1 | /* propdelay.c,v 3.1 1993/07/06 01:05:24 jbj Exp |
---|
2 | * propdelay - compute propagation delays |
---|
3 | * |
---|
4 | * cc -o propdelay propdelay.c -lm |
---|
5 | * |
---|
6 | * "Time and Frequency Users' Manual", NBS Technical Note 695 (1977). |
---|
7 | */ |
---|
8 | |
---|
9 | /* |
---|
10 | * This can be used to get a rough idea of the HF propagation delay |
---|
11 | * between two points (usually between you and the radio station). |
---|
12 | * The usage is |
---|
13 | * |
---|
14 | * propdelay latitudeA longitudeA latitudeB longitudeB |
---|
15 | * |
---|
16 | * where points A and B are the locations in question. You obviously |
---|
17 | * need to know the latitude and longitude of each of the places. |
---|
18 | * The program expects the latitude to be preceded by an 'n' or 's' |
---|
19 | * and the longitude to be preceded by an 'e' or 'w'. It understands |
---|
20 | * either decimal degrees or degrees:minutes:seconds. Thus to compute |
---|
21 | * the delay between the WWVH (21:59:26N, 159:46:00W) and WWV (40:40:49N, |
---|
22 | * 105:02:27W) you could use: |
---|
23 | * |
---|
24 | * propdelay n21:59:26 w159:46 n40:40:49 w105:02:27 |
---|
25 | * |
---|
26 | * By default it prints out a summer (F2 average virtual height 350 km) and |
---|
27 | * winter (F2 average virtual height 250 km) number. The results will be |
---|
28 | * quite approximate but are about as good as you can do with HF time anyway. |
---|
29 | * You might pick a number between the values to use, or use the summer |
---|
30 | * value in the summer and switch to the winter value when the static |
---|
31 | * above 10 MHz starts to drop off in the fall. You can also use the |
---|
32 | * -h switch if you want to specify your own virtual height. |
---|
33 | * |
---|
34 | * You can also do a |
---|
35 | * |
---|
36 | * propdelay -W n45:17:47 w75:45:22 |
---|
37 | * |
---|
38 | * to find the propagation delays to WWV and WWVH (from CHU in this |
---|
39 | * case), a |
---|
40 | * |
---|
41 | * propdelay -C n40:40:49 w105:02:27 |
---|
42 | * |
---|
43 | * to find the delays to CHU, and a |
---|
44 | * |
---|
45 | * propdelay -G n52:03:17 w98:34:18 |
---|
46 | * |
---|
47 | * to find delays to GOES via each of the three satellites. |
---|
48 | */ |
---|
49 | |
---|
50 | #include <stdio.h> |
---|
51 | #include <string.h> |
---|
52 | |
---|
53 | #include "ntp_stdlib.h" |
---|
54 | |
---|
55 | extern double sin P((double)); |
---|
56 | extern double cos P((double)); |
---|
57 | extern double acos P((double)); |
---|
58 | extern double tan P((double)); |
---|
59 | extern double atan P((double)); |
---|
60 | extern double sqrt P((double)); |
---|
61 | |
---|
62 | #define STREQ(a, b) (*(a) == *(b) && strcmp((a), (b)) == 0) |
---|
63 | |
---|
64 | /* |
---|
65 | * Program constants |
---|
66 | */ |
---|
67 | #define EARTHRADIUS (6370.0) /* raduis of earth (km) */ |
---|
68 | #define LIGHTSPEED (299800.0) /* speed of light, km/s */ |
---|
69 | #define PI (3.1415926536) |
---|
70 | #define RADPERDEG (PI/180.0) /* radians per degree */ |
---|
71 | #define MILE (1.609344) /* km in a mile */ |
---|
72 | |
---|
73 | #define SUMMERHEIGHT (350.0) /* summer height in km */ |
---|
74 | #define WINTERHEIGHT (250.0) /* winter height in km */ |
---|
75 | |
---|
76 | #define SATHEIGHT (6.6110 * 6378.0) /* geosync satellite height in km |
---|
77 | from centre of earth */ |
---|
78 | |
---|
79 | #define WWVLAT "n40:40:49" |
---|
80 | #define WWVLONG "w105:02:27" |
---|
81 | |
---|
82 | #define WWVHLAT "n21:59:26" |
---|
83 | #define WWVHLONG "w159:46:00" |
---|
84 | |
---|
85 | #define CHULAT "n45:17:47" |
---|
86 | #define CHULONG "w75:45:22" |
---|
87 | |
---|
88 | #define GOES_UP_LAT "n37:52:00" |
---|
89 | #define GOES_UP_LONG "w75:27:00" |
---|
90 | #define GOES_EAST_LONG "w75:00:00" |
---|
91 | #define GOES_STBY_LONG "w105:00:00" |
---|
92 | #define GOES_WEST_LONG "w135:00:00" |
---|
93 | #define GOES_SAT_LAT "n00:00:00" |
---|
94 | |
---|
95 | char *wwvlat = WWVLAT; |
---|
96 | char *wwvlong = WWVLONG; |
---|
97 | |
---|
98 | char *wwvhlat = WWVHLAT; |
---|
99 | char *wwvhlong = WWVHLONG; |
---|
100 | |
---|
101 | char *chulat = CHULAT; |
---|
102 | char *chulong = CHULONG; |
---|
103 | |
---|
104 | char *goes_up_lat = GOES_UP_LAT; |
---|
105 | char *goes_up_long = GOES_UP_LONG; |
---|
106 | char *goes_east_long = GOES_EAST_LONG; |
---|
107 | char *goes_stby_long = GOES_STBY_LONG; |
---|
108 | char *goes_west_long = GOES_WEST_LONG; |
---|
109 | char *goes_sat_lat = GOES_SAT_LAT; |
---|
110 | |
---|
111 | int hflag = 0; |
---|
112 | int Wflag = 0; |
---|
113 | int Cflag = 0; |
---|
114 | int Gflag = 0; |
---|
115 | int height; |
---|
116 | |
---|
117 | char *progname; |
---|
118 | int debug; |
---|
119 | |
---|
120 | static void doit P((double, double, double, double, double, char *)); |
---|
121 | static double latlong P((char *, int)); |
---|
122 | static double greatcircle P((double, double, double, double)); |
---|
123 | static double waveangle P((double, double, int)); |
---|
124 | static double propdelay P((double, double, int)); |
---|
125 | static int finddelay P((double, double, double, double, double, double *)); |
---|
126 | static void satdoit P((double, double, double, double, double, double, char *)); |
---|
127 | static void satfinddelay P((double, double, double, double, double *)); |
---|
128 | static double satpropdelay P((double)); |
---|
129 | |
---|
130 | /* |
---|
131 | * main - parse arguments and handle options |
---|
132 | */ |
---|
133 | void |
---|
134 | main(argc, argv) |
---|
135 | int argc; |
---|
136 | char *argv[]; |
---|
137 | { |
---|
138 | int c; |
---|
139 | int errflg = 0; |
---|
140 | double lat1, long1; |
---|
141 | double lat2, long2; |
---|
142 | double lat3, long3; |
---|
143 | extern int ntp_optind; |
---|
144 | extern char *ntp_optarg; |
---|
145 | |
---|
146 | progname = argv[0]; |
---|
147 | while ((c = ntp_getopt(argc, argv, "dh:CWG")) != EOF) |
---|
148 | switch (c) { |
---|
149 | case 'd': |
---|
150 | ++debug; |
---|
151 | break; |
---|
152 | case 'h': |
---|
153 | hflag++; |
---|
154 | height = atof(ntp_optarg); |
---|
155 | if (height <= 0.0) { |
---|
156 | (void) fprintf(stderr, "height %s unlikely\n", |
---|
157 | ntp_optarg); |
---|
158 | errflg++; |
---|
159 | } |
---|
160 | break; |
---|
161 | case 'C': |
---|
162 | Cflag++; |
---|
163 | break; |
---|
164 | case 'W': |
---|
165 | Wflag++; |
---|
166 | break; |
---|
167 | case 'G': |
---|
168 | Gflag++; |
---|
169 | break; |
---|
170 | default: |
---|
171 | errflg++; |
---|
172 | break; |
---|
173 | } |
---|
174 | if (errflg || (!(Cflag || Wflag || Gflag) && ntp_optind+4 != argc) || |
---|
175 | ((Cflag || Wflag || Gflag) && ntp_optind+2 != argc)) { |
---|
176 | (void) fprintf(stderr, |
---|
177 | "usage: %s [-d] [-h height] lat1 long1 lat2 long2\n", |
---|
178 | progname); |
---|
179 | (void) fprintf(stderr," - or -\n"); |
---|
180 | (void) fprintf(stderr, |
---|
181 | "usage: %s -CWG [-d] lat long\n", |
---|
182 | progname); |
---|
183 | exit(2); |
---|
184 | } |
---|
185 | |
---|
186 | |
---|
187 | if (!(Cflag || Wflag || Gflag)) { |
---|
188 | lat1 = latlong(argv[ntp_optind], 1); |
---|
189 | long1 = latlong(argv[ntp_optind + 1], 0); |
---|
190 | lat2 = latlong(argv[ntp_optind + 2], 1); |
---|
191 | long2 = latlong(argv[ntp_optind + 3], 0); |
---|
192 | if (hflag) { |
---|
193 | doit(lat1, long1, lat2, long2, height, ""); |
---|
194 | } else { |
---|
195 | doit(lat1, long1, lat2, long2, (double)SUMMERHEIGHT, |
---|
196 | "summer propagation, "); |
---|
197 | doit(lat1, long1, lat2, long2, (double)WINTERHEIGHT, |
---|
198 | "winter propagation, "); |
---|
199 | } |
---|
200 | } else if (Wflag) { |
---|
201 | /* |
---|
202 | * Compute delay from WWV |
---|
203 | */ |
---|
204 | lat1 = latlong(argv[ntp_optind], 1); |
---|
205 | long1 = latlong(argv[ntp_optind + 1], 0); |
---|
206 | lat2 = latlong(wwvlat, 1); |
---|
207 | long2 = latlong(wwvlong, 0); |
---|
208 | if (hflag) { |
---|
209 | doit(lat1, long1, lat2, long2, height, "WWV "); |
---|
210 | } else { |
---|
211 | doit(lat1, long1, lat2, long2, (double)SUMMERHEIGHT, |
---|
212 | "WWV summer propagation, "); |
---|
213 | doit(lat1, long1, lat2, long2, (double)WINTERHEIGHT, |
---|
214 | "WWV winter propagation, "); |
---|
215 | } |
---|
216 | |
---|
217 | /* |
---|
218 | * Compute delay from WWVH |
---|
219 | */ |
---|
220 | lat2 = latlong(wwvhlat, 1); |
---|
221 | long2 = latlong(wwvhlong, 0); |
---|
222 | if (hflag) { |
---|
223 | doit(lat1, long1, lat2, long2, height, "WWVH "); |
---|
224 | } else { |
---|
225 | doit(lat1, long1, lat2, long2, (double)SUMMERHEIGHT, |
---|
226 | "WWVH summer propagation, "); |
---|
227 | doit(lat1, long1, lat2, long2, (double)WINTERHEIGHT, |
---|
228 | "WWVH winter propagation, "); |
---|
229 | } |
---|
230 | } else if (Cflag) { |
---|
231 | lat1 = latlong(argv[ntp_optind], 1); |
---|
232 | long1 = latlong(argv[ntp_optind + 1], 0); |
---|
233 | lat2 = latlong(chulat, 1); |
---|
234 | long2 = latlong(chulong, 0); |
---|
235 | if (hflag) { |
---|
236 | doit(lat1, long1, lat2, long2, height, "CHU "); |
---|
237 | } else { |
---|
238 | doit(lat1, long1, lat2, long2, (double)SUMMERHEIGHT, |
---|
239 | "CHU summer propagation, "); |
---|
240 | doit(lat1, long1, lat2, long2, (double)WINTERHEIGHT, |
---|
241 | "CHU winter propagation, "); |
---|
242 | } |
---|
243 | } else if (Gflag) { |
---|
244 | lat1 = latlong(goes_up_lat, 1); |
---|
245 | long1 = latlong(goes_up_long, 0); |
---|
246 | lat3 = latlong(argv[ntp_optind], 1); |
---|
247 | long3 = latlong(argv[ntp_optind + 1], 0); |
---|
248 | |
---|
249 | lat2 = latlong(goes_sat_lat, 1); |
---|
250 | |
---|
251 | long2 = latlong(goes_west_long, 0); |
---|
252 | satdoit(lat1, long1, lat2, long2, lat3, long3, |
---|
253 | "GOES Delay via WEST"); |
---|
254 | |
---|
255 | long2 = latlong(goes_stby_long, 0); |
---|
256 | satdoit(lat1, long1, lat2, long2, lat3, long3, |
---|
257 | "GOES Delay via STBY"); |
---|
258 | |
---|
259 | long2 = latlong(goes_east_long, 0); |
---|
260 | satdoit(lat1, long1, lat2, long2, lat3, long3, |
---|
261 | "GOES Delay via EAST"); |
---|
262 | |
---|
263 | } |
---|
264 | exit(0); |
---|
265 | } |
---|
266 | |
---|
267 | |
---|
268 | /* |
---|
269 | * doit - compute a delay and print it |
---|
270 | */ |
---|
271 | static void |
---|
272 | doit(lat1, long1, lat2, long2, h, str) |
---|
273 | double lat1; |
---|
274 | double long1; |
---|
275 | double lat2; |
---|
276 | double long2; |
---|
277 | double h; |
---|
278 | char *str; |
---|
279 | { |
---|
280 | int hops; |
---|
281 | double delay; |
---|
282 | |
---|
283 | hops = finddelay(lat1, long1, lat2, long2, h, &delay); |
---|
284 | printf("%sheight %g km, hops %d, delay %g seconds\n", |
---|
285 | str, h, hops, delay); |
---|
286 | } |
---|
287 | |
---|
288 | |
---|
289 | /* |
---|
290 | * latlong - decode a latitude/longitude value |
---|
291 | */ |
---|
292 | static double |
---|
293 | latlong(str, islat) |
---|
294 | char *str; |
---|
295 | int islat; |
---|
296 | { |
---|
297 | register char *cp; |
---|
298 | register char *bp; |
---|
299 | double arg; |
---|
300 | double div; |
---|
301 | int isneg; |
---|
302 | char buf[32]; |
---|
303 | char *colon; |
---|
304 | |
---|
305 | if (islat) { |
---|
306 | /* |
---|
307 | * Must be north or south |
---|
308 | */ |
---|
309 | if (*str == 'N' || *str == 'n') |
---|
310 | isneg = 0; |
---|
311 | else if (*str == 'S' || *str == 's') |
---|
312 | isneg = 1; |
---|
313 | else |
---|
314 | isneg = -1; |
---|
315 | } else { |
---|
316 | /* |
---|
317 | * East is positive, west is negative |
---|
318 | */ |
---|
319 | if (*str == 'E' || *str == 'e') |
---|
320 | isneg = 0; |
---|
321 | else if (*str == 'W' || *str == 'w') |
---|
322 | isneg = 1; |
---|
323 | else |
---|
324 | isneg = -1; |
---|
325 | } |
---|
326 | |
---|
327 | if (isneg >= 0) |
---|
328 | str++; |
---|
329 | |
---|
330 | colon = strchr(str, ':'); |
---|
331 | if (colon != NULL) { |
---|
332 | /* |
---|
333 | * in hhh:mm:ss form |
---|
334 | */ |
---|
335 | cp = str; |
---|
336 | bp = buf; |
---|
337 | while (cp < colon) |
---|
338 | *bp++ = *cp++; |
---|
339 | *bp = '\0'; |
---|
340 | cp++; |
---|
341 | arg = atof(buf); |
---|
342 | div = 60.0; |
---|
343 | colon = strchr(cp, ':'); |
---|
344 | if (colon != NULL) { |
---|
345 | bp = buf; |
---|
346 | while (cp < colon) |
---|
347 | *bp++ = *cp++; |
---|
348 | *bp = '\0'; |
---|
349 | cp++; |
---|
350 | arg += atof(buf) / div; |
---|
351 | div = 3600.0; |
---|
352 | } |
---|
353 | if (*cp != '\0') |
---|
354 | arg += atof(cp) / div; |
---|
355 | } else { |
---|
356 | arg = atof(str); |
---|
357 | } |
---|
358 | |
---|
359 | if (isneg == 1) |
---|
360 | arg = -arg; |
---|
361 | |
---|
362 | if (debug > 2) |
---|
363 | (void) printf("latitude/longitude %s = %g\n", str, arg); |
---|
364 | |
---|
365 | return arg; |
---|
366 | } |
---|
367 | |
---|
368 | |
---|
369 | /* |
---|
370 | * greatcircle - compute the great circle distance in kilometers |
---|
371 | */ |
---|
372 | static double |
---|
373 | greatcircle(lat1, long1, lat2, long2) |
---|
374 | double lat1; |
---|
375 | double long1; |
---|
376 | double lat2; |
---|
377 | double long2; |
---|
378 | { |
---|
379 | double dg; |
---|
380 | double l1r, l2r; |
---|
381 | |
---|
382 | l1r = lat1 * RADPERDEG; |
---|
383 | l2r = lat2 * RADPERDEG; |
---|
384 | dg = EARTHRADIUS * acos( |
---|
385 | (cos(l1r) * cos(l2r) * cos((long2-long1)*RADPERDEG)) |
---|
386 | + (sin(l1r) * sin(l2r))); |
---|
387 | if (debug >= 2) |
---|
388 | printf( |
---|
389 | "greatcircle lat1 %g long1 %g lat2 %g long2 %g dist %g\n", |
---|
390 | lat1, long1, lat2, long2, dg); |
---|
391 | return dg; |
---|
392 | } |
---|
393 | |
---|
394 | |
---|
395 | /* |
---|
396 | * waveangle - compute the wave angle for the given distance, virtual |
---|
397 | * height and number of hops. |
---|
398 | */ |
---|
399 | static double |
---|
400 | waveangle(dg, h, n) |
---|
401 | double dg; |
---|
402 | double h; |
---|
403 | int n; |
---|
404 | { |
---|
405 | double theta; |
---|
406 | double delta; |
---|
407 | |
---|
408 | theta = dg / (EARTHRADIUS * (double)(2 * n)); |
---|
409 | delta = atan((h / (EARTHRADIUS * sin(theta))) + tan(theta/2)) - theta; |
---|
410 | if (debug >= 2) |
---|
411 | printf("waveangle dist %g height %g hops %d angle %g\n", |
---|
412 | dg, h, n, delta / RADPERDEG); |
---|
413 | return delta; |
---|
414 | } |
---|
415 | |
---|
416 | |
---|
417 | /* |
---|
418 | * propdelay - compute the propagation delay |
---|
419 | */ |
---|
420 | static double |
---|
421 | propdelay(dg, h, n) |
---|
422 | double dg; |
---|
423 | double h; |
---|
424 | int n; |
---|
425 | { |
---|
426 | double phi; |
---|
427 | double theta; |
---|
428 | double td; |
---|
429 | |
---|
430 | theta = dg / (EARTHRADIUS * (double)(2 * n)); |
---|
431 | phi = (PI/2.0) - atan((h / (EARTHRADIUS * sin(theta))) + tan(theta/2)); |
---|
432 | td = dg / (LIGHTSPEED * sin(phi)); |
---|
433 | if (debug >= 2) |
---|
434 | printf("propdelay dist %g height %g hops %d time %g\n", |
---|
435 | dg, h, n, td); |
---|
436 | return td; |
---|
437 | } |
---|
438 | |
---|
439 | |
---|
440 | /* |
---|
441 | * finddelay - find the propagation delay |
---|
442 | */ |
---|
443 | static int |
---|
444 | finddelay(lat1, long1, lat2, long2, h, delay) |
---|
445 | double lat1; |
---|
446 | double long1; |
---|
447 | double lat2; |
---|
448 | double long2; |
---|
449 | double h; |
---|
450 | double *delay; |
---|
451 | { |
---|
452 | double dg; /* great circle distance */ |
---|
453 | double delta; /* wave angle */ |
---|
454 | int n; /* number of hops */ |
---|
455 | |
---|
456 | dg = greatcircle(lat1, long1, lat2, long2); |
---|
457 | if (debug) |
---|
458 | printf("great circle distance %g km %g miles\n", dg, dg/MILE); |
---|
459 | |
---|
460 | n = 1; |
---|
461 | while ((delta = waveangle(dg, h, n)) < 0.0) { |
---|
462 | if (debug) |
---|
463 | printf("tried %d hop%s, no good\n", n, n>1?"s":""); |
---|
464 | n++; |
---|
465 | } |
---|
466 | if (debug) |
---|
467 | printf("%d hop%s okay, wave angle is %g\n", n, n>1?"s":"", |
---|
468 | delta / RADPERDEG); |
---|
469 | |
---|
470 | *delay = propdelay(dg, h, n); |
---|
471 | return n; |
---|
472 | } |
---|
473 | |
---|
474 | /* |
---|
475 | * satdoit - compute a delay and print it |
---|
476 | */ |
---|
477 | static void |
---|
478 | satdoit(lat1, long1, lat2, long2, lat3, long3, str) |
---|
479 | double lat1; |
---|
480 | double long1; |
---|
481 | double lat2; |
---|
482 | double long2; |
---|
483 | double lat3; |
---|
484 | double long3; |
---|
485 | char *str; |
---|
486 | { |
---|
487 | double up_delay,down_delay; |
---|
488 | |
---|
489 | satfinddelay(lat1, long1, lat2, long2, &up_delay); |
---|
490 | satfinddelay(lat3, long3, lat2, long2, &down_delay); |
---|
491 | |
---|
492 | printf("%s, delay %g seconds\n", str, up_delay + down_delay); |
---|
493 | } |
---|
494 | |
---|
495 | /* |
---|
496 | * satfinddelay - calculate the one-way delay time between a ground station |
---|
497 | * and a satellite |
---|
498 | */ |
---|
499 | static void |
---|
500 | satfinddelay(lat1, long1, lat2, long2, delay) |
---|
501 | double lat1; |
---|
502 | double long1; |
---|
503 | double lat2; |
---|
504 | double long2; |
---|
505 | double *delay; |
---|
506 | { |
---|
507 | double dg; /* great circle distance */ |
---|
508 | |
---|
509 | dg = greatcircle(lat1, long1, lat2, long2); |
---|
510 | |
---|
511 | *delay = satpropdelay(dg); |
---|
512 | } |
---|
513 | |
---|
514 | /* |
---|
515 | * satpropdelay - calculate the one-way delay time between a ground station |
---|
516 | * and a satellite |
---|
517 | */ |
---|
518 | static double |
---|
519 | satpropdelay(dg) |
---|
520 | double dg; |
---|
521 | { |
---|
522 | double k1, k2, dist; |
---|
523 | double theta; |
---|
524 | double td; |
---|
525 | |
---|
526 | theta = dg / (EARTHRADIUS); |
---|
527 | k1 = EARTHRADIUS * sin(theta); |
---|
528 | k2 = SATHEIGHT - (EARTHRADIUS * cos(theta)); |
---|
529 | if (debug >= 2) |
---|
530 | printf("Theta %g k1 %g k2 %g\n", theta, k1, k2); |
---|
531 | dist = sqrt(k1*k1 + k2*k2); |
---|
532 | td = dist / LIGHTSPEED; |
---|
533 | if (debug >= 2) |
---|
534 | printf("propdelay dist %g height %g time %g\n", dg, dist, td); |
---|
535 | return td; |
---|
536 | } |
---|