1 | /* Note: file is included because gmp uses functions that use random in its |
---|
2 | primality testing functions. //ylo */ |
---|
3 | |
---|
4 | /* |
---|
5 | * Copyright (c) 1983 Regents of the University of California. |
---|
6 | * All rights reserved. |
---|
7 | * |
---|
8 | * Redistribution and use in source and binary forms, with or without |
---|
9 | * modification, are permitted provided that the following conditions |
---|
10 | * are met: |
---|
11 | * 1. Redistributions of source code must retain the above copyright |
---|
12 | * notice, this list of conditions and the following disclaimer. |
---|
13 | * 2. Redistributions in binary form must reproduce the above copyright |
---|
14 | * notice, this list of conditions and the following disclaimer in the |
---|
15 | * documentation and/or other materials provided with the distribution. |
---|
16 | * 3. All advertising materials mentioning features or use of this software |
---|
17 | * must display the following acknowledgement: |
---|
18 | * This product includes software developed by the University of |
---|
19 | * California, Berkeley and its contributors. |
---|
20 | * 4. Neither the name of the University nor the names of its contributors |
---|
21 | * may be used to endorse or promote products derived from this software |
---|
22 | * without specific prior written permission. |
---|
23 | * |
---|
24 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
---|
25 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
---|
26 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
---|
27 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
---|
28 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
---|
29 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
---|
30 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
---|
31 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
32 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
---|
33 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
---|
34 | * SUCH DAMAGE. |
---|
35 | */ |
---|
36 | |
---|
37 | #if defined(LIBC_SCCS) && !defined(lint) |
---|
38 | static char sccsid[] = "@(#)random.c 5.9 (Berkeley) 2/23/91"; |
---|
39 | #endif /* LIBC_SCCS and not lint */ |
---|
40 | |
---|
41 | #include <stdio.h> |
---|
42 | #include <stdlib.h> |
---|
43 | #include <sys/types.h> |
---|
44 | |
---|
45 | /* |
---|
46 | * random.c: |
---|
47 | * |
---|
48 | * An improved random number generation package. In addition to the standard |
---|
49 | * rand()/srand() like interface, this package also has a special state info |
---|
50 | * interface. The initstate() routine is called with a seed, an array of |
---|
51 | * bytes, and a count of how many bytes are being passed in; this array is |
---|
52 | * then initialized to contain information for random number generation with |
---|
53 | * that much state information. Good sizes for the amount of state |
---|
54 | * information are 32, 64, 128, and 256 bytes. The state can be switched by |
---|
55 | * calling the setstate() routine with the same array as was initiallized |
---|
56 | * with initstate(). By default, the package runs with 128 bytes of state |
---|
57 | * information and generates far better random numbers than a linear |
---|
58 | * congruential generator. If the amount of state information is less than |
---|
59 | * 32 bytes, a simple linear congruential R.N.G. is used. |
---|
60 | * |
---|
61 | * Internally, the state information is treated as an array of longs; the |
---|
62 | * zeroeth element of the array is the type of R.N.G. being used (small |
---|
63 | * integer); the remainder of the array is the state information for the |
---|
64 | * R.N.G. Thus, 32 bytes of state information will give 7 longs worth of |
---|
65 | * state information, which will allow a degree seven polynomial. (Note: |
---|
66 | * the zeroeth word of state information also has some other information |
---|
67 | * stored in it -- see setstate() for details). |
---|
68 | * |
---|
69 | * The random number generation technique is a linear feedback shift register |
---|
70 | * approach, employing trinomials (since there are fewer terms to sum up that |
---|
71 | * way). In this approach, the least significant bit of all the numbers in |
---|
72 | * the state table will act as a linear feedback shift register, and will |
---|
73 | * have period 2^deg - 1 (where deg is the degree of the polynomial being |
---|
74 | * used, assuming that the polynomial is irreducible and primitive). The |
---|
75 | * higher order bits will have longer periods, since their values are also |
---|
76 | * influenced by pseudo-random carries out of the lower bits. The total |
---|
77 | * period of the generator is approximately deg*(2**deg - 1); thus doubling |
---|
78 | * the amount of state information has a vast influence on the period of the |
---|
79 | * generator. Note: the deg*(2**deg - 1) is an approximation only good for |
---|
80 | * large deg, when the period of the shift register is the dominant factor. |
---|
81 | * With deg equal to seven, the period is actually much longer than the |
---|
82 | * 7*(2**7 - 1) predicted by this formula. |
---|
83 | */ |
---|
84 | |
---|
85 | /* |
---|
86 | * For each of the currently supported random number generators, we have a |
---|
87 | * break value on the amount of state information (you need at least this |
---|
88 | * many bytes of state info to support this random number generator), a degree |
---|
89 | * for the polynomial (actually a trinomial) that the R.N.G. is based on, and |
---|
90 | * the separation between the two lower order coefficients of the trinomial. |
---|
91 | */ |
---|
92 | #define TYPE_0 0 /* linear congruential */ |
---|
93 | #define BREAK_0 8 |
---|
94 | #define DEG_0 0 |
---|
95 | #define SEP_0 0 |
---|
96 | |
---|
97 | #define TYPE_1 1 /* x**7 + x**3 + 1 */ |
---|
98 | #define BREAK_1 32 |
---|
99 | #define DEG_1 7 |
---|
100 | #define SEP_1 3 |
---|
101 | |
---|
102 | #define TYPE_2 2 /* x**15 + x + 1 */ |
---|
103 | #define BREAK_2 64 |
---|
104 | #define DEG_2 15 |
---|
105 | #define SEP_2 1 |
---|
106 | |
---|
107 | #define TYPE_3 3 /* x**31 + x**3 + 1 */ |
---|
108 | #define BREAK_3 128 |
---|
109 | #define DEG_3 31 |
---|
110 | #define SEP_3 3 |
---|
111 | |
---|
112 | #define TYPE_4 4 /* x**63 + x + 1 */ |
---|
113 | #define BREAK_4 256 |
---|
114 | #define DEG_4 63 |
---|
115 | #define SEP_4 1 |
---|
116 | |
---|
117 | /* |
---|
118 | * Array versions of the above information to make code run faster -- |
---|
119 | * relies on fact that TYPE_i == i. |
---|
120 | */ |
---|
121 | #define MAX_TYPES 5 /* max number of types above */ |
---|
122 | |
---|
123 | static int degrees[MAX_TYPES] = { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 }; |
---|
124 | static int seps [MAX_TYPES] = { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 }; |
---|
125 | |
---|
126 | /* |
---|
127 | * Initially, everything is set up as if from: |
---|
128 | * |
---|
129 | * initstate(1, &randtbl, 128); |
---|
130 | * |
---|
131 | * Note that this initialization takes advantage of the fact that srandom() |
---|
132 | * advances the front and rear pointers 10*rand_deg times, and hence the |
---|
133 | * rear pointer which starts at 0 will also end up at zero; thus the zeroeth |
---|
134 | * element of the state information, which contains info about the current |
---|
135 | * position of the rear pointer is just |
---|
136 | * |
---|
137 | * MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3. |
---|
138 | */ |
---|
139 | |
---|
140 | static long randtbl[DEG_3 + 1] = { |
---|
141 | TYPE_3, |
---|
142 | 0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342, 0xde3b81e0, 0xdf0a6fb5, |
---|
143 | 0xf103bc02, 0x48f340fb, 0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd, |
---|
144 | 0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86, 0xda672e2a, 0x1588ca88, |
---|
145 | 0xe369735d, 0x904f35f7, 0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc, |
---|
146 | 0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b, 0xf5ad9d0e, 0x8999220b, |
---|
147 | 0x27fb47b9, |
---|
148 | }; |
---|
149 | |
---|
150 | /* |
---|
151 | * fptr and rptr are two pointers into the state info, a front and a rear |
---|
152 | * pointer. These two pointers are always rand_sep places aparts, as they |
---|
153 | * cycle cyclically through the state information. (Yes, this does mean we |
---|
154 | * could get away with just one pointer, but the code for random() is more |
---|
155 | * efficient this way). The pointers are left positioned as they would be |
---|
156 | * from the call |
---|
157 | * |
---|
158 | * initstate(1, randtbl, 128); |
---|
159 | * |
---|
160 | * (The position of the rear pointer, rptr, is really 0 (as explained above |
---|
161 | * in the initialization of randtbl) because the state table pointer is set |
---|
162 | * to point to randtbl[1] (as explained below). |
---|
163 | */ |
---|
164 | static long *fptr = &randtbl[SEP_3 + 1]; |
---|
165 | static long *rptr = &randtbl[1]; |
---|
166 | |
---|
167 | /* |
---|
168 | * The following things are the pointer to the state information table, the |
---|
169 | * type of the current generator, the degree of the current polynomial being |
---|
170 | * used, and the separation between the two pointers. Note that for efficiency |
---|
171 | * of random(), we remember the first location of the state information, not |
---|
172 | * the zeroeth. Hence it is valid to access state[-1], which is used to |
---|
173 | * store the type of the R.N.G. Also, we remember the last location, since |
---|
174 | * this is more efficient than indexing every time to find the address of |
---|
175 | * the last element to see if the front and rear pointers have wrapped. |
---|
176 | */ |
---|
177 | static long *state = &randtbl[1]; |
---|
178 | static int rand_type = TYPE_3; |
---|
179 | static int rand_deg = DEG_3; |
---|
180 | static int rand_sep = SEP_3; |
---|
181 | static long *end_ptr = &randtbl[DEG_3 + 1]; |
---|
182 | |
---|
183 | long random(); |
---|
184 | |
---|
185 | /* |
---|
186 | * srandom: |
---|
187 | * |
---|
188 | * Initialize the random number generator based on the given seed. If the |
---|
189 | * type is the trivial no-state-information type, just remember the seed. |
---|
190 | * Otherwise, initializes state[] based on the given "seed" via a linear |
---|
191 | * congruential generator. Then, the pointers are set to known locations |
---|
192 | * that are exactly rand_sep places apart. Lastly, it cycles the state |
---|
193 | * information a given number of times to get rid of any initial dependencies |
---|
194 | * introduced by the L.C.R.N.G. Note that the initialization of randtbl[] |
---|
195 | * for default usage relies on values produced by this routine. |
---|
196 | */ |
---|
197 | void |
---|
198 | srandom(x) |
---|
199 | unsigned int x; |
---|
200 | { |
---|
201 | register int i, j; |
---|
202 | |
---|
203 | if (rand_type == TYPE_0) |
---|
204 | state[0] = x; |
---|
205 | else { |
---|
206 | j = 1; |
---|
207 | state[0] = x; |
---|
208 | for (i = 1; i < rand_deg; i++) |
---|
209 | state[i] = 1103515245 * state[i - 1] + 12345; |
---|
210 | fptr = &state[rand_sep]; |
---|
211 | rptr = &state[0]; |
---|
212 | for (i = 0; i < 10 * rand_deg; i++) |
---|
213 | (void)random(); |
---|
214 | } |
---|
215 | } |
---|
216 | |
---|
217 | /* |
---|
218 | * initstate: |
---|
219 | * |
---|
220 | * Initialize the state information in the given array of n bytes for future |
---|
221 | * random number generation. Based on the number of bytes we are given, and |
---|
222 | * the break values for the different R.N.G.'s, we choose the best (largest) |
---|
223 | * one we can and set things up for it. srandom() is then called to |
---|
224 | * initialize the state information. |
---|
225 | * |
---|
226 | * Note that on return from srandom(), we set state[-1] to be the type |
---|
227 | * multiplexed with the current value of the rear pointer; this is so |
---|
228 | * successive calls to initstate() won't lose this information and will be |
---|
229 | * able to restart with setstate(). |
---|
230 | * |
---|
231 | * Note: the first thing we do is save the current state, if any, just like |
---|
232 | * setstate() so that it doesn't matter when initstate is called. |
---|
233 | * |
---|
234 | * Returns a pointer to the old state. |
---|
235 | */ |
---|
236 | char * |
---|
237 | initstate(seed, arg_state, n) |
---|
238 | unsigned int seed; /* seed for R.N.G. */ |
---|
239 | char *arg_state; /* pointer to state array */ |
---|
240 | int n; /* # bytes of state info */ |
---|
241 | { |
---|
242 | register char *ostate = (char *)(&state[-1]); |
---|
243 | |
---|
244 | if (rand_type == TYPE_0) |
---|
245 | state[-1] = rand_type; |
---|
246 | else |
---|
247 | state[-1] = MAX_TYPES * (rptr - state) + rand_type; |
---|
248 | if (n < BREAK_0) { |
---|
249 | (void)fprintf(stderr, |
---|
250 | "random: not enough state (%d bytes); ignored.\n", n); |
---|
251 | return(0); |
---|
252 | } |
---|
253 | if (n < BREAK_1) { |
---|
254 | rand_type = TYPE_0; |
---|
255 | rand_deg = DEG_0; |
---|
256 | rand_sep = SEP_0; |
---|
257 | } else if (n < BREAK_2) { |
---|
258 | rand_type = TYPE_1; |
---|
259 | rand_deg = DEG_1; |
---|
260 | rand_sep = SEP_1; |
---|
261 | } else if (n < BREAK_3) { |
---|
262 | rand_type = TYPE_2; |
---|
263 | rand_deg = DEG_2; |
---|
264 | rand_sep = SEP_2; |
---|
265 | } else if (n < BREAK_4) { |
---|
266 | rand_type = TYPE_3; |
---|
267 | rand_deg = DEG_3; |
---|
268 | rand_sep = SEP_3; |
---|
269 | } else { |
---|
270 | rand_type = TYPE_4; |
---|
271 | rand_deg = DEG_4; |
---|
272 | rand_sep = SEP_4; |
---|
273 | } |
---|
274 | state = &(((long *)arg_state)[1]); /* first location */ |
---|
275 | end_ptr = &state[rand_deg]; /* must set end_ptr before srandom */ |
---|
276 | srandom(seed); |
---|
277 | if (rand_type == TYPE_0) |
---|
278 | state[-1] = rand_type; |
---|
279 | else |
---|
280 | state[-1] = MAX_TYPES*(rptr - state) + rand_type; |
---|
281 | return(ostate); |
---|
282 | } |
---|
283 | |
---|
284 | /* |
---|
285 | * setstate: |
---|
286 | * |
---|
287 | * Restore the state from the given state array. |
---|
288 | * |
---|
289 | * Note: it is important that we also remember the locations of the pointers |
---|
290 | * in the current state information, and restore the locations of the pointers |
---|
291 | * from the old state information. This is done by multiplexing the pointer |
---|
292 | * location into the zeroeth word of the state information. |
---|
293 | * |
---|
294 | * Note that due to the order in which things are done, it is OK to call |
---|
295 | * setstate() with the same state as the current state. |
---|
296 | * |
---|
297 | * Returns a pointer to the old state information. |
---|
298 | */ |
---|
299 | char * |
---|
300 | setstate(arg_state) |
---|
301 | char *arg_state; |
---|
302 | { |
---|
303 | register long *new_state = (long *)arg_state; |
---|
304 | register int type = new_state[0] % MAX_TYPES; |
---|
305 | register int rear = new_state[0] / MAX_TYPES; |
---|
306 | char *ostate = (char *)(&state[-1]); |
---|
307 | |
---|
308 | if (rand_type == TYPE_0) |
---|
309 | state[-1] = rand_type; |
---|
310 | else |
---|
311 | state[-1] = MAX_TYPES * (rptr - state) + rand_type; |
---|
312 | switch(type) { |
---|
313 | case TYPE_0: |
---|
314 | case TYPE_1: |
---|
315 | case TYPE_2: |
---|
316 | case TYPE_3: |
---|
317 | case TYPE_4: |
---|
318 | rand_type = type; |
---|
319 | rand_deg = degrees[type]; |
---|
320 | rand_sep = seps[type]; |
---|
321 | break; |
---|
322 | default: |
---|
323 | (void)fprintf(stderr, |
---|
324 | "random: state info corrupted; not changed.\n"); |
---|
325 | } |
---|
326 | state = &new_state[1]; |
---|
327 | if (rand_type != TYPE_0) { |
---|
328 | rptr = &state[rear]; |
---|
329 | fptr = &state[(rear + rand_sep) % rand_deg]; |
---|
330 | } |
---|
331 | end_ptr = &state[rand_deg]; /* set end_ptr too */ |
---|
332 | return(ostate); |
---|
333 | } |
---|
334 | |
---|
335 | /* |
---|
336 | * random: |
---|
337 | * |
---|
338 | * If we are using the trivial TYPE_0 R.N.G., just do the old linear |
---|
339 | * congruential bit. Otherwise, we do our fancy trinomial stuff, which is |
---|
340 | * the same in all the other cases due to all the global variables that have |
---|
341 | * been set up. The basic operation is to add the number at the rear pointer |
---|
342 | * into the one at the front pointer. Then both pointers are advanced to |
---|
343 | * the next location cyclically in the table. The value returned is the sum |
---|
344 | * generated, reduced to 31 bits by throwing away the "least random" low bit. |
---|
345 | * |
---|
346 | * Note: the code takes advantage of the fact that both the front and |
---|
347 | * rear pointers can't wrap on the same call by not testing the rear |
---|
348 | * pointer if the front one has wrapped. |
---|
349 | * |
---|
350 | * Returns a 31-bit random number. |
---|
351 | */ |
---|
352 | long |
---|
353 | random(void) |
---|
354 | { |
---|
355 | long i; |
---|
356 | |
---|
357 | if (rand_type == TYPE_0) |
---|
358 | i = state[0] = (state[0] * 1103515245 + 12345) & 0x7fffffff; |
---|
359 | else { |
---|
360 | *fptr += *rptr; |
---|
361 | i = (*fptr >> 1) & 0x7fffffff; /* chucking least random bit */ |
---|
362 | if (++fptr >= end_ptr) { |
---|
363 | fptr = state; |
---|
364 | ++rptr; |
---|
365 | } else if (++rptr >= end_ptr) |
---|
366 | rptr = state; |
---|
367 | } |
---|
368 | return(i); |
---|
369 | } |
---|
370 | |
---|