same
267for all accesses, even though the constructors differ in names (TIESCALAR
268vs TIEARRAY).  While in theory you could have the same class servicing
269several tied types, in practice this becomes cumbersome, and it's easiest
270to keep them at simply one tie type per class.
271
272=item STORE this, index, value
273
274This method will be triggered every time an element in the tied array is set
275(written).  It takes two arguments beyond its self reference: the index at
276which we're trying to store something and the value we're trying to put
277there.
278
279In our example, C<undef> is really C<$self-E<gt>{ELEMSIZE}> number of
280spaces so we have a little more work to do here:
281
282    sub STORE {
283      my $self = shift;
284      my( $index, $value ) = @_;
285      if ( length $value > $self->{ELEMSIZE} ) {
286        croak "length of $value is greater than $self->{ELEMSIZE}";
287      }
288      # fill in the blanks
289      $self->EXTEND( $index ) if $index > $self->FETCHSIZE();
290      # right justify to keep element size for smaller elements
291      $self->{ARRAY}->[$index] = sprintf "%$self->{ELEMSIZE}s", $value;
292    }
293
294Negative indexes are treated the same as with FETCH.
295
296=item FETCHSIZE this
297
298Returns the total number of items in the tied array associated with
299object I<this>. (Equivalent to C<scalar(@array)>).  For example:
300
301    sub FETCHSIZE {
302      my $self = shift;
303      return scalar @{$self->{ARRAY}};
304    }
305
306=item STORESIZE this, count
307
308Sets the total number of items in the tied array associated with
309object I<this> to be I<count>. If this makes the array larger then
310class's mapping of C<undef> should be returned for new positions.
311If the array becomes smaller then entries beyond count should be
312deleted.
313
314In our example, 'undef' is really an element containing
315C<$self-E<gt>{ELEMSIZE}> number of spaces.  Observe:
316
317    sub STORESIZE {
318      my $self  = shift;
319      my $count = shift;
320      if ( $count > $self->FETCHSIZE() ) {
321        foreach ( $count - $self->FETCHSIZE() .. $count ) {
322          $self->STORE( $_, '' );
323        }
324      } elsif ( $count < $self->FETCHSIZE() ) {
325        foreach ( 0 .. $self->FETCHSIZE() - $count - 2 ) {
326          $self->POP();
327        }
328      }
329    }
330
331=item EXTEND this, count
332
333Informative call that array is likely to grow to have I<count> entries.
334Can be used to optimize allocation. This method need do nothing.
335
336In our example, we want to make sure there are no blank (C<undef>)
337entries, so C<EXTEND> will make use of C<STORESIZE> to fill elements
338as needed:
339
340    sub EXTEND {   
341      my $self  = shift;
342      my $count = shift;
343      $self->STORESIZE( $count );
344    }
345
346=item EXISTS this, key
347
348Verify that the element at index I<key> exists in the tied array I<this>.
349
350In our example, we will determine that if an element consists of
351C<$self-E<gt>{ELEMSIZE}> spaces only, it does not exist:
352
353    sub EXISTS {
354      my $self  = shift;
355      my $index = shift;
356      return 0 if ! defined $self->{ARRAY}->[$index] ||
357                  $self->{ARRAY}->[$index] eq ' ' x $self->{ELEMSIZE};
358      return 1;
359    }
360
361=item DELETE this, key
362
363Delete the element at index I<key> from the tied array I<this>.
364
365In our example, a deleted item is C<$self-E<gt>{ELEMSIZE}> spaces:
366
367    sub DELETE {
368      my $self  = shift;
369      my $index = shift;
370      return $self->STORE( $index, '' );
371    }
372
373=item CLEAR this
374
375Clear (remove, delete, ...) all values from the tied array associated with
376object I<this>.  For example:
377
378    sub CLEAR {
379      my $self = shift;
380      return $self->{ARRAY} = [];
381    }
382
383=item PUSH this, LIST
384
385Append elements of I<LIST> to the array.  For example:
386
387    sub PUSH { 
388      my $self = shift;
389      my @list = @_;
390      my $last = $self->FETCHSIZE();
391      $self->STORE( $last + $_, $list[$_] ) foreach 0 .. $#list;
392      return $self->FETCHSIZE();
393    }   
394
395=item POP this
396
397Remove last element of the array and return it.  For example:
398
399    sub POP {
400      my $self = shift;
401      return pop @{$self->{ARRAY}};
402    }
403
404=item SHIFT this
405
406Remove the first element of the array (shifting other elements down)
407and return it.  For example:
408
409    sub SHIFT {
410      my $self = shift;
411      return shift @{$self->{ARRAY}};
412    }
413
414=item UNSHIFT this, LIST
415
416Insert LIST elements at the beginning of the array, moving existing elements
417up to make room.  For example:
418
419    sub UNSHIFT {
420      my $self = shift;
421      my @list = @_;
422      my $size = scalar( @list );
423      # make room for our list
424      @{$self->{ARRAY}}[ $size .. $#{$self->{ARRAY}} + $size ]
425       = @{$self->{ARRAY}};
426      $self->STORE( $_, $list[$_] ) foreach 0 .. $#list;
427    }
428
429=item SPLICE this, offset, length, LIST
430
431Perform the equivalent of C<splice> on the array.
432
433I<offset> is optional and defaults to zero, negative values count back
434from the end of the array.
435
436I<length> is optional and defaults to rest of the array.
437
438I<LIST> may be empty.
439
440Returns a list of the original I<length> elements at I<offset>.
441
442In our example, we'll use a little shortcut if there is a I<LIST>:
443
444    sub SPLICE {
445      my $self   = shift;
446      my $offset = shift || 0;
447      my $length = shift || $self->FETCHSIZE() - $offset;
448      my @list   = ();
449      if ( @_ ) {
450        tie @list, __PACKAGE__, $self->{ELEMSIZE};
451        @list   = @_;
452      }
453      return splice @{$self->{ARRAY}}, $offset, $length, @list;
454    }
455
456=item UNTIE this
457
458Will be called when C<untie> happens. (See L<The C<untie> Gotcha> below.)
459
460=item DESTROY this
461
462This method will be triggered when the tied variable needs to be destructed.
463As with the scalar tie class, this is almost never needed in a
464language that does its own garbage collection, so this time we'll
465just leave it out.
466
467=back
468
469=head2 Tying Hashes
470
471Hashes were the first Perl data type to be tied (see dbmopen()).  A class
472implementing a tied hash should define the following methods: TIEHASH is
473the constructor.  FETCH and STORE access the key and value pairs.  EXISTS
474reports whether a key is present in the hash, and DELETE deletes one.
475CLEAR empties the hash by deleting all the key and value pairs.  FIRSTKEY
476and NEXTKEY implement the keys() and each() functions to iterate over all
477the keys. SCALAR is triggered when the tied hash is evaluated in scalar
478context. UNTIE is called when C<untie> happens, and DESTROY is called when
479the tied variable is garbage collected.
480
481If this seems like a lot, then feel free to inherit from merely the
482standard Tie::StdHash module for most of your methods, redefining only the
483interesting ones.  See L<Tie::Hash> for details.
484
485Remember that Perl distinguishes between a key not existing in the hash,
486and the key existing in the hash but having a corresponding value of
487C<undef>.  The two possibilities can be tested with the C<exists()> and
488C<defined()> functions.
489
490Here's an example of a somewhat interesting tied hash class:  it gives you
491a hash representing a particular user's dot files.  You index into the hash
492with the name of the file (minus the dot) and you get back that dot file's
493contents.  For example:
494
495    use DotFiles;
496    tie %dot, 'DotFiles';
497    if ( $dot{profile} =~ /MANPATH/ ||
498         $dot{login}   =~ /MANPATH/ ||
499         $dot{cshrc}   =~ /MANPATH/    )
500    {
501        print "you seem to set your MANPATH\n";
502    }
503
504Or here's another sample of using our tied class:
505
506    tie %him, 'DotFiles', 'daemon';
507    foreach $f ( keys %him ) {
508        printf "daemon dot file %s is size %d\n",
509            $f, length $him{$f};
510    }
511
512In our tied hash DotFiles example, we use a regular
513hash for the object containing several important
514fields, of which only the C<{LIST}> field will be what the
515user thinks of as the real hash.
516
517=over 5
518
519=item USER
520
521whose dot files this object represents
522
523=item HOME
524
525where those dot files live
526
527=item CLOBBER
528
529whether we should try to change or remove those dot files
530
531=item LIST
532
533the hash of dot file names and content mappings
534
535=back
536
537Here's the start of F<Dotfiles.pm>:
538
539    package DotFiles;
540    use Carp;
541    sub whowasi { (caller(1))[3] . '()' }
542    my $DEBUG = 0;
543    sub debug { $DEBUG = @_ ? shift : 1 }
544
545For our example, we want to be able to emit debugging info to help in tracing
546during development.  We keep also one convenience function around
547internally to help print out warnings; whowasi() returns the function name
548that calls it.
549
550Here are the methods for the DotFiles tied hash.
551
552=over 4
553
554=item TIEHASH classname, LIST
555
556This is the constructor for the class.  That means it is expected to
557return a blessed reference through which the new object (probably but not
558necessarily an anonymous hash) will be accessed.
559
560Here's the constructor:
561
562    sub TIEHASH {
563        my $self = shift;
564        my $user = shift || $>;
565        my $dotdir = shift || '';
566        croak "usage: @{[&whowasi]} [USER [DOTDIR]]" if @_;
567        $user = getpwuid($user) if $user =~ /^\d+$/;
568        my $dir = (getpwnam($user))[7]
569                || croak "@{[&whowasi]}: no user $user";
570        $dir .= "/$dotdir" if $dotdir;
571
572        my $node = {
573            USER    => $user,
574            HOME    => $dir,
575            LIST    => {},
576            CLOBBER => 0,
577        };
578
579        opendir(DIR, $dir)
580                || croak "@{[&whowasi]}: can't opendir $dir: $!";
581        foreach $dot ( grep /^\./ && -f "$dir/$_", readdir(DIR)) {
582            $dot =~ s/^\.//;
583            $node->{LIST}{$dot} = undef;
584        }
585        closedir DIR;
586        return bless $node, $self;
587    }
588
589It's probably worth mentioning that if you're going to filetest the
590return values out of a readdir, you'd better prepend the directory
591in question.  Otherwise, because we didn't chdir() there, it would
592have been testing the wrong file.
593
594=item FETCH this, key
595
596This method will be triggered every time an element in the tied hash is
597accessed (read).  It takes one argument beyond its self reference: the key
598whose value we're trying to fetch.
599
600Here's the fetch for our DotFiles example.
601
602    sub FETCH {
603        carp &whowasi if $DEBUG;
604        my $self = shift;
605        my $dot = shift;
606        my $dir = $self->{HOME};
607        my $file = "$dir/.$dot";
608
609        unless (exists $self->{LIST}->{$dot} || -f $file) {
610            carp "@{[&whowasi]}: no $dot file" if $DEBUG;
611            return undef;
612        }
613
614        if (defined $self->{LIST}->{$dot}) {
615            return $self->{LIST}->{$dot};
616        } else {
617            return $self->{LIST}->{$dot} = `cat $dir/.$dot`;
618        }
619    }
620
621It was easy to write by having it call the Unix cat(1) command, but it
622would probably be more portable to open the file manually (and somewhat
623more efficient).  Of course, because dot files are a Unixy concept, we're
624not that concerned.
625
626=item STORE this, key, value
627
628This method will be triggered every time an element in the tied hash is set
629(written).  It takes two arguments beyond its self reference: the index at
630which we're trying to store something, and the value we're trying to put
631there.
632
633Here in our DotFiles example, we'll be careful not to let
634them try to overwrite the file unless they've called the clobber()
635method on the original object reference returned by tie().
636
637    sub STORE {
638        carp &whowasi if $DEBUG;
639        my $self = shift;
640        my $dot = shift;
641        my $value = shift;
642        my $file = $self->{HOME} . "/.$dot";
643        my $user = $self->{USER};
644
645        croak "@{[&whowasi]}: $file not clobberable"
646            unless $self->{CLOBBER};
647
648        open(F, "> $file") || croak "can't open $file: $!";
649        print F $value;
650        close(F);
651    }
652
653If they wanted to clobber something, they might say:
654
655    $ob = tie %daemon_dots, 'daemon';
656    $ob->clobber(1);
657    $daemon_dots{signature} = "A true daemon\n";
658
659Another way to lay hands on a reference to the underlying object is to
660use the tied() function, so they might alternately have set clobber
661using:
662
663    tie %daemon_dots, 'daemon';
664    tied(%daemon_dots)->clobber(1);
665
666The clobber method is simply:
667
668    sub clobber {
669        my $self = shift;
670        $self->{CLOBBER} = @_ ? shift : 1;
671    }
672
673=item DELETE this, key
674
675This method is triggered when we remove an element from the hash,
676typically by using the delete() function.  Again, we'll
677be careful to check whether they really want to clobber files.
678
679    sub DELETE   {
680        carp &whowasi if $DEBUG;
681
682        my $self = shift;
683        my $dot = shift;
684        my $file = $self->{HOME} . "/.$dot";
685        croak "@{[&whowasi]}: won't remove file $file"
686            unless $self->{CLOBBER};
687        delete $self->{LIST}->{$dot};
688        my $success = unlink($file);
689        carp "@{[&whowasi]}: can't unlink $file: $!" unless $success;
690        $success;
691    }
692
693The value returned by DELETE becomes the return value of the call
694to delete().  If you want to emulate the normal behavior of delete(),
695you should return whatever FETCH would have returned for this key.
696In this example, we have chosen instead to return a value which tells
697the caller whether the file was successfully deleted.
698
699=item CLEAR this
700
701This method is triggered when the whole hash is to be cleared, usually by
702assigning the empty list to it.
703
704In our example, that would remove all the user's dot files!  It's such a
705dangerous thing that they'll have to set CLOBBER to something higher than
7061 to make it happen.
707
708    sub CLEAR    {
709        carp &whowasi if $DEBUG;
710        my $self = shift;
711        croak "@{[&whowasi]}: won't remove all dot files for $self->{USER}"
712            unless $self->{CLOBBER} > 1;
713        my $dot;
714        foreach $dot ( keys %{$self->{LIST}}) {
715            $self->DELETE($dot);
716        }
717    }
718
719=item EXISTS this, key
720
721This method is triggered when the user uses the exists() function
722on a particular hash.  In our example, we'll look at the C<{LIST}>
723hash element for this:
724
725    sub EXISTS   {
726        carp &whowasi if $DEBUG;
727        my $self = shift;
728        my $dot = shift;
729        return exists $self->{LIST}->{$dot};
730    }
731
732=item FIRSTKEY this
733
734This method will be triggered when the user is going
735to iterate through the hash, such as via a keys() or each()
736call.
737
738    sub FIRSTKEY {
739        carp &whowasi if $DEBUG;
740        my $self = shift;
741        my $a = keys %{$self->{LIST}};          # reset each() iterator
742        each %{$self->{LIST}}
743    }
744
745=item NEXTKEY this, lastkey
746
747This method gets triggered during a keys() or each() iteration.  It has a
748second argument which is the last key that had been accessed.  This is
749useful if you're carrying about ordering or calling the iterator from more
750than one sequence, or not really storing things in a hash anywhere.
751
752For our example, we're using a real hash so we'll do just the simple
753thing, but we'll have to go through the LIST field indirectly.
754
755    sub NEXTKEY  {
756        carp &whowasi if $DEBUG;
757        my $self = shift;
758        return each %{ $self->{LIST} }
759    }
760
761=item SCALAR this
762
763This is called when the hash is evaluated in scalar context. In order
764to mimic the behaviour of untied hashes, this method should return a
765false value when the tied hash is considered empty. If this method does
766not exist, perl will make some educated guesses and return true when
767the hash is inside an iteration. If this isn't the case, FIRSTKEY is
768called, and the result will be a false value if FIRSTKEY returns the empty
769list, true otherwise.
770
771However, you should B<not> blindly rely on perl always doing the right
772thing. Particularly, perl will mistakenly return true when you clear the
773hash by repeatedly calling DELETE until it is empty. You are therefore
774advised to supply your own SCALAR method when you want to be absolutely
775sure that your hash behaves nicely in scalar context.
776
777In our example we can just call C<scalar> on the underlying hash
778referenced by C<$self-E<gt>{LIST}>:
779
780    sub SCALAR {
781        carp &whowasi if $DEBUG;
782        my $self = shift;
783        return scalar %{ $self->{LIST} }
784    }
785
786=item UNTIE this
787
788This is called when C<untie> occurs.  See L<The C<untie> Gotcha> below.
789
790=item DESTROY this
791
792This method is triggered when a tied hash is about to go out of
793scope.  You don't really need it unless you're trying to add debugging
794or have auxiliary state to clean up.  Here's a very simple function:
795
796    sub DESTROY  {
797        carp &whowasi if $DEBUG;
798    }
799
800=back
801
802Note that functions such as keys() and values() may return huge lists
803when used on large objects, like DBM files.  You may prefer to use the
804each() function to iterate over such.  Example:
805
806    # print out history file offsets
807    use NDBM_File;
808    tie(%HIST, 'NDBM_File', '/usr/lib/news/history', 1, 0);
809    while (($key,$val) = each %HIST) {
810        print $key, ' = ', unpack('L',$val), "\n";
811    }
812    untie(%HIST);
813
814=head2 Tying FileHandles
815
816This is partially implemented now.
817
818A class implementing a tied filehandle should define the following
819methods: TIEHANDLE, at least one of PRINT, PRINTF, WRITE, READLINE, GETC,
820READ, and possibly CLOSE, UNTIE and DESTROY.  The class can also provide: BINMODE,
821OPEN, EOF, FILENO, SEEK, TELL - if the corresponding perl operators are
822used on the handle.
823
824When STDERR is tied, its PRINT method will be called to issue warnings
825and error messages.  This feature is temporarily disabled during the call,
826which means you can use C<warn()> inside PRINT without starting a recursive
827loop.  And just like C<__WARN__> and C<__DIE__> handlers, STDERR's PRINT
828method may be called to report parser errors, so the caveats mentioned under
829L<perlvar/%SIG> apply.
830
831All of this is especially useful when perl is embedded in some other
832program, where output to STDOUT and STDERR may have to be redirected
833in some special way.  See nvi and the Apache module for examples.
834
835In our example we're going to create a shouting handle.
836
837    package Shout;
838
839=over 4
840
841=item TIEHANDLE classname, LIST
842
843This is the constructor for the class.  That means it is expected to
844return a blessed reference of some sort. The reference can be used to
845hold some internal information.
846
847    sub TIEHANDLE { print "<shout>\n"; my $i; bless \$i, shift }
848
849=item WRITE this, LIST
850
851This method will be called when the handle is written to via the
852C<syswrite> function.
853
854    sub WRITE {
855        $r = shift;
856        my($buf,$len,$offset) = @_;
857        print "WRITE called, \$buf=$buf, \$len=$len, \$offset=$offset";
858    }
859
860=item PRINT this, LIST
861
862This method will be triggered every time the tied handle is printed to
863with the C<print()> function.
864Beyond its self reference it also expects the list that was passed to
865the print function.
866
867    sub PRINT { $r = shift; $$r++; print join($,,map(uc($_),@_)),$\ }
868
869=item PRINTF this, LIST
870
871This method will be triggered every time the tied handle is printed to
872with the C<printf()> function.
873Beyond its self reference it also expects the format and list that was
874passed to the printf function.
875
876    sub PRINTF {
877        shift;
878        my $fmt = shift;
879        print sprintf($fmt, @_)."\n";
880    }
881
882=item READ this, LIST
883
884This method will be called when the handle is read from via the C<read>
885or C<sysread> functions.
886
887    sub READ {
888        my $self = shift;
889        my $bufref = \$_[0];
890        my(undef,$len,$offset) = @_;
891        print "READ called, \$buf=$bufref, \$len=$len, \$offset=$offset";
892        # add to $$bufref, set $len to number of characters read
893        $len;
894    }
895
896=item READLINE this
897
898This method will be called when the handle is read from via <HANDLE>.
899The method should return undef when there is no more data.
900
901    sub READLINE { $r = shift; "READLINE called $$r times\n"; }
902
903=item GETC this
904
905This method will be called when the C<getc> function is called.
906
907    sub GETC { print "Don't GETC, Get Perl"; return "a"; }
908
909=item CLOSE this
910
911This method will be called when the handle is closed via the C<close>
912function.
913
914    sub CLOSE { print "CLOSE called.\n" }
915
916=item UNTIE this
917
918As with the other types of ties, this method will be called when C<untie> happens.
919It may be appropriate to "auto CLOSE" when this occurs.  See
920L<The C<untie> Gotcha> below.
921
922=item DESTROY this
923
924As with the other types of ties, this method will be called when the
925tied handle is about to be destroyed. This is useful for debugging and
926possibly cleaning up.
927
928    sub DESTROY { print "</shout>\n" }
929
930=back
931
932Here's how to use our little example:
933
934    tie(*FOO,'Shout');
935    print FOO "hello\n";
936    $a = 4; $b = 6;
937    print FOO $a, " plus ", $b, " equals ", $a + $b, "\n";
938    print <FOO>;
939
940=head2 UNTIE this
941
942You can define for all tie types an UNTIE method that will be called
943at untie().  See L<The C<untie> Gotcha> below.
944
945=head2 The C<untie> Gotcha
946
947If you intend making use of the object returned from either tie() or
948tied(), and if the tie's target class defines a destructor, there is a
949subtle gotcha you I<must> guard against.
950
951As setup, consider this (admittedly rather contrived) example of a
952tie; all it does is use a file to keep a log of the values assigned to
953a scalar.
954
955    package Remember;
956
957    use strict;
958    use warnings;
959    use IO::File;
960
961    sub TIESCALAR {
962        my $class = shift;
963        my $filename = shift;
964        my $handle = new IO::File "> $filename"
965                         or die "Cannot open $filename: $!\n";
966
967        print $handle "The Start\n";
968        bless {FH => $handle, Value => 0}, $class;
969    }
970
971    sub FETCH {
972        my $self = shift;
973        return $self->{Value};
974    }
975
976    sub STORE {
977        my $self = shift;
978        my $value = shift;
979        my $handle = $self->{FH};
980        print $handle "$value\n";
981        $self->{Value} = $value;
982    }
983
984    sub DESTROY {
985        my $self = shift;
986        my $handle = $self->{FH};
987        print $handle "The End\n";
988        close $handle;
989    }
990
991    1;
992
993Here is an example that makes use of this tie:
994
995    use strict;
996    use Remember;
997
998    my $fred;
999    tie $fred, 'Remember', 'myfile.txt';
1000    $fred = 1;
1001    $fred = 4;
1002    $fred = 5;
1003    untie $fred;
1004    system "cat myfile.txt";
1005
1006This is the output when it is executed:
1007
1008    The Start
1009    1
1010    4
1011    5
1012    The End
1013
1014So far so good.  Those of you who have been paying attention will have
1015spotted that the tied object hasn't been used so far.  So lets add an
1016extra method to the Remember class to allow comments to be included in
1017the file -- say, something like this:
1018
1019    sub comment {
1020        my $self = shift;
1021        my $text = shift;
1022        my $handle = $self->{FH};
1023        print $handle $text, "\n";
1024    }
1025
1026And here is the previous example modified to use the C<comment> method
1027(which requires the tied object):
1028
1029    use strict;
1030    use Remember;
1031
1032    my ($fred, $x);
1033    $x = tie $fred, 'Remember', 'myfile.txt';
1034    $fred = 1;
1035    $fred = 4;
1036    comment $x "changing...";
1037    $fred = 5;
1038    untie $fred;
1039    system "cat myfile.txt";
1040
1041When this code is executed there is no output.  Here's why:
1042
1043When a variable is tied, it is associated with the object which is the
1044return value of the TIESCALAR, TIEARRAY, or TIEHASH function.  This
1045object normally has only one reference, namely, the implicit reference
1046from the tied variable.  When untie() is called, that reference is
1047destroyed.  Then, as in the first example above, the object's
1048destructor (DESTROY) is called, which is normal for objects that have
1049no more valid references; and thus the file is closed.
1050
1051In the second example, however, we have stored another reference to
1052the tied object in $x.  That means that when untie() gets called
1053there will still be a valid reference to the object in existence, so
1054the destructor is not called at that time, and thus the file is not
1055closed.  The reason there is no output is because the file buffers
1056have not been flushed to disk.
1057
1058Now that you know what the problem is, what can you do to avoid it?
1059Prior to the introduction of the optional UNTIE method the only way
1060was the good old C<-w> flag. Which will spot any instances where you call
1061untie() and there are still valid references to the tied object.  If
1062the second script above this near the top C<use warnings 'untie'>
1063or was run with the C<-w> flag, Perl prints this
1064warning message:
1065
1066    untie attempted while 1 inner references still exist
1067
1068To get the script to work properly and silence the warning make sure
1069there are no valid references to the tied object I<before> untie() is
1070called:
1071
1072    undef $x;
1073    untie $fred;
1074
1075Now that UNTIE exists the class designer can decide which parts of the
1076class functionality are really associated with C<untie> and which with
1077the object being destroyed. What makes sense for a given class depends
1078on whether the inner references are being kept so that non-tie-related
1079methods can be called on the object. But in most cases it probably makes
1080sense to move the functionality that would have been in DESTROY to the UNTIE
1081method.
1082
1083If the UNTIE method exists then the warning above does not occur. Instead the
1084UNTIE method is passed the count of "extra" references and can issue its own
1085warning if appropriate. e.g. to replicate the no UNTIE case this method can
1086be used:
1087
1088    sub UNTIE
1089    {
1090     my ($obj,$count) = @_;
1091     carp "untie attempted while $count inner references still exist" if $count;
1092    }
1093
1094=head1 SEE ALSO
1095
1096See L<DB_File> or L<Config> for some interesting tie() implementations.
1097A good starting point for many tie() implementations is with one of the
1098modules L<Tie::Scalar>, L<Tie::Array>, L<Tie::Hash>, or L<Tie::Handle>.
1099
1100=head1 BUGS
1101
1102The bucket usage information provided by C<scalar(%hash)> is not
1103available.  What this means is that using %tied_hash in boolean
1104context doesn't work right (currently this always tests false,
1105regardless of whether the hash is empty or hash elements).
1106
1107Localizing tied arrays or hashes does not work.  After exiting the
1108scope the arrays or the hashes are not restored.
1109
1110Counting the number of entries in a hash via C<scalar(keys(%hash))>
1111or C<scalar(values(%hash)>) is inefficient since it needs to iterate
1112through all the entries with FIRSTKEY/NEXTKEY.
1113
1114Tied hash/array slices cause multiple FETCH/STORE pairs, there are no
1115tie methods for slice operations.
1116
1117You cannot easily tie a multilevel data structure (such as a hash of
1118hashes) to a dbm file.  The first problem is that all but GDBM and
1119Berkeley DB have size limitations, but beyond that, you also have problems
1120with how references are to be represented on disk.  One experimental
1121module that does attempt to address this need partially is the MLDBM
1122module.  Check your nearest CPAN site as described in L<perlmodlib> for
1123source code to MLDBM.
1124
1125Tied filehandles are still incomplete.  sysopen(), truncate(),
1126flock(), fcntl(), stat() and -X can't currently be trapped.
1127
1128=head1 AUTHOR
1129
1130Tom Christiansen
1131
1132TIEHANDLE by Sven Verdoolaege <F<skimo@dns.ufsia.ac.be>> and Doug MacEachern <F<dougm@osf.org>>
1133
1134UNTIE by Nick Ing-Simmons <F<nick@ing-simmons.net>>
1135
1136SCALAR by Tassilo von Parseval <F<tassilo.von.parseval@rwth-aachen.de>>
1137
1138Tying Arrays by Casey West <F<casey@geeknest.com>>
Note: See TracBrowser for help on using the repository browser.