[9083] | 1 | /* |
---|
| 2 | * top - a top users display for Unix |
---|
| 3 | * |
---|
| 4 | * SYNOPSIS: For FTX based System V Release 4 |
---|
| 5 | * |
---|
| 6 | * DESCRIPTION: |
---|
| 7 | * System V release 4.0.x for FTX (FTX 2.3 and greater) |
---|
| 8 | * |
---|
| 9 | * LIBS: -lelf |
---|
| 10 | * |
---|
| 11 | * AUTHORS: Andrew Herbert <andrew@werple.apana.org.au> |
---|
| 12 | * Robert Boucher <boucher@sofkin.ca> |
---|
| 13 | * Steve Scherf <scherf@swdc.stratus.com> |
---|
| 14 | */ |
---|
| 15 | |
---|
| 16 | #include <stdio.h> |
---|
| 17 | #include <fcntl.h> |
---|
| 18 | #include <unistd.h> |
---|
| 19 | #include <stdlib.h> |
---|
| 20 | #include <errno.h> |
---|
| 21 | #include <dirent.h> |
---|
| 22 | #include <nlist.h> |
---|
| 23 | #include <string.h> |
---|
| 24 | #include <sys/types.h> |
---|
| 25 | #include <sys/param.h> |
---|
| 26 | #include <sys/procfs.h> |
---|
| 27 | #include <sys/sysmacros.h> |
---|
| 28 | #include <sys/sysinfo.h> |
---|
| 29 | #include <sys/vmmeter.h> |
---|
| 30 | #include <vm/anon.h> |
---|
| 31 | #include <sys/priocntl.h> |
---|
| 32 | #include <sys/rtpriocntl.h> |
---|
| 33 | #include <sys/tspriocntl.h> |
---|
| 34 | #include <sys/procset.h> |
---|
| 35 | #include <sys/var.h> |
---|
| 36 | #include <sys/tuneable.h> |
---|
| 37 | #include <sys/fs/rf_acct.h> |
---|
| 38 | #include <sys/sar.h> |
---|
| 39 | #include <sys/ftx/dcm.h> |
---|
| 40 | |
---|
| 41 | #include "top.h" |
---|
| 42 | #include "machine.h" |
---|
| 43 | |
---|
| 44 | #define UNIX "/unix" |
---|
| 45 | #define KMEM "/dev/kmem" |
---|
| 46 | #define PROCFS "/proc" |
---|
| 47 | #define SAR "/dev/sar" |
---|
| 48 | #define CPUSTATES 5 |
---|
| 49 | |
---|
| 50 | #ifndef PRIO_MAX |
---|
| 51 | #define PRIO_MAX 20 |
---|
| 52 | #endif |
---|
| 53 | #ifndef PRIO_MIN |
---|
| 54 | #define PRIO_MIN -20 |
---|
| 55 | #endif |
---|
| 56 | |
---|
| 57 | #ifndef FSCALE |
---|
| 58 | #define FSHIFT 8 /* bits to right of fixed binary point */ |
---|
| 59 | #define FSCALE (1<<FSHIFT) |
---|
| 60 | #endif |
---|
| 61 | |
---|
| 62 | #define loaddouble(x) ((double)(x) / FSCALE) |
---|
| 63 | #define pagetok(size) ctob(size) >> LOG1024 |
---|
| 64 | #define PRTOMS(pp) \ |
---|
| 65 | ((pp)->pr_time.tv_sec * 1000) + ((pp)->pr_time.tv_nsec / 1000000) |
---|
| 66 | |
---|
| 67 | /* definitions for the index in the nlist array */ |
---|
| 68 | #define X_AVENRUN 0 |
---|
| 69 | #define X_MPID 1 |
---|
| 70 | #define X_V 2 |
---|
| 71 | #define X_NPROC 3 |
---|
| 72 | #define X_ANONINFO 4 |
---|
| 73 | #define X_TOTAL 5 |
---|
| 74 | |
---|
| 75 | static struct nlist nlst[] = |
---|
| 76 | { |
---|
| 77 | {"avenrun"}, /* 0 */ |
---|
| 78 | {"mpid"}, /* 1 */ |
---|
| 79 | {"v"}, /* 2 */ |
---|
| 80 | {"nproc"}, /* 3 */ |
---|
| 81 | {"anoninfo"}, /* 4 */ |
---|
| 82 | {"total"}, /* 5 */ |
---|
| 83 | {NULL} |
---|
| 84 | }; |
---|
| 85 | |
---|
| 86 | static unsigned long avenrun_offset; |
---|
| 87 | static unsigned long mpid_offset; |
---|
| 88 | static unsigned long nproc_offset; |
---|
| 89 | static unsigned long anoninfo_offset; |
---|
| 90 | static unsigned long total_offset; |
---|
| 91 | |
---|
| 92 | /* get_process_info passes back a handle. This is what it looks like: */ |
---|
| 93 | |
---|
| 94 | struct handle |
---|
| 95 | { |
---|
| 96 | struct prpsinfo **next_proc;/* points to next valid proc pointer */ |
---|
| 97 | int remaining; /* number of pointers remaining */ |
---|
| 98 | }; |
---|
| 99 | |
---|
| 100 | #define MAXTIMEHIST 12 |
---|
| 101 | #define HASHSZ 512 /* This must be a power of 2. */ |
---|
| 102 | #define HASHMASK (HASHSZ - 1) |
---|
| 103 | #define TF_USED 0x01 |
---|
| 104 | #define TF_NEWPROC 0x02 |
---|
| 105 | |
---|
| 106 | #define TD_HASH(pid) \ |
---|
| 107 | (timedata_t *)(&hash[(pid) & HASHMASK]) |
---|
| 108 | |
---|
| 109 | typedef struct hash { |
---|
| 110 | struct timedata *hnext; |
---|
| 111 | struct timedata *hlast; |
---|
| 112 | } hash_t; |
---|
| 113 | |
---|
| 114 | /* data for CPU and WCPU fields */ |
---|
| 115 | typedef struct timedata { |
---|
| 116 | struct timedata *hnext; |
---|
| 117 | struct timedata *hlast; |
---|
| 118 | struct timedata *lnext; |
---|
| 119 | struct timedata *llast; |
---|
| 120 | pid_t pid; |
---|
| 121 | char index; |
---|
| 122 | char cnt; |
---|
| 123 | char flags; |
---|
| 124 | long hist[MAXTIMEHIST]; |
---|
| 125 | long time; |
---|
| 126 | long ltime; |
---|
| 127 | } timedata_t; |
---|
| 128 | |
---|
| 129 | |
---|
| 130 | /* |
---|
| 131 | * These definitions control the format of the per-process area |
---|
| 132 | */ |
---|
| 133 | |
---|
| 134 | static char header[] = |
---|
| 135 | " PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; |
---|
| 136 | /* 0123456 -- field to fill in starts at header+6 */ |
---|
| 137 | #define UNAME_START 6 |
---|
| 138 | #define Proc_format \ |
---|
| 139 | "%5d %-8.8s %3d %4d%6dK %4dK %-5s%4d:%02d %5.2f%% %5.2f%% %.16s" |
---|
| 140 | |
---|
| 141 | char *state_abbrev[] = |
---|
| 142 | {"", "sleep", "run", "zombie", "stop", "start", "cpu", "swap"}; |
---|
| 143 | |
---|
| 144 | int process_states[8]; |
---|
| 145 | char *procstatenames[] = |
---|
| 146 | { |
---|
| 147 | "", " sleeping, ", " running, ", " zombie, ", " stopped, ", |
---|
| 148 | " starting, ", " on cpu, ", " swapped, ", |
---|
| 149 | NULL |
---|
| 150 | }; |
---|
| 151 | |
---|
| 152 | int cpu_states[CPUSTATES]; |
---|
| 153 | char *cpustatenames[] = |
---|
| 154 | {"idle", "user", "kernel", "wait", "swap", NULL}; |
---|
| 155 | |
---|
| 156 | /* these are for detailing the memory statistics */ |
---|
| 157 | |
---|
| 158 | int memory_stats[5]; |
---|
| 159 | char *memorynames[] = |
---|
| 160 | {"K real, ", "K active, ", "K free, ", "K swap, ", "K free swap", NULL}; |
---|
| 161 | |
---|
| 162 | static int kmem; |
---|
| 163 | static int sar; |
---|
| 164 | static int initted; |
---|
| 165 | static int nproc; |
---|
| 166 | static int bytes; |
---|
| 167 | static struct prpsinfo *pbase; |
---|
| 168 | static struct prpsinfo **pref; |
---|
| 169 | static DIR *procdir; |
---|
| 170 | static char cpu_state[MAX_LOG_CPU]; |
---|
| 171 | static struct sysinfo cpu_sysinfo[MAX_LOG_CPU]; |
---|
| 172 | static sar_percpu_args_t spa; |
---|
| 173 | static timedata_t timedata; |
---|
| 174 | static long total_time; |
---|
| 175 | static double total_cpu; |
---|
| 176 | static hash_t hash[HASHSZ]; |
---|
| 177 | |
---|
| 178 | /* useful externals */ |
---|
| 179 | extern int errno; |
---|
| 180 | extern char *sys_errlist[]; |
---|
| 181 | extern char *myname; |
---|
| 182 | extern long percentages (); |
---|
| 183 | extern int check_nlist (); |
---|
| 184 | extern int getkval (); |
---|
| 185 | extern void perror (); |
---|
| 186 | extern void getptable (); |
---|
| 187 | extern void quit (); |
---|
| 188 | extern int nlist (); |
---|
| 189 | |
---|
| 190 | /* Prototypes. */ |
---|
| 191 | void getsysinfo(struct sysinfo *); |
---|
| 192 | void add_time(struct prpsinfo *); |
---|
| 193 | void get_cpu(struct prpsinfo *, double *, double *); |
---|
| 194 | void clean_timedata(void); |
---|
| 195 | timedata_t *get_timedata(struct prpsinfo *); |
---|
| 196 | |
---|
| 197 | |
---|
| 198 | int |
---|
| 199 | machine_init (struct statics *statics) |
---|
| 200 | { |
---|
| 201 | int i; |
---|
| 202 | static struct var v; |
---|
| 203 | |
---|
| 204 | /* fill in the statics information */ |
---|
| 205 | statics->procstate_names = procstatenames; |
---|
| 206 | statics->cpustate_names = cpustatenames; |
---|
| 207 | statics->memory_names = memorynames; |
---|
| 208 | |
---|
| 209 | /* get the list of symbols we want to access in the kernel */ |
---|
| 210 | if (nlist (UNIX, nlst)) |
---|
| 211 | { |
---|
| 212 | (void) fprintf (stderr, "Unable to nlist %s\n", UNIX); |
---|
| 213 | return (-1); |
---|
| 214 | } |
---|
| 215 | |
---|
| 216 | /* make sure they were all found */ |
---|
| 217 | if (check_nlist (nlst) > 0) |
---|
| 218 | return (-1); |
---|
| 219 | |
---|
| 220 | /* open kernel memory */ |
---|
| 221 | if ((kmem = open (KMEM, O_RDONLY)) == -1) |
---|
| 222 | { |
---|
| 223 | perror (KMEM); |
---|
| 224 | return (-1); |
---|
| 225 | } |
---|
| 226 | |
---|
| 227 | /* Open the sar driver device node. */ |
---|
| 228 | if ((sar = open(SAR, O_RDONLY)) == -1) |
---|
| 229 | { |
---|
| 230 | perror (SAR); |
---|
| 231 | return (-1); |
---|
| 232 | } |
---|
| 233 | |
---|
| 234 | |
---|
| 235 | /* get the symbol values out of kmem */ |
---|
| 236 | /* NPROC Tuning parameter for max number of processes */ |
---|
| 237 | (void) getkval (nlst[X_V].n_value, &v, sizeof (struct var), nlst[X_V].n_name); |
---|
| 238 | nproc = v.v_proc; |
---|
| 239 | |
---|
| 240 | /* stash away certain offsets for later use */ |
---|
| 241 | mpid_offset = nlst[X_MPID].n_value; |
---|
| 242 | nproc_offset = nlst[X_NPROC].n_value; |
---|
| 243 | avenrun_offset = nlst[X_AVENRUN].n_value; |
---|
| 244 | anoninfo_offset = nlst[X_ANONINFO].n_value; |
---|
| 245 | total_offset = nlst[X_TOTAL].n_value; |
---|
| 246 | |
---|
| 247 | /* allocate space for proc structure array and array of pointers */ |
---|
| 248 | bytes = nproc * sizeof (struct prpsinfo); |
---|
| 249 | pbase = (struct prpsinfo *) malloc (bytes); |
---|
| 250 | pref = (struct prpsinfo **) malloc (nproc * sizeof (struct prpsinfo *)); |
---|
| 251 | |
---|
| 252 | /* Just in case ... */ |
---|
| 253 | if (pbase == (struct prpsinfo *) NULL || pref == (struct prpsinfo **) NULL) |
---|
| 254 | { |
---|
| 255 | (void) fprintf (stderr, "%s: can't allocate sufficient memory\n", myname); |
---|
| 256 | return (-1); |
---|
| 257 | } |
---|
| 258 | |
---|
| 259 | if (!(procdir = opendir (PROCFS))) |
---|
| 260 | { |
---|
| 261 | (void) fprintf (stderr, "Unable to open %s\n", PROCFS); |
---|
| 262 | return (-1); |
---|
| 263 | } |
---|
| 264 | |
---|
| 265 | if (chdir (PROCFS)) |
---|
| 266 | { /* handy for later on when we're reading it */ |
---|
| 267 | (void) fprintf (stderr, "Unable to chdir to %s\n", PROCFS); |
---|
| 268 | return (-1); |
---|
| 269 | } |
---|
| 270 | |
---|
| 271 | /* Set up the pointers to the sysinfo data area. */ |
---|
| 272 | spa.uvcp = (caddr_t) &cpu_state[0]; |
---|
| 273 | spa.uvsp = (caddr_t) &cpu_sysinfo[0]; |
---|
| 274 | |
---|
| 275 | timedata.lnext = &timedata; |
---|
| 276 | timedata.llast = &timedata; |
---|
| 277 | |
---|
| 278 | for (i = 0; i < HASHSZ; i++) { |
---|
| 279 | hash[i].hnext = (timedata_t *)&hash[i]; |
---|
| 280 | hash[i].hlast = (timedata_t *)&hash[i]; |
---|
| 281 | } |
---|
| 282 | |
---|
| 283 | /* all done! */ |
---|
| 284 | return (0); |
---|
| 285 | } |
---|
| 286 | |
---|
| 287 | char * |
---|
| 288 | format_header (char *uname_field) |
---|
| 289 | { |
---|
| 290 | register char *ptr; |
---|
| 291 | |
---|
| 292 | ptr = header + UNAME_START; |
---|
| 293 | while (*uname_field != '\0') |
---|
| 294 | *ptr++ = *uname_field++; |
---|
| 295 | |
---|
| 296 | return (header); |
---|
| 297 | } |
---|
| 298 | |
---|
| 299 | void |
---|
| 300 | get_system_info (struct system_info *si) |
---|
| 301 | { |
---|
| 302 | long avenrun[3]; |
---|
| 303 | struct sysinfo sysinfo; |
---|
| 304 | struct vmtotal total; |
---|
| 305 | struct anoninfo anoninfo; |
---|
| 306 | static time_t cp_old[CPUSTATES]; |
---|
| 307 | static time_t cp_diff[CPUSTATES]; /* for cpu state percentages */ |
---|
| 308 | register int i; |
---|
| 309 | |
---|
| 310 | getsysinfo(&sysinfo); |
---|
| 311 | |
---|
| 312 | /* convert cp_time counts to percentages */ |
---|
| 313 | (void) percentages (CPUSTATES, cpu_states, sysinfo.cpu, cp_old, cp_diff); |
---|
| 314 | |
---|
| 315 | /* Find total CPU utilization, as a fraction of 1. */ |
---|
| 316 | total_cpu = (cpu_states[CPU_USER] + cpu_states[CPU_KERNEL]) / 1000.0; |
---|
| 317 | |
---|
| 318 | /* get mpid -- process id of last process */ |
---|
| 319 | (void) getkval (mpid_offset, &(si->last_pid), sizeof (si->last_pid), |
---|
| 320 | "mpid"); |
---|
| 321 | |
---|
| 322 | /* get load average array */ |
---|
| 323 | (void) getkval (avenrun_offset, (int *) avenrun, sizeof (avenrun), "avenrun"); |
---|
| 324 | |
---|
| 325 | /* convert load averages to doubles */ |
---|
| 326 | for (i = 0; i < 3; i++) |
---|
| 327 | si->load_avg[i] = loaddouble (avenrun[i]); |
---|
| 328 | |
---|
| 329 | /* get total -- systemwide main memory usage structure */ |
---|
| 330 | (void) getkval (total_offset, (int *) (&total), sizeof (total), "total"); |
---|
| 331 | /* convert memory stats to Kbytes */ |
---|
| 332 | memory_stats[0] = pagetok (total.t_rm); |
---|
| 333 | memory_stats[1] = pagetok (total.t_arm); |
---|
| 334 | memory_stats[2] = pagetok (total.t_free); |
---|
| 335 | (void) getkval (anoninfo_offset, (int *) (&anoninfo), sizeof (anoninfo), |
---|
| 336 | "anoninfo"); |
---|
| 337 | memory_stats[3] = pagetok (anoninfo.ani_max - anoninfo.ani_free); |
---|
| 338 | memory_stats[4] = pagetok (anoninfo.ani_max - anoninfo.ani_resv); |
---|
| 339 | |
---|
| 340 | /* set arrays and strings */ |
---|
| 341 | si->cpustates = cpu_states; |
---|
| 342 | si->memory = memory_stats; |
---|
| 343 | } |
---|
| 344 | |
---|
| 345 | static struct handle handle; |
---|
| 346 | |
---|
| 347 | caddr_t |
---|
| 348 | get_process_info ( |
---|
| 349 | struct system_info *si, |
---|
| 350 | struct process_select *sel, |
---|
| 351 | int (*compare) ()) |
---|
| 352 | { |
---|
| 353 | register int i; |
---|
| 354 | register int total_procs; |
---|
| 355 | register int active_procs; |
---|
| 356 | register struct prpsinfo **prefp; |
---|
| 357 | register struct prpsinfo *pp; |
---|
| 358 | |
---|
| 359 | /* these are copied out of sel for speed */ |
---|
| 360 | int show_idle; |
---|
| 361 | int show_system; |
---|
| 362 | int show_uid; |
---|
| 363 | |
---|
| 364 | /* Get current number of processes */ |
---|
| 365 | (void) getkval (nproc_offset, (int *) (&nproc), sizeof (nproc), "nproc"); |
---|
| 366 | |
---|
| 367 | /* read all the proc structures */ |
---|
| 368 | getptable (pbase); |
---|
| 369 | |
---|
| 370 | /* get a pointer to the states summary array */ |
---|
| 371 | si->procstates = process_states; |
---|
| 372 | |
---|
| 373 | /* set up flags which define what we are going to select */ |
---|
| 374 | show_idle = sel->idle; |
---|
| 375 | show_system = sel->system; |
---|
| 376 | show_uid = sel->uid != -1; |
---|
| 377 | |
---|
| 378 | /* count up process states and get pointers to interesting procs */ |
---|
| 379 | total_procs = 0; |
---|
| 380 | active_procs = 0; |
---|
| 381 | total_time = 0; |
---|
| 382 | (void) memset (process_states, 0, sizeof (process_states)); |
---|
| 383 | prefp = pref; |
---|
| 384 | |
---|
| 385 | clean_timedata(); |
---|
| 386 | |
---|
| 387 | for (pp = pbase, i = 0; i < nproc; pp++, i++) |
---|
| 388 | { |
---|
| 389 | /* |
---|
| 390 | * Place pointers to each valid proc structure in pref[]. |
---|
| 391 | * Process slots that are actually in use have a non-zero |
---|
| 392 | * status field. Processes with SSYS set are system |
---|
| 393 | * processes---these get ignored unless show_sysprocs is set. |
---|
| 394 | */ |
---|
| 395 | if (pp->pr_state != 0 && |
---|
| 396 | (show_system || ((pp->pr_flag & SSYS) == 0))) |
---|
| 397 | { |
---|
| 398 | total_procs++; |
---|
| 399 | process_states[pp->pr_state]++; |
---|
| 400 | if ((!pp->pr_zomb) && |
---|
| 401 | (show_idle || (pp->pr_state == SRUN) || (pp->pr_state == SONPROC)) && |
---|
| 402 | (!show_uid || pp->pr_uid == (uid_t) sel->uid)) |
---|
| 403 | { |
---|
| 404 | *prefp++ = pp; |
---|
| 405 | active_procs++; |
---|
| 406 | } |
---|
| 407 | } |
---|
| 408 | |
---|
| 409 | if (pp->pr_state != 0) |
---|
| 410 | add_time(pp); |
---|
| 411 | } |
---|
| 412 | |
---|
| 413 | /* Note that we've run this at least once. */ |
---|
| 414 | initted++; |
---|
| 415 | |
---|
| 416 | /* if requested, sort the "interesting" processes */ |
---|
| 417 | if (compare != NULL) |
---|
| 418 | qsort ((char *) pref, active_procs, sizeof (struct prpsinfo *), compare); |
---|
| 419 | |
---|
| 420 | /* remember active and total counts */ |
---|
| 421 | si->p_total = total_procs; |
---|
| 422 | si->p_active = active_procs; |
---|
| 423 | |
---|
| 424 | /* pass back a handle */ |
---|
| 425 | handle.next_proc = pref; |
---|
| 426 | handle.remaining = active_procs; |
---|
| 427 | return ((caddr_t) & handle); |
---|
| 428 | } |
---|
| 429 | |
---|
| 430 | char fmt[128]; /* static area where result is built */ |
---|
| 431 | |
---|
| 432 | char * |
---|
| 433 | format_next_process ( |
---|
| 434 | caddr_t handle, |
---|
| 435 | char *(*get_userid) ()) |
---|
| 436 | { |
---|
| 437 | register struct prpsinfo *pp; |
---|
| 438 | struct handle *hp; |
---|
| 439 | register long cputime; |
---|
| 440 | double pctcpu; |
---|
| 441 | double pctwcpu; |
---|
| 442 | |
---|
| 443 | /* find and remember the next proc structure */ |
---|
| 444 | hp = (struct handle *) handle; |
---|
| 445 | pp = *(hp->next_proc++); |
---|
| 446 | hp->remaining--; |
---|
| 447 | |
---|
| 448 | /* get the cpu usage and calculate the cpu percentages */ |
---|
| 449 | cputime = pp->pr_time.tv_sec; |
---|
| 450 | get_cpu(pp, &pctcpu, &pctwcpu); |
---|
| 451 | |
---|
| 452 | /* format this entry */ |
---|
| 453 | (void) sprintf (fmt, |
---|
| 454 | Proc_format, |
---|
| 455 | pp->pr_pid, |
---|
| 456 | (*get_userid) (pp->pr_uid), |
---|
| 457 | pp->pr_pri - PZERO, |
---|
| 458 | pp->pr_nice - NZERO, |
---|
| 459 | pagetok (pp->pr_size), |
---|
| 460 | pagetok (pp->pr_rssize), |
---|
| 461 | state_abbrev[pp->pr_state], |
---|
| 462 | cputime / 60l, |
---|
| 463 | cputime % 60l, |
---|
| 464 | pctwcpu, |
---|
| 465 | pctcpu, |
---|
| 466 | pp->pr_fname); |
---|
| 467 | |
---|
| 468 | /* return the result */ |
---|
| 469 | return (fmt); |
---|
| 470 | } |
---|
| 471 | |
---|
| 472 | /* |
---|
| 473 | * check_nlist(nlst) - checks the nlist to see if any symbols were not |
---|
| 474 | * found. For every symbol that was not found, a one-line |
---|
| 475 | * message is printed to stderr. The routine returns the |
---|
| 476 | * number of symbols NOT found. |
---|
| 477 | */ |
---|
| 478 | int |
---|
| 479 | check_nlist (register struct nlist *nlst) |
---|
| 480 | { |
---|
| 481 | register int i; |
---|
| 482 | |
---|
| 483 | /* check to see if we got ALL the symbols we requested */ |
---|
| 484 | /* this will write one line to stderr for every symbol not found */ |
---|
| 485 | |
---|
| 486 | i = 0; |
---|
| 487 | while (nlst->n_name != NULL) |
---|
| 488 | { |
---|
| 489 | if (nlst->n_type == 0) |
---|
| 490 | { |
---|
| 491 | /* this one wasn't found */ |
---|
| 492 | (void) fprintf (stderr, "kernel: no symbol named `%s'\n", nlst->n_name); |
---|
| 493 | i = 1; |
---|
| 494 | } |
---|
| 495 | nlst++; |
---|
| 496 | } |
---|
| 497 | return (i); |
---|
| 498 | } |
---|
| 499 | |
---|
| 500 | |
---|
| 501 | /* |
---|
| 502 | * getkval(offset, ptr, size, refstr) - get a value out of the kernel. |
---|
| 503 | * "offset" is the byte offset into the kernel for the desired value, |
---|
| 504 | * "ptr" points to a buffer into which the value is retrieved, |
---|
| 505 | * "size" is the size of the buffer (and the object to retrieve), |
---|
| 506 | * "refstr" is a reference string used when printing error meessages, |
---|
| 507 | * if "refstr" starts with a '!', then a failure on read will not |
---|
| 508 | * be fatal (this may seem like a silly way to do things, but I |
---|
| 509 | * really didn't want the overhead of another argument). |
---|
| 510 | * |
---|
| 511 | */ |
---|
| 512 | int |
---|
| 513 | getkval ( |
---|
| 514 | unsigned long offset, |
---|
| 515 | int *ptr, |
---|
| 516 | int size, |
---|
| 517 | char *refstr) |
---|
| 518 | { |
---|
| 519 | if (lseek (kmem, (long) offset, 0) == -1) |
---|
| 520 | { |
---|
| 521 | if (*refstr == '!') |
---|
| 522 | refstr++; |
---|
| 523 | (void) fprintf (stderr, "%s: lseek to %s: %s\n", |
---|
| 524 | myname, refstr, sys_errlist[errno]); |
---|
| 525 | quit (22); |
---|
| 526 | } |
---|
| 527 | if (read (kmem, (char *) ptr, size) == -1) |
---|
| 528 | if (*refstr == '!') |
---|
| 529 | /* we lost the race with the kernel, process isn't in memory */ |
---|
| 530 | return (0); |
---|
| 531 | else |
---|
| 532 | { |
---|
| 533 | (void) fprintf (stderr, "%s: reading %s: %s\n", |
---|
| 534 | myname, refstr, sys_errlist[errno]); |
---|
| 535 | quit (23); |
---|
| 536 | } |
---|
| 537 | return (1); |
---|
| 538 | } |
---|
| 539 | |
---|
| 540 | /* comparison routine for qsort */ |
---|
| 541 | |
---|
| 542 | /* |
---|
| 543 | * proc_compare - comparison function for "qsort" |
---|
| 544 | * Compares the resource consumption of two processes using five |
---|
| 545 | * distinct keys. The keys (in descending order of importance) are: |
---|
| 546 | * percent cpu, cpu ticks, state, resident set size, total virtual |
---|
| 547 | * memory usage. The process states are ordered as follows (from least |
---|
| 548 | * to most important): WAIT, zombie, sleep, stop, start, run. The |
---|
| 549 | * array declaration below maps a process state index into a number |
---|
| 550 | * that reflects this ordering. |
---|
| 551 | */ |
---|
| 552 | |
---|
| 553 | |
---|
| 554 | unsigned char sorted_state[] = |
---|
| 555 | { |
---|
| 556 | 0, /* not used */ |
---|
| 557 | 3, /* sleep */ |
---|
| 558 | 6, /* run */ |
---|
| 559 | 2, /* zombie */ |
---|
| 560 | 4, /* stop */ |
---|
| 561 | 5, /* start */ |
---|
| 562 | 7, /* run on a processor */ |
---|
| 563 | 1 /* being swapped (WAIT) */ |
---|
| 564 | }; |
---|
| 565 | |
---|
| 566 | int |
---|
| 567 | proc_compare ( |
---|
| 568 | struct prpsinfo **pp1, |
---|
| 569 | struct prpsinfo **pp2) |
---|
| 570 | { |
---|
| 571 | register struct prpsinfo *p1; |
---|
| 572 | register struct prpsinfo *p2; |
---|
| 573 | register long result; |
---|
| 574 | register long d1; |
---|
| 575 | register long d2; |
---|
| 576 | register timedata_t *td; |
---|
| 577 | |
---|
| 578 | /* remove one level of indirection */ |
---|
| 579 | p1 = *pp1; |
---|
| 580 | p2 = *pp2; |
---|
| 581 | |
---|
| 582 | td = get_timedata(p1); |
---|
| 583 | if (td->ltime == -1) |
---|
| 584 | d1 = 0; |
---|
| 585 | else |
---|
| 586 | d1 = td->time - td->ltime; |
---|
| 587 | |
---|
| 588 | td = get_timedata(p2); |
---|
| 589 | if (td->ltime == -1) |
---|
| 590 | d2 = 0; |
---|
| 591 | else |
---|
| 592 | d2 = td->time - td->ltime; |
---|
| 593 | |
---|
| 594 | /* compare cpu usage */ |
---|
| 595 | if ((result = d2 - d1) == 0) |
---|
| 596 | { |
---|
| 597 | /* use cpticks to break the tie */ |
---|
| 598 | if ((result = (PRTOMS(p2) - PRTOMS(p1))) == 0) |
---|
| 599 | { |
---|
| 600 | /* use process state to break the tie */ |
---|
| 601 | if ((result = (long) (sorted_state[p2->pr_state] - |
---|
| 602 | sorted_state[p1->pr_state])) == 0) |
---|
| 603 | { |
---|
| 604 | /* use priority to break the tie */ |
---|
| 605 | if ((result = p2->pr_oldpri - p1->pr_oldpri) == 0) |
---|
| 606 | { |
---|
| 607 | /* use resident set size (rssize) to break the tie */ |
---|
| 608 | if ((result = p2->pr_rssize - p1->pr_rssize) == 0) |
---|
| 609 | { |
---|
| 610 | /* use total memory to break the tie */ |
---|
| 611 | result = (p2->pr_size - p1->pr_size); |
---|
| 612 | } |
---|
| 613 | } |
---|
| 614 | } |
---|
| 615 | } |
---|
| 616 | } |
---|
| 617 | return (result); |
---|
| 618 | } |
---|
| 619 | |
---|
| 620 | /* |
---|
| 621 | get process table |
---|
| 622 | */ |
---|
| 623 | void |
---|
| 624 | getptable (struct prpsinfo *baseptr) |
---|
| 625 | { |
---|
| 626 | struct prpsinfo *currproc; /* pointer to current proc structure */ |
---|
| 627 | int numprocs = 0; |
---|
| 628 | struct dirent *direntp; |
---|
| 629 | |
---|
| 630 | for (rewinddir (procdir); direntp = readdir (procdir);) |
---|
| 631 | { |
---|
| 632 | int fd; |
---|
| 633 | |
---|
| 634 | if ((fd = open (direntp->d_name, O_RDONLY)) < 0) |
---|
| 635 | continue; |
---|
| 636 | |
---|
| 637 | currproc = &baseptr[numprocs]; |
---|
| 638 | if (ioctl (fd, PIOCPSINFO, currproc) < 0) |
---|
| 639 | { |
---|
| 640 | (void) close (fd); |
---|
| 641 | continue; |
---|
| 642 | } |
---|
| 643 | |
---|
| 644 | numprocs++; |
---|
| 645 | (void) close (fd); |
---|
| 646 | } |
---|
| 647 | |
---|
| 648 | if (nproc != numprocs) |
---|
| 649 | nproc = numprocs; |
---|
| 650 | } |
---|
| 651 | |
---|
| 652 | /* return the owner of the specified process, for use in commands.c as we're |
---|
| 653 | running setuid root */ |
---|
| 654 | uid_t |
---|
| 655 | proc_owner (pid_t pid) |
---|
| 656 | { |
---|
| 657 | register struct prpsinfo *p; |
---|
| 658 | int i; |
---|
| 659 | for (i = 0, p = pbase; i < nproc; i++, p++) |
---|
| 660 | if (p->pr_pid == pid) |
---|
| 661 | return (p->pr_uid); |
---|
| 662 | |
---|
| 663 | return (-1); |
---|
| 664 | } |
---|
| 665 | |
---|
| 666 | int |
---|
| 667 | setpriority (int dummy, int who, int niceval) |
---|
| 668 | { |
---|
| 669 | int scale; |
---|
| 670 | int prio; |
---|
| 671 | pcinfo_t pcinfo; |
---|
| 672 | pcparms_t pcparms; |
---|
| 673 | tsparms_t *tsparms; |
---|
| 674 | |
---|
| 675 | strcpy (pcinfo.pc_clname, "TS"); |
---|
| 676 | if (priocntl (0, 0, PC_GETCID, (caddr_t) & pcinfo) == -1) |
---|
| 677 | return (-1); |
---|
| 678 | |
---|
| 679 | prio = niceval; |
---|
| 680 | if (prio > PRIO_MAX) |
---|
| 681 | prio = PRIO_MAX; |
---|
| 682 | else if (prio < PRIO_MIN) |
---|
| 683 | prio = PRIO_MIN; |
---|
| 684 | |
---|
| 685 | tsparms = (tsparms_t *) pcparms.pc_clparms; |
---|
| 686 | scale = ((tsinfo_t *) pcinfo.pc_clinfo)->ts_maxupri; |
---|
| 687 | tsparms->ts_uprilim = tsparms->ts_upri = -(scale * prio) / 20; |
---|
| 688 | pcparms.pc_cid = pcinfo.pc_cid; |
---|
| 689 | |
---|
| 690 | if (priocntl (P_PID, who, PC_SETPARMS, (caddr_t) & pcparms) == -1) |
---|
| 691 | return (-1); |
---|
| 692 | |
---|
| 693 | return (0); |
---|
| 694 | } |
---|
| 695 | |
---|
| 696 | |
---|
| 697 | /* |
---|
| 698 | * Per-process CPU calculation: |
---|
| 699 | * |
---|
| 700 | * We emulate actual % CPU usage calculation, since the statistics |
---|
| 701 | * kept by FTX are not valid for this purpose. We fake this calculation |
---|
| 702 | * by totalling the amount of CPU time used by all processes since the |
---|
| 703 | * last update, and dividing this into the CPU time used by the process |
---|
| 704 | * in question. For the WCPU value, we average the CPU calculations for the |
---|
| 705 | * process over the last td->cnt updates. This means that the first update |
---|
| 706 | * when starting top will always be 0% CPU (no big deal), and that WCPU will |
---|
| 707 | * be averaged over a varying amount of time (also no big deal). This is |
---|
| 708 | * probably the best we can do, since the kernel doesn't keep any of these |
---|
| 709 | * statistics itself. |
---|
| 710 | * |
---|
| 711 | * This method seems to yield good results. The only problems seem to be the |
---|
| 712 | * fact that the first update always shows 0%, and that the |
---|
| 713 | * sysinfo CPU data isn't always in sync with the per-process CPU usage |
---|
| 714 | * when a CPU-intensive process quits. This latter problem causes funny |
---|
| 715 | * results, because the remaining processes get credited with the residual |
---|
| 716 | * CPU time. |
---|
| 717 | * |
---|
| 718 | * This algorithm may seem CPU intensive, but it's actually very |
---|
| 719 | * inexpensive. The expensive part is the ioctl call to the sar driver. |
---|
| 720 | * No amount of optimization in this program will reduce the sar overhead. |
---|
| 721 | */ |
---|
| 722 | |
---|
| 723 | void |
---|
| 724 | getsysinfo (struct sysinfo *sysinfo) |
---|
| 725 | { |
---|
| 726 | register int i; |
---|
| 727 | register int j; |
---|
| 728 | register int cpus; |
---|
| 729 | |
---|
| 730 | /* Get the per-CPU sysinfo data from sar. */ |
---|
| 731 | if(ioctl(sar, SAR_SYSINFO, &spa)) { |
---|
| 732 | perror("ioctl(sar, SAR_SYSINFO)"); |
---|
| 733 | quit(24); |
---|
| 734 | } |
---|
| 735 | |
---|
| 736 | (void)memset((char *)sysinfo, 0, sizeof(struct sysinfo)); |
---|
| 737 | |
---|
| 738 | /* Average the state times to get systemwide values. */ |
---|
| 739 | for(i = 0, cpus = 0; i < MAX_LOG_CPU; i++) { |
---|
| 740 | if(cpu_state[i] != SAR_CPU_RUNNING) |
---|
| 741 | continue; |
---|
| 742 | |
---|
| 743 | cpus++; |
---|
| 744 | |
---|
| 745 | for(j = 0; j < 5; j++) |
---|
| 746 | sysinfo->cpu[j] += cpu_sysinfo[i].cpu[j]; |
---|
| 747 | } |
---|
| 748 | |
---|
| 749 | for(i = 0; i < 5; i++) |
---|
| 750 | sysinfo->cpu[i] /= cpus; |
---|
| 751 | } |
---|
| 752 | |
---|
| 753 | |
---|
| 754 | void |
---|
| 755 | add_time (struct prpsinfo *pp) |
---|
| 756 | { |
---|
| 757 | register timedata_t *td; |
---|
| 758 | |
---|
| 759 | td = get_timedata(pp); |
---|
| 760 | |
---|
| 761 | td->flags |= TF_USED; |
---|
| 762 | |
---|
| 763 | if(td->time == -1) { |
---|
| 764 | td->time = PRTOMS(pp); |
---|
| 765 | |
---|
| 766 | if(!(td->flags & TF_NEWPROC)) |
---|
| 767 | return; |
---|
| 768 | |
---|
| 769 | td->flags &= ~TF_NEWPROC; |
---|
| 770 | td->ltime = 0; |
---|
| 771 | } |
---|
| 772 | else { |
---|
| 773 | td->ltime = td->time; |
---|
| 774 | td->time = PRTOMS(pp); |
---|
| 775 | } |
---|
| 776 | |
---|
| 777 | /* Keep track of the time spent by all processes. */ |
---|
| 778 | total_time += td->time - td->ltime; |
---|
| 779 | } |
---|
| 780 | |
---|
| 781 | |
---|
| 782 | void |
---|
| 783 | get_cpu(struct prpsinfo *pp, double *cpu, double *wcpu) |
---|
| 784 | { |
---|
| 785 | register int i; |
---|
| 786 | register int j; |
---|
| 787 | register long t; |
---|
| 788 | register timedata_t *td; |
---|
| 789 | |
---|
| 790 | td = get_timedata(pp); |
---|
| 791 | |
---|
| 792 | /* No history, so return 0%. */ |
---|
| 793 | if(td->ltime == -1) { |
---|
| 794 | *cpu = 0; |
---|
| 795 | *wcpu = 0; |
---|
| 796 | return; |
---|
| 797 | } |
---|
| 798 | |
---|
| 799 | i = td->index; |
---|
| 800 | td->index = (i + 1) % MAXTIMEHIST; |
---|
| 801 | td->cnt = MIN((td->cnt + 1), MAXTIMEHIST); |
---|
| 802 | |
---|
| 803 | /* Compute CPU usage (time diff from last update / total cpu time). */ |
---|
| 804 | /* We don't want to div by 0. */ |
---|
| 805 | if(total_time == 0) { |
---|
| 806 | td->hist[i] = 0; |
---|
| 807 | *cpu = 0.0; |
---|
| 808 | } |
---|
| 809 | else { |
---|
| 810 | t = (td->time - td->ltime) * 10000 / total_time * total_cpu; |
---|
| 811 | td->hist[i] = t; |
---|
| 812 | *cpu = t / 100.0; |
---|
| 813 | } |
---|
| 814 | |
---|
| 815 | /* Compute WCPU usage (average CPU % since oldest update). */ |
---|
| 816 | for(j = 0, t = 0; j < td->cnt; j++) { |
---|
| 817 | t += td->hist[i]; |
---|
| 818 | |
---|
| 819 | i--; |
---|
| 820 | if(i < 0) |
---|
| 821 | i = MAXTIMEHIST - 1; |
---|
| 822 | } |
---|
| 823 | *wcpu = t / j / 100.0; |
---|
| 824 | } |
---|
| 825 | |
---|
| 826 | |
---|
| 827 | timedata_t * |
---|
| 828 | get_timedata(struct prpsinfo *pp) |
---|
| 829 | { |
---|
| 830 | register timedata_t *t; |
---|
| 831 | register timedata_t *l; |
---|
| 832 | |
---|
| 833 | l = TD_HASH(pp->pr_pid); |
---|
| 834 | |
---|
| 835 | for(t = l->hnext; t != l; t = t->hnext) |
---|
| 836 | if(t->pid == pp->pr_pid) |
---|
| 837 | return t; |
---|
| 838 | |
---|
| 839 | t = (timedata_t *)malloc(sizeof(timedata_t)); |
---|
| 840 | if(t == 0) { |
---|
| 841 | perror("malloc"); |
---|
| 842 | quit(25); |
---|
| 843 | } |
---|
| 844 | |
---|
| 845 | t->pid = pp->pr_pid; |
---|
| 846 | t->index = 0; |
---|
| 847 | t->cnt = 0; |
---|
| 848 | t->time = -1; |
---|
| 849 | t->ltime = -1; |
---|
| 850 | |
---|
| 851 | if(initted) |
---|
| 852 | t->flags = TF_USED | TF_NEWPROC; |
---|
| 853 | else |
---|
| 854 | t->flags = TF_USED; |
---|
| 855 | |
---|
| 856 | /* Put struct on hash list. */ |
---|
| 857 | t->hnext = l->hnext; |
---|
| 858 | t->hlast = l; |
---|
| 859 | l->hnext->hlast = t; |
---|
| 860 | l->hnext = t; |
---|
| 861 | |
---|
| 862 | /* Put struct on timedata list. */ |
---|
| 863 | t->lnext = timedata.lnext; |
---|
| 864 | t->llast = &timedata; |
---|
| 865 | timedata.lnext->llast = t; |
---|
| 866 | timedata.lnext = t; |
---|
| 867 | |
---|
| 868 | return t; |
---|
| 869 | } |
---|
| 870 | |
---|
| 871 | |
---|
| 872 | void |
---|
| 873 | clean_timedata(void) |
---|
| 874 | { |
---|
| 875 | register timedata_t *t; |
---|
| 876 | |
---|
| 877 | for(t = timedata.lnext; t != &timedata; t = t->lnext) { |
---|
| 878 | if(!(t->flags & TF_USED)) { |
---|
| 879 | t->hnext->hlast = t->hlast; |
---|
| 880 | t->hlast->hnext = t->hnext; |
---|
| 881 | t->lnext->llast = t->llast; |
---|
| 882 | t->llast->lnext = t->lnext; |
---|
| 883 | free(t); |
---|
| 884 | } |
---|
| 885 | else { |
---|
| 886 | t->flags &= ~TF_USED; |
---|
| 887 | } |
---|
| 888 | } |
---|
| 889 | } |
---|