source: trunk/third/gcc/config/gmicro/gmicro.h @ 8834

Revision 8834, 56.1 KB checked in by ghudson, 28 years ago (diff)
This commit was generated by cvs2svn to compensate for changes in r8833, which included commits to RCS files with non-trunk default branches.
Line 
1/* Definitions of target machine for GNU compiler.  Gmicro (TRON) version.
2   Copyright (C) 1987, 1988, 1989, 1995 Free Software Foundation, Inc.
3   Contributed by Masanobu Yuhara, Fujitsu Laboratories LTD.
4   (yuhara@flab.fujitsu.co.jp)
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING.  If not, write to
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA.   */
22
23
24/* Note that some other tm.h files include this one and then override
25   many of the definitions that relate to assembler syntax.  */
26
27
28/* Names to predefine in the preprocessor for this target machine.  */
29
30#define CPP_PREDEFINES "-Dgmicro -Acpu(tron) -Amachine(tron)"
31
32/* #define CPP_SPEC    ** currently not defined **/
33
34/* #define CC1_SPEC    ** currently not defined **/
35
36
37/* Print subsidiary information on the compiler version in use.  */
38/*
39#define TARGET_VERSION fprintf (stderr, " (Gmicro syntax)");
40*/
41
42/* Run-time compilation parameters selecting different hardware subsets.  */
43
44extern int target_flags;
45
46/* Macros used in the machine description to test the flags.  */
47
48/* Compile for a Gmicro/300.  */
49#define TARGET_G300 (target_flags & 1)
50/* Compile for a Gmicro/200. */
51#define TARGET_G200 (target_flags & 2)
52/* Compile for a Gmicro/100. */
53#define TARGET_G100 (target_flags & 4)
54
55/* Compile FPU insns for floating point (not library calls).  */
56#define TARGET_FPU (target_flags & 8)
57
58/* Pop up arguments by called function. */
59#define TARGET_RTD (target_flags & 0x10)
60
61/* Compile passing first args in regs 0 and 1.
62   This exists only to test compiler features that will be needed for
63   RISC chips. It is not usable and is not intended to be usable on
64   this cpu ;-< */
65#define TARGET_REGPARM (target_flags & 0x20)
66
67#define TARGET_BITFIELD (target_flags & 0x40)
68
69#define TARGET_NEWRETURN (target_flags & 0x80)
70
71/* Do not expand __builtin_smov (strcpy) to multiple movs.
72   Use the smov instruction. */
73#define TARGET_FORCE_SMOV (target_flags & 0x100)
74
75/* default options are -m300, -mFPU,
76   with bitfield instructions added because it won't always work otherwise.
77   If there are versions of the gmicro that don't support bitfield instructions
78   then it will take some thinking to figure out how to make them work.  */
79#define TARGET_DEFAULT 0x49
80
81/* Macro to define tables used to set the flags.
82   This is a list in braces of pairs in braces,
83   each pair being { "NAME", VALUE }
84   where VALUE is the bits to set or minus the bits to clear.
85   An empty string NAME is used to identify the default VALUE.  */
86
87#define TARGET_SWITCHES  \
88  { { "g300", 1},                               \
89    { "g200", 2},                               \
90    { "g100", 4},                               \
91    { "fpu", 8},                                \
92    { "soft-float", -8},                        \
93    { "rtd", 0x10},                             \
94    { "no-rtd", -0x10},                         \
95    { "regparm", 0x20},                         \
96    { "no-regparm", -0x20},                     \
97#if 0 /* Since we don't define PCC_BITFIELD_TYPE_MATTERS or use a large
98         STRUCTURE_SIZE_BOUNDARY, we must have bitfield instructions.  */
99    { "bitfield", 0x40},                        \
100    { "no-bitfield", -0x40},                    \
101#endif
102    { "newreturn", 0x80},                       \
103    { "no-newreturn", -0x80},                   \
104    { "force-smov", 0x100},                     \
105    { "no-force-smov", -0x100},                 \
106    { "", TARGET_DEFAULT}}
107
108
109/* Blow away G100 flag silently off TARGET_fpu (since we can't clear
110   any bits in TARGET_SWITCHES above) */
111#define OVERRIDE_OPTIONS                \
112{                                       \
113  if (TARGET_G100) target_flags &= ~8;  \
114}
115
116/* target machine storage layout */
117
118/* Define this if most significant bit is lowest numbered
119   in instructions that operate on numbered bit-fields.
120   This is true for Gmicro insns.
121   We make it true always by avoiding using the single-bit insns
122   except in special cases with constant bit numbers.  */
123#define BITS_BIG_ENDIAN 1
124
125/* Define this if most significant byte of a word is the lowest numbered.  */
126/* That is true on the Gmicro.  */
127#define BYTES_BIG_ENDIAN 1
128
129/* Define this if most significant word of a multiword number is the lowest
130   numbered.  */
131/* For Gmicro we can decide arbitrarily
132   since there are no machine instructions for them.  ????? */
133#define WORDS_BIG_ENDIAN 0
134
135/* number of bits in an addressable storage unit */
136#define BITS_PER_UNIT 8
137
138/* Width in bits of a "word", which is the contents of a machine register. */
139#define BITS_PER_WORD 32
140
141/* Width of a word, in units (bytes).  */
142#define UNITS_PER_WORD 4
143
144/* Width in bits of a pointer.
145   See also the macro `Pmode' defined below.  */
146#define POINTER_SIZE 32
147
148/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
149#define PARM_BOUNDARY 32
150
151/* Boundary (in *bits*) on which stack pointer should be aligned.  */
152#define STACK_BOUNDARY 32
153
154/* Allocation boundary (in *bits*) for the code of a function.  */
155/* Instructions of the Gmicro should be on half-word boundary */
156/* But word boundary gets better performance */
157#define FUNCTION_BOUNDARY 32
158
159/* Alignment of field after `int : 0' in a structure.  */
160#define EMPTY_FIELD_BOUNDARY 32
161
162/* No data type wants to be aligned rounder than this. */
163/* This is not necessarily 32 on the Gmicro */
164#define BIGGEST_ALIGNMENT 32
165
166/* Set this non-zero if move instructions will actually fail to work
167   when given unaligned data.
168   Unaligned data is allowed on Gmicro, though the access is slow. */
169
170#define STRICT_ALIGNMENT 1
171#define SLOW_UNALIGNED_ACCESS 1
172
173/* Make strings word-aligned so strcpy from constants will be faster.  */
174#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
175  (TREE_CODE (EXP) == STRING_CST        \
176   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
177
178/* Make arrays of chars word-aligned for the same reasons.  */
179#define DATA_ALIGNMENT(TYPE, ALIGN)             \
180  (TREE_CODE (TYPE) == ARRAY_TYPE               \
181   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
182   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
183
184/* Define number of bits in most basic integer type.
185   (If undefined, default is BITS_PER_WORD).  */
186#define INT_TYPE_SIZE 32
187
188/* #define PCC_BITFIELD_TYPE_MATTERS 1 ????? */
189
190/* #define CHECK_FLOAT_VALUE (MODE, VALUE) ????? */
191
192
193/* Standard register usage.  */
194
195/* Number of actual hardware registers.
196   The hardware registers are assigned numbers for the compiler
197   from 0 to just below FIRST_PSEUDO_REGISTER.
198   All registers that the compiler knows about must be given numbers,
199   even those that are not normally considered general registers.
200   For the Gmicro, we give the general registers numbers 0-15,
201   and the FPU floating point registers numbers 16-31.  */
202#define FIRST_PSEUDO_REGISTER 32
203
204/* 1 for registers that have pervasive standard uses
205   and are not available for the register allocator.
206   On the Gmicro, the stack pointer and the frame pointer are
207   such registers.  */
208/* frame pointer is not indicated as fixed, because fp may be used freely
209   when a frame is not built. */
210#define FIXED_REGISTERS  \
211 {0, 0, 0, 0, 0, 0, 0, 0, \
212  0, 0, 0, 0, 0, 0, 0, 1, \
213  /* FPU registers.  */   \
214  0, 0, 0, 0, 0, 0, 0, 0, \
215  0, 0, 0, 0, 0, 0, 0, 0, }
216
217/* 1 for registers not available across function calls.
218   These must include the FIXED_REGISTERS and also any
219   registers that can be used without being saved.
220   The latter must include the registers where values are returned
221   and the register where structure-value addresses are passed.
222   Aside from that, you can include as many other registers as you like.  */
223#define CALL_USED_REGISTERS \
224 {1, 1, 1, 1, 0, 0, 0, 0, \
225  0, 0, 0, 0, 0, 0, 0, 1, \
226  /* FPU registers.  */   \
227  1, 1, 1, 1, 0, 0, 0, 0, \
228  0, 0, 0, 0, 0, 0, 0, 0, }
229
230
231/* Make sure everything's fine if we *don't* have a given processor.
232   This assumes that putting a register in fixed_regs will keep the
233   compilers mitt's completely off it.  We don't bother to zero it out
234   of register classes.  If TARGET_FPU is not set,
235   the compiler won't touch since no instructions that use these
236   registers will be valid.  */
237/*  This Macro is not defined now.
238    #define CONDITIONAL_REGISTER_USAGE */
239
240/* The Gmicro has no overlapping register */
241/* #define OVERLAPPING_REGNO_P(REGNO) */
242
243/* #define INSN_CLOBBERS_REGNO_P(INSN,REGNO)  */
244/* #define PRESERVE_DEATH_INFO_REGNO_P(REGNO)  */
245
246/* Return number of consecutive hard regs needed starting at reg REGNO
247   to hold something of mode MODE.
248   This is ordinarily the length in words of a value of mode MODE
249   but can be less for certain modes in special long registers.
250
251   On the Gmicro, ordinary registers hold 32 bits worth;
252   for the Gmicro/FPU registers, a single register is always enough for
253   anything that can be stored in them at all.  */
254#define HARD_REGNO_NREGS(REGNO, MODE)   \
255  ((REGNO) >= 16 ? 1                            \
256   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
257
258/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
259   On the Gmicro, the cpu registers can hold any mode but the FPU registers
260   can hold only SFmode or DFmode.  And the FPU registers can't hold anything
261   if FPU use is disabled. */
262#define HARD_REGNO_MODE_OK(REGNO, MODE) \
263  ((REGNO) < 16                                                         \
264   || ((REGNO) < 32                                                     \
265       ? TARGET_FPU && (GET_MODE_CLASS (MODE) == MODE_FLOAT ||          \
266                        GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)    \
267       : 0 ))
268
269/* Value is 1 if it is a good idea to tie two pseudo registers
270   when one has mode MODE1 and one has mode MODE2.
271   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
272   for any hard reg, then this must be 0 for correct output.  */
273#define MODES_TIEABLE_P(MODE1, MODE2)                   \
274  (! TARGET_FPU                                         \
275   || ((GET_MODE_CLASS (MODE1) == MODE_FLOAT ||         \
276        GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)   \
277       == ((MODE2) == SFmode || (MODE2) == DFmode)))
278
279/* Specify the registers used for certain standard purposes.
280   The values of these macros are register numbers.  */
281
282/* Gmicro pc isn't overloaded on a register.  */
283/* #define PC_REGNUM  */
284
285/* Register to use for pushing function arguments.  */
286#define STACK_POINTER_REGNUM 15
287
288/* Base register for access to local variables of the function.  */
289#define FRAME_POINTER_REGNUM 14
290
291/* Value should be nonzero if functions must have frame pointers.
292   Zero means the frame pointer need not be set up (and parms
293   may be accessed via the stack pointer) in functions that seem suitable.
294   This is computed in `reload', in reload1.c.  */
295#define FRAME_POINTER_REQUIRED 0
296
297/* Base register for access to arguments of the function.  */
298/* The Gmicro does not have hardware ap. Fp is treated as ap */
299#define ARG_POINTER_REGNUM 14
300
301/* Register in which static-chain is passed to a function.  */
302#define STATIC_CHAIN_REGNUM 0
303
304/* Register in which address to store a structure value
305   is passed to a function.  */
306#define STRUCT_VALUE_REGNUM 1
307
308/* Define the classes of registers for register constraints in the
309   machine description.  Also define ranges of constants.
310
311   One of the classes must always be named ALL_REGS and include all hard regs.
312   If there is more than one class, another class must be named NO_REGS
313   and contain no registers.
314
315   The name GENERAL_REGS must be the name of a class (or an alias for
316   another name such as ALL_REGS).  This is the class of registers
317   that is allowed by "g" or "r" in a register constraint.
318   Also, registers outside this class are allocated only when
319   instructions express preferences for them.
320
321   The classes must be numbered in nondecreasing order; that is,
322   a larger-numbered class must never be contained completely
323   in a smaller-numbered class.
324
325   For any two classes, it is very desirable that there be another
326   class that represents their union.  */
327
328/* The Gmicro has two kinds of registers, so four classes would be
329   a complete set.  */
330
331enum reg_class { NO_REGS, FPU_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES };
332
333#define N_REG_CLASSES (int) LIM_REG_CLASSES
334
335/* Give names of register classes as strings for dump file.   */
336
337#define REG_CLASS_NAMES \
338   { "NO_REGS", "FPU_REGS", "GENERAL_REGS", "ALL_REGS" }
339
340/* Define which registers fit in which classes.
341   This is an initializer for a vector of HARD_REG_SET
342   of length N_REG_CLASSES.  */
343
344#define REG_CLASS_CONTENTS \
345{                                               \
346     0,                 /* NO_REGS */           \
347     0xffff0000,        /* FPU_REGS */          \
348     0x0000ffff,        /* GENERAL_REGS */      \
349     0xffffffff         /* ALL_REGS */          \
350}
351
352/* The same information, inverted:
353   Return the class number of the smallest class containing
354   reg number REGNO.  This could be a conditional expression
355   or could index an array.  */
356
357extern enum reg_class regno_reg_class[];
358#define REGNO_REG_CLASS(REGNO) ( (REGNO < 16) ? GENERAL_REGS : FPU_REGS )
359
360/* The class value for index registers, and the one for base regs.  */
361
362#define INDEX_REG_CLASS GENERAL_REGS
363#define BASE_REG_CLASS  GENERAL_REGS
364 
365/* Get reg_class from a letter such as appears in the machine description.
366   We do a trick here to modify the effective constraints on the
367   machine description; we zorch the constraint letters that aren't
368   appropriate for a specific target.  This allows us to guarantee
369   that a specific kind of register will not be used for a given target
370   without fiddling with the register classes above. */
371
372#define REG_CLASS_FROM_LETTER(C) \
373  ((C) == 'r' ? GENERAL_REGS :                  \
374   ((C) == 'f' ? (TARGET_FPU ? FPU_REGS : NO_REGS) :    \
375     NO_REGS))
376
377/* The letters I, J, K, L and M in a register constraint string
378   can be used to stand for particular ranges of immediate operands.
379   This macro defines what the ranges are.
380   C is the letter, and VALUE is a constant value.
381   Return 1 if VALUE is in the range specified by C.
382
383   For the Gmicro, all immediate value optimizations are done
384   by assembler, so no machine dependent definition is necessary ??? */
385
386/* #define CONST_OK_FOR_LETTER_P(VALUE, C) ((C) == 'I') */
387#define CONST_OK_FOR_LETTER_P(VALUE, C) 0
388
389/*
390 * The letters G defines all of the floating constants tha are *NOT*
391 * Gmicro-FPU constant.
392 */
393
394#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
395    ((C) == 'F' ||                              \
396     (C) == 'G' && !(TARGET_FPU && standard_fpu_constant_p (VALUE)))
397
398/* Given an rtx X being reloaded into a reg required to be
399   in class CLASS, return the class of reg to actually use.
400   In general this is just CLASS; but on some machines
401   in some cases it is preferable to use a more restrictive class. */
402/* On the Gmicro series, there is no restriction on GENERAL_REGS,
403   so CLASS is returned. I do not know whether I should treat FPU_REGS
404   specially or not (at least, m68k does not). */
405
406#define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
407
408/* Return the maximum number of consecutive registers
409   needed to represent mode MODE in a register of class CLASS.  */
410/* On the Gmicro, this is the size of MODE in words,
411   except in the FPU regs, where a single reg is always enough.  */
412#define CLASS_MAX_NREGS(CLASS, MODE)    \
413 ((CLASS) == FPU_REGS ? \
414   1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
415
416/* Stack layout; function entry, exit and calling.  */
417
418/* Define this if pushing a word on the stack
419   makes the stack pointer a smaller address.  */
420#define STACK_GROWS_DOWNWARD
421
422/* Define this if the nominal address of the stack frame
423   is at the high-address end of the local variables;
424   that is, each additional local variable allocated
425   goes at a more negative offset in the frame.  */
426#define FRAME_GROWS_DOWNWARD
427
428/* Offset within stack frame to start allocating local variables at.
429   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
430   first local allocated.  Otherwise, it is the offset to the BEGINNING
431   of the first local allocated.  */
432/* On the Gmicro, FP points to the old FP and the first local variables are
433   at (FP - 4). */
434#define STARTING_FRAME_OFFSET 0
435
436/* If we generate an insn to push BYTES bytes,
437   this says how many the stack pointer really advances by. */
438/* On the Gmicro, sp is decremented by the exact size of the operand */
439#define PUSH_ROUNDING(BYTES) (BYTES)
440
441/* Offset of first parameter from the argument pointer register value.  */
442/* On the Gmicro, the first argument is found at (ap + 8) where ap is fp. */
443#define FIRST_PARM_OFFSET(FNDECL) 8
444
445/* Value is the number of byte of arguments automatically
446   popped when returning from a subroutine call.
447   FUNDECL is the declaration node of the function (as a tree),
448   FUNTYPE is the data type of the function (as a tree),
449   or for a library call it is an identifier node for the subroutine name.
450   SIZE is the number of bytes of arguments passed on the stack.
451
452   On the Gmicro, the EXITD insn may be used to pop them if the number
453   of args is fixed, but if the number is variable then the caller must pop
454   them all. The adjsp operand of the EXITD insn can't be used for library
455   calls now because the library is compiled with the standard compiler.
456   Use of adjsp operand is a selectable option, since it is incompatible with
457   standard Unix calling sequences.  If the option is not selected,
458   the caller must always pop the args.
459   On the m68k this is an RTD option, so I use the same name
460   for the Gmicro. The option name may be changed in the future. */
461
462#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE)   \
463  ((TARGET_RTD && TREE_CODE (FUNTYPE) != IDENTIFIER_NODE        \
464    && (TYPE_ARG_TYPES (FUNTYPE) == 0                           \
465        || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE)))   \
466            = void_type_node)))                                 \
467   ? (SIZE) : 0)
468
469/* Define how to find the value returned by a function.
470   VALTYPE is the data type of the value (as a tree).
471   If the precise function being called is known, FUNC is its FUNCTION_DECL;
472   otherwise, FUNC is 0.  */
473
474/* On the Gmicro the floating return value is in fr0 not r0.  */
475
476#define FUNCTION_VALUE(VALTYPE, FUNC)  LIBCALL_VALUE (TYPE_MODE (VALTYPE))
477
478/* Define how to find the value returned by a library function
479   assuming the value has mode MODE.  */
480
481#define LIBCALL_VALUE(MODE)     \
482  (gen_rtx (REG, (MODE),                \
483    ((TARGET_FPU && ((MODE) == SFmode || (MODE) == DFmode)) ? 16 : 0)))
484
485
486/* 1 if N is a possible register number for a function value.
487   On the Gmicro, r0 and fp0 are the possible registers.  */
488
489#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 16)
490
491/* Define this if PCC uses the nonreentrant convention for returning
492   structure and union values.  */
493
494#define PCC_STATIC_STRUCT_RETURN
495
496/* 1 if N is a possible register number for function argument passing.
497   On the Gmicro, no registers are used in this way.  */
498/* Really? For the performance improvement, registers should be used !! */
499
500#define FUNCTION_ARG_REGNO_P(N) 0
501
502/* Define a data type for recording info about an argument list
503   during the scan of that argument list.  This data type should
504   hold all necessary information about the function itself
505   and about the args processed so far, enough to enable macros
506   such as FUNCTION_ARG to determine where the next arg should go.
507
508   On the Gmicro, this is a single integer, which is a number of bytes
509   of arguments scanned so far.  */
510
511#define CUMULATIVE_ARGS int
512
513/* Initialize a variable CUM of type CUMULATIVE_ARGS
514   for a call to a function whose data type is FNTYPE.
515   For a library call, FNTYPE is 0.
516
517   On the Gmicro, the offset starts at 0.  */
518
519#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME)        \
520 ((CUM) = 0)
521
522/* Update the data in CUM to advance over an argument
523   of mode MODE and data type TYPE.
524   (TYPE is null for libcalls where that information may not be available.)  */
525
526#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)    \
527 ((CUM) += ((MODE) != BLKmode                   \
528            ? (GET_MODE_SIZE (MODE) + 3) & ~3   \
529            : (int_size_in_bytes (TYPE) + 3) & ~3))
530
531/* Define where to put the arguments to a function.
532   Value is zero to push the argument on the stack,
533   or a hard register in which to store the argument.
534
535   MODE is the argument's machine mode.
536   TYPE is the data type of the argument (as a tree).
537    This is null for libcalls where that information may
538    not be available.
539   CUM is a variable of type CUMULATIVE_ARGS which gives info about
540    the preceding args and about the function being called.
541   NAMED is nonzero if this argument is a named parameter
542    (otherwise it is an extra parameter matching an ellipsis).  */
543
544/* On the Gmicro all args are pushed, except if -mregparm is specified
545   then the first two words of arguments are passed in d0, d1.
546   *NOTE* -mregparm does not work.
547   It exists only to test register calling conventions.  */
548
549#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
550((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
551
552/* For an arg passed partly in registers and partly in memory,
553   this is the number of registers used.
554   For args passed entirely in registers or entirely in memory, zero.  */
555
556#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
557((TARGET_REGPARM && (CUM) < 8                                   \
558  && 8 < ((CUM) + ((MODE) == BLKmode                            \
559                      ? int_size_in_bytes (TYPE)                \
560                      : GET_MODE_SIZE (MODE))))                 \
561 ? 2 - (CUM) / 4 : 0)
562
563/* The following macro is defined to output register list.
564   The LSB of Mask is the lowest number register.
565   Regoff is MY_GREG_OFF or MY_FREG_OFF.
566   Do NOT use <i> in File, Mask, Regoff !!
567   Should be changed from macros to functions.    M.Yuhara */
568
569#define MY_GREG_OFF 0
570#define MY_FREG_OFF 16
571
572#define MY_PRINT_MASK(File, Mask, Regoff)               \
573{                                                       \
574    int i, first = -1;                                  \
575    if ((Mask) == 0) {                                  \
576        fprintf(File, "#0");                            \
577    } else {                                            \
578        fprintf(File, "(");                             \
579        for (i = 0; i < 16; i++) {                      \
580            if ( (Mask) & (1 << i) ) {                  \
581                if (first < 0) {                        \
582                    if (first == -2) {                  \
583                        fprintf(File, ",");             \
584                    }                                   \
585                    first = i;                          \
586                    fprintf(File, "%s", reg_names[Regoff + i]); \
587                }                                       \
588            } else if (first >= 0) {                    \
589                if (i > first + 1) {                    \
590                    fprintf(File, "-%s", reg_names[Regoff + i - 1]);    \
591                }                                       \
592                first = -2;                             \
593            }                                           \
594        }                                               \
595        if ( (first >= 0) && (first != 15) )            \
596            fprintf(File, "-%s", reg_names[Regoff + 15]);\
597        fprintf(File, ")");                             \
598    }                                                   \
599}
600
601
602#define MY_PRINT_ONEREG_L(FILE,MASK)            \
603{   register int i;                             \
604    for (i = 0; i < 16; i++)                    \
605        if ( (1 << i) & (MASK)) {               \
606            fprintf(FILE, "%s", reg_names[i]);  \
607            (MASK) &= ~(1 << i);                \
608            break;                              \
609        }                                       \
610}
611
612
613#define MY_PRINT_ONEREG_H(FILE,MASK)            \
614{   register int i;                             \
615    for (i = 15; i >= 0; i--)                   \
616        if ( (1 << i) & (MASK)) {               \
617            fprintf(FILE, "%s", reg_names[i]);  \
618            (MASK) &= ~(1 << i);                \
619            break;                              \
620        }                                       \
621}
622
623/* This macro generates the assembly code for function entry.
624   FILE is a stdio stream to output the code to.
625   SIZE is an int: how many units of temporary storage to allocate.
626   Refer to the array `regs_ever_live' to determine which registers
627   to save; `regs_ever_live[I]' is nonzero if register number I
628   is ever used in the function.  This macro is responsible for
629   knowing which registers should not be saved even if used.  */
630
631/* The next macro needs much optimization !!
632   M.Yuhara */
633
634#define FUNCTION_PROLOGUE(FILE, SIZE)     \
635{ register int regno;                                           \
636  register int mask = 0;                                        \
637  register int nregs = 0;                                       \
638  static char *reg_names[] = REGISTER_NAMES;                    \
639  extern char call_used_regs[];                                 \
640  int fsize = ((SIZE) + 3) & -4;                                \
641  for (regno = 0; regno < 16; regno++)                          \
642    if (regs_ever_live[regno] && !call_used_regs[regno]) {      \
643        mask |= (1 << regno);                                   \
644        nregs++;                                                \
645    }                                                           \
646  if (frame_pointer_needed) {                                   \
647    mask &= ~(1 << FRAME_POINTER_REGNUM);                       \
648    if (nregs > 4) {                                            \
649        fprintf(FILE, "\tenter.w #%d,", fsize);                 \
650        MY_PRINT_MASK(FILE, mask, MY_GREG_OFF);                 \
651        fprintf(FILE,"\n");                                     \
652    } else {                                                    \
653        fprintf(FILE, "\tmov.w fp,@-sp\n");                     \
654        fprintf(FILE, "\tmov.w sp,fp\n");                       \
655        if (fsize > 0)                                          \
656            myoutput_sp_adjust(FILE, "sub", fsize);             \
657        while (nregs--) {                                       \
658            fprintf(FILE, "\tmov.w ");                          \
659            MY_PRINT_ONEREG_H(FILE, mask);                      \
660            fprintf(FILE, ",@-sp\n");                           \
661        }                                                       \
662    }                                                           \
663  } else {                                                      \
664    if (fsize > 0)                                              \
665        myoutput_sp_adjust(FILE, "sub", fsize);                 \
666    if (mask != 0) {                                            \
667        if (nregs > 4) {                                        \
668            fprintf(FILE, "\tstm.w ");                          \
669            MY_PRINT_MASK(FILE, mask, MY_GREG_OFF);             \
670            fprintf(FILE, ",@-sp\n");                           \
671        } else {                                                \
672            while (nregs--) {                                   \
673                fprintf(FILE, "\tmov.w ");                      \
674                MY_PRINT_ONEREG_H(FILE, mask);                  \
675                fprintf(FILE, ",@-sp\n");                       \
676            }                                                   \
677        }                                                       \
678    }                                                           \
679  }                                                             \
680  mask = 0;                                                     \
681  for (regno = 16; regno < 32; regno++)                         \
682        if (regs_ever_live[regno] && !call_used_regs[regno])    \
683            mask |= 1 << (regno - 16);                          \
684  if (mask != 0) {                                              \
685        fprintf(FILE, "\tfstm.w ");                             \
686        MY_PRINT_MASK(FILE, mask, MY_FREG_OFF);                 \
687        fprintf(FILE, ",@-sp\n", mask);                         \
688  }                                                             \
689}
690
691
692/* Output assembler code to FILE to increment profiler label # LABELNO
693   for profiling a function entry.  */
694/* ??? M.Yuhara */
695
696#define FUNCTION_PROFILER(FILE, LABELNO)  \
697  fprintf (FILE, "\tmova @LP%d,r0\n\tjsr mcount\n", (LABELNO))
698
699/* Output assembler code to FILE to initialize this source file's
700   basic block profiling info, if that has not already been done.  */
701
702#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO)  \
703  fprintf (FILE, "\tcmp #0,@LPBX0\n\tbne LPI%d\n\tpusha @LPBX0\n\tjsr ___bb_init_func\n\tadd #4,sp\nLPI%d:\n",  \
704           LABELNO, LABELNO);
705
706/* Output assembler code to FILE to increment the entry-count for
707   the BLOCKNO'th basic block in this source file.  */
708
709#define BLOCK_PROFILER(FILE, BLOCKNO)   \
710  fprintf (FILE, "\tadd #1,@(LPBX2+%d)\n", 4 * BLOCKNO)
711
712/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
713   the stack pointer does not matter.  The value is tested only in
714   functions that have frame pointers.
715   No definition is equivalent to always zero.  */
716
717#define EXIT_IGNORE_STACK 1
718
719/* This macro generates the assembly code for function exit,
720   on machines that need it.  If FUNCTION_EPILOGUE is not defined
721   then individual return instructions are generated for each
722   return statement.  Args are same as for FUNCTION_PROLOGUE.
723
724   The function epilogue should not depend on the current stack pointer (when
725   frame_pinter_needed)  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
726   It should use the frame pointer only.  This is mandatory because
727   of alloca; we also take advantage of it to omit stack adjustments
728   before returning.  */
729
730/* The Gmicro FPU seems to be unable to fldm/fstm double or single
731   floating. It only allows extended !! */
732/* Optimization is not enough, especially FREGs load !! M.Yuhara */
733
734#define FUNCTION_EPILOGUE(FILE, SIZE) \
735{ register int regno;                                           \
736  register int mask, fmask;                                     \
737  register int nregs, nfregs;                                   \
738  int offset, foffset;                                          \
739  extern char call_used_regs[];                                 \
740  static char *reg_names[] = REGISTER_NAMES;                    \
741  int fsize = ((SIZE) + 3) & -4;                                \
742  FUNCTION_EXTRA_EPILOGUE (FILE, SIZE);                         \
743  nfregs = 0;  fmask = 0;                                       \
744  for (regno = 16; regno < 31; regno++)                         \
745    if (regs_ever_live[regno] && ! call_used_regs[regno])       \
746      { nfregs++; fmask |= 1 << (regno - 16); }                 \
747  foffset = nfregs * 12;                                        \
748  nregs = 0;  mask = 0;                                         \
749  if (frame_pointer_needed) regs_ever_live[FRAME_POINTER_REGNUM] = 0; \
750  for (regno = 0; regno < 16; regno++)                          \
751    if (regs_ever_live[regno] && ! call_used_regs[regno])       \
752      { nregs++; mask |= 1 << regno; }                          \
753  if (frame_pointer_needed) {                                   \
754    offset = nregs * 4 + fsize;                                 \
755    if (nfregs > 0) {                                           \
756        fprintf(FILE, "\tfldm.x @(%d,fp),", -(foffset + offset));\
757        MY_PRINT_MASK(FILE, fmask, MY_FREG_OFF);                \
758        fprintf(FILE, "\n");                                    \
759    }                                                           \
760    if (nregs > 4                                               \
761        || current_function_pops_args) {                        \
762        fprintf(FILE, "\tmova @(%d,fp),sp\n", -offset);         \
763        fprintf(FILE, "\texitd ");                              \
764        MY_PRINT_MASK(FILE, mask, MY_GREG_OFF);                 \
765        fprintf(FILE, ",#%d\n", current_function_pops_args);    \
766    } else {                                                    \
767        while (nregs--) {                                       \
768            fprintf(FILE, "\tmov:l.w @(%d,fp),", -offset);      \
769            MY_PRINT_ONEREG_L(FILE, mask);                      \
770            fprintf(FILE, "\n");                                \
771            offset -= 4;                                        \
772        }                                                       \
773        if (TARGET_NEWRETURN) {                                 \
774            fprintf(FILE, "\tmova.w @(4,fp),sp\n");             \
775            fprintf(FILE, "\tmov:l.w @fp,fp\n");                \
776        } else {                                                \
777            fprintf(FILE, "\tmov.w fp,sp\n");                   \
778            fprintf(FILE, "\tmov.w @sp+,fp\n");                 \
779        }                                                       \
780        fprintf(FILE, "\trts\n");                               \
781    }                                                           \
782  } else {                                                      \
783    if (nfregs > 0) {                                           \
784        fprintf(FILE, "\tfldm.w @sp+,");                        \
785        MY_PRINT_MASK(FILE, fmask, MY_FREG_OFF);                \
786        fprintf(FILE, "\n");                                    \
787    }                                                           \
788    if (nregs > 4) {                                            \
789        fprintf(FILE, "\tldm.w @sp+,");                         \
790        MY_PRINT_MASK(FILE, mask, MY_GREG_OFF);                 \
791        fprintf(FILE, "\n");                                    \
792    } else {                                                    \
793        while (nregs--) {                                       \
794            fprintf(FILE, "\tmov.w @sp+,");                     \
795            MY_PRINT_ONEREG_L(FILE,mask);                       \
796            fprintf(FILE, "\n");                                \
797        }                                                       \
798    }                                                           \
799      if (current_function_pops_args) {                         \
800        myoutput_sp_adjust(FILE, "add",                         \
801            (fsize + 4 + current_function_pops_args));          \
802        fprintf(FILE, "\tjmp @(%d,sp)\n", current_function_pops_args);\
803    } else {                                                    \
804        if (fsize > 0)                                          \
805            myoutput_sp_adjust(FILE, "add", fsize);             \
806        fprintf(FILE, "\trts\n");                               \
807    }                                                           \
808  }                                                             \
809}
810
811/* This is a hook for other tm files to change.  */
812#define FUNCTION_EXTRA_EPILOGUE(FILE, SIZE)
813
814/* If the memory address ADDR is relative to the frame pointer,
815   correct it to be relative to the stack pointer instead.
816   This is for when we don't use a frame pointer.
817   ADDR should be a variable name.  */
818
819/* You have to change the next macro if you want to use more complex
820   addressing modes (such as double indirection and  more than one
821   chain-addressing stages). */
822
823#define FIX_FRAME_POINTER_ADDRESS(ADDR,DEPTH)  \
824{ int offset = -1;                                                      \
825  rtx regs = stack_pointer_rtx;                                         \
826  if (ADDR == frame_pointer_rtx)                                        \
827    offset = 0;                                                         \
828  else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 0) == frame_pointer_rtx \
829           && GET_CODE (XEXP (ADDR, 1)) == CONST_INT)                   \
830    offset = INTVAL (XEXP (ADDR, 1));                                   \
831  else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 0) == frame_pointer_rtx) \
832    { rtx other_reg = XEXP (ADDR, 1);                                   \
833      offset = 0;                                                       \
834      regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); }     \
835  else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 1) == frame_pointer_rtx) \
836    { rtx other_reg = XEXP (ADDR, 0);                                   \
837      offset = 0;                                                       \
838      regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); }     \
839  else if (GET_CODE (ADDR) == PLUS                                      \
840           && GET_CODE (XEXP (ADDR, 0)) == PLUS                         \
841           && XEXP (XEXP (ADDR, 0), 0) == frame_pointer_rtx             \
842           && GET_CODE (XEXP (ADDR, 1)) == CONST_INT)                   \
843    { rtx other_reg = XEXP (XEXP (ADDR, 0), 1);                         \
844      offset = INTVAL (XEXP (ADDR, 1));                                 \
845      regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); }     \
846  else if (GET_CODE (ADDR) == PLUS                                      \
847           && GET_CODE (XEXP (ADDR, 0)) == PLUS                         \
848           && XEXP (XEXP (ADDR, 0), 1) == frame_pointer_rtx             \
849           && GET_CODE (XEXP (ADDR, 1)) == CONST_INT)                   \
850    { rtx other_reg = XEXP (XEXP (ADDR, 0), 0);                         \
851      offset = INTVAL (XEXP (ADDR, 1));                                 \
852      regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); }     \
853  if (offset >= 0)                                                      \
854    { int regno;                                                        \
855      extern char call_used_regs[];                                     \
856      for (regno = 16; regno < 32; regno++)                             \
857        if (regs_ever_live[regno] && ! call_used_regs[regno])           \
858          offset += 12;                                                 \
859      for (regno = 0; regno < 16; regno++)                              \
860        if (regs_ever_live[regno] && ! call_used_regs[regno])           \
861          offset += 4;                                                  \
862      offset -= 4;                                                      \
863      ADDR = plus_constant (regs, offset + (DEPTH)); } }
864
865/* Addressing modes, and classification of registers for them.  */
866
867/* #define HAVE_POST_INCREMENT */
868/* #define HAVE_POST_DECREMENT */
869
870/* #define HAVE_PRE_DECREMENT */
871/* #define HAVE_PRE_INCREMENT */
872
873/* Macros to check register numbers against specific register classes.  */
874
875/* These assume that REGNO is a hard or pseudo reg number.
876   They give nonzero only if REGNO is a hard reg of the suitable class
877   or a pseudo reg currently allocated to a suitable hard reg.
878   Since they use reg_renumber, they are safe only once reg_renumber
879   has been allocated, which happens in local-alloc.c.  */
880
881/* Gmicro */
882#define REGNO_OK_FOR_GREG_P(REGNO) \
883((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
884#define REGNO_OK_FOR_FPU_P(REGNO) \
885(((REGNO) ^ 0x10) < 16 || (unsigned) (reg_renumber[REGNO] ^ 0x10) < 16)
886
887#define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_GREG_P(REGNO)
888#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_GREG_P(REGNO)
889
890/* Now macros that check whether X is a register and also,
891   strictly, whether it is in a specified class.
892
893   These macros are specific to the Gmicro, and may be used only
894   in code for printing assembler insns and in conditions for
895   define_optimization.  */
896
897/* 1 if X is an fpu register.  */
898
899#define FPU_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FPU_P (REGNO (X)))
900
901/* I used GREG_P in the gmicro.md file. */
902
903#ifdef REG_OK_STRICT
904#define GREG_P(X) (REG_P (X) && REGNO_OK_FOR_GREG_P (REGNO(X)))
905#else
906#define GREG_P(X) (REG_P (X) && ((REGNO (X) & ~0xf) != 0x10))
907#endif
908
909/* Maximum number of registers that can appear in a valid memory address.  */
910
911/* The Gmicro allows more registers in the chained addressing mode.
912   But I do not know gcc supports such an architecture. */
913
914#define MAX_REGS_PER_ADDRESS 2
915
916/* Recognize any constant value that is a valid address.  */
917
918#define CONSTANT_ADDRESS_P(X)   \
919  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF              \
920   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST                \
921   || GET_CODE (X) == HIGH)
922
923/* Nonzero if the constant value X is a legitimate general operand.
924   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
925
926#define LEGITIMATE_CONSTANT_P(X) 1
927
928/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
929   and check its validity for a certain class.
930   We have two alternate definitions for each of them.
931   The usual definition accepts all pseudo regs; the other rejects
932   them unless they have been allocated suitable hard regs.
933   The symbol REG_OK_STRICT causes the latter definition to be used.
934
935   Most source files want to accept pseudo regs in the hope that
936   they will get allocated to the class that the insn wants them to be in.
937   Source files for reload pass need to be strict.
938   After reload, it makes no difference, since pseudo regs have
939   been eliminated by then.  */
940
941#ifndef REG_OK_STRICT
942
943/* Nonzero if X is a hard reg that can be used as an index
944   or if it is a pseudo reg.  */
945#define REG_OK_FOR_INDEX_P(X) ((REGNO (X) & ~0xf) != 0x10)
946/* Nonzero if X is a hard reg that can be used as a base reg
947   or if it is a pseudo reg.  */
948#define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~0xf) != 0x10)
949
950#else
951
952/* Nonzero if X is a hard reg that can be used as an index.  */
953#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
954/* Nonzero if X is a hard reg that can be used as a base reg.  */
955#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
956
957#endif
958
959/* The gcc uses the following effective address of the Gmicro.
960                                               (without using PC!!).
961   {@} ( {Rbase} + {Disp} + {Rindex * [1,2,4,8]} )
962        where
963                @:     memory indirection.
964                Rbase: Base Register = General Register.
965                Disp:  Displacement (up to 32bits)
966                Rindex: Index Register = General Register.
967                [1,2,4,8]: Scale of Index. 1 or 2 or 4 or 8.
968                The inside of { } can be omitted.
969    This restricts the chained addressing up to 1 stage.  */
970
971
972
973/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
974   that is a valid memory address for an instruction.
975   The MODE argument is the machine mode for the MEM expression
976   that wants to use this address.
977
978   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
979   except for CONSTANT_ADDRESS_P which is actually machine-independent.  */
980
981#define REG_CODE_BASE_P(X) \
982  (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
983
984#define REG_CODE_INDEX_P(X) \
985  (GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
986
987/* GET_CODE(X) must be PLUS. This macro does not check for PLUS! */
988#define BASE_PLUS_DISP_P(X) \
989   ( REG_CODE_BASE_P (XEXP (X, 0))              \
990     && CONSTANT_ADDRESS_P (XEXP (X, 1))        \
991    ||                                          \
992     REG_CODE_BASE_P (XEXP (X, 1))              \
993     && CONSTANT_ADDRESS_P (XEXP (X, 0)) )
994
995/* 1 if X is {0,Rbase} + {0,disp}.  */
996#define BASED_ADDRESS_P(X)  \
997  (CONSTANT_ADDRESS_P (X)       \
998   || REG_CODE_BASE_P (X)       \
999   || (GET_CODE (X) == PLUS)    \
1000       && BASE_PLUS_DISP_P (X))
1001
1002/* 1 if X is 1 or 2 or 4 or 8. GET_CODE(X) must be CONST_INT. */
1003#define SCALE_OF_INDEX_P(X) \
1004  ( INTVAL(X) == 4      \
1005    || INTVAL(X) == 2   \
1006    || INTVAL(X) == 8   \
1007    || INTVAL(X) == 1 )
1008
1009/* #define INDEX_TERM_P(X,MODE)  */
1010#define INDEX_TERM_P(X)  \
1011  ( REG_CODE_INDEX_P(X)                                 \
1012    || (GET_CODE (X) == MULT                            \
1013        && ( (xfoo0 = XEXP (X, 0)), (xfoo1 = XEXP(X, 1)), \
1014             ( ( (GET_CODE (xfoo0) == CONST_INT)        \
1015               && SCALE_OF_INDEX_P (xfoo0)              \
1016               && REG_CODE_INDEX_P (xfoo1) )            \
1017              ||                                        \
1018               ( (GET_CODE (xfoo1) == CONST_INT)                \
1019               && SCALE_OF_INDEX_P (xfoo1)              \
1020               && REG_CODE_INDEX_P (xfoo0) ) ))))
1021
1022/* Assumes there are no cases such that X = (Ireg + Disp) + Disp */
1023#define BASE_DISP_INDEX_P(X)  \
1024  ( BASED_ADDRESS_P (X)                                                 \
1025   || ( (GET_CODE (X) == PLUS)                                          \
1026      && ( ( (xboo0 = XEXP (X, 0)), (xboo1 = XEXP (X, 1)),              \
1027          (REG_CODE_BASE_P (xboo0)                                      \
1028            && (GET_CODE (xboo1) == PLUS)                               \
1029            && ( ( CONSTANT_ADDRESS_P (XEXP (xboo1, 0))                 \
1030                   && INDEX_TERM_P (XEXP (xboo1, 1)) )                  \
1031                 || ( CONSTANT_ADDRESS_P (XEXP (xboo1, 1))              \
1032                     && INDEX_TERM_P (XEXP (xboo1, 0))) )))             \
1033         ||                                                             \
1034          (CONSTANT_ADDRESS_P (xboo0)                                   \
1035            && (GET_CODE (xboo1) == PLUS)                               \
1036            && ( ( REG_CODE_BASE_P (XEXP (xboo1, 0))                    \
1037                   && INDEX_TERM_P (XEXP (xboo1, 1)) )                  \
1038                 || ( REG_CODE_BASE_P (XEXP (xboo1, 1))                 \
1039                      && INDEX_TERM_P (XEXP (xboo1, 0))) ))             \
1040        ||                                                              \
1041          (INDEX_TERM_P (xboo0)                                         \
1042            && ( ( (GET_CODE (xboo1) == PLUS)                           \
1043                  && ( ( REG_CODE_BASE_P (XEXP (xboo1, 0))              \
1044                      && CONSTANT_ADDRESS_P (XEXP (xboo1, 1)) )         \
1045                       || ( REG_CODE_BASE_P (XEXP (xboo1, 1))           \
1046                      && CONSTANT_ADDRESS_P (XEXP (xboo1, 0))) ))       \
1047                ||                                                      \
1048                 (CONSTANT_ADDRESS_P (xboo1))                           \
1049                ||                                                      \
1050                 (REG_CODE_BASE_P (xboo1)) )))))
1051
1052/*
1053        If you want to allow double-indirection,
1054        you have to change the <fp-relative> => <sp-relative> conversion
1055        routine. M.Yuhara
1056
1057#ifdef REG_OK_STRICT
1058#define DOUBLE_INDIRECTION(X,ADDR) {\
1059    if (BASE_DISP_INDEX_P (XEXP (XEXP (X, 0), 0) )) goto ADDR; \
1060    }
1061#else
1062#define DOUBLE_INDIRECTION(X,ADDR) { }
1063#endif
1064*/
1065
1066
1067#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) {\
1068  register rtx xboo0, xboo1, xfoo0, xfoo1;              \
1069  if (GET_CODE (X) == MEM) {                            \
1070    /*                                                  \
1071    if (GET_CODE (XEXP (X,0)) == MEM) {                 \
1072        DOUBLE_INDIRECTION(X,ADDR);                     \
1073    } else {                                            \
1074        if (BASE_DISP_INDEX_P (XEXP (X, 0))) goto ADDR; \
1075    }                                                   \
1076    */                                                  \
1077  } else {                                              \
1078        if (BASE_DISP_INDEX_P (X)) goto ADDR;           \
1079        if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC)       \
1080            && REG_P (XEXP (X, 0))                                      \
1081            && (REGNO (XEXP (X, 0)) == STACK_POINTER_REGNUM))           \
1082                goto ADDR;                                              \
1083  }                                                     \
1084}
1085
1086
1087/* Try machine-dependent ways of modifying an illegitimate address
1088   to be legitimate.  If we find one, return the new, valid address.
1089   This macro is used in only one place: `memory_address' in explow.c.
1090
1091   OLDX is the address as it was before break_out_memory_refs was called.
1092   In some cases it is useful to look at this to decide what needs to be done.
1093
1094   MODE and WIN are passed so that this macro can use
1095   GO_IF_LEGITIMATE_ADDRESS.
1096
1097   It is always safe for this macro to do nothing.  It exists to recognize
1098   opportunities to optimize the output.
1099
1100   For the Gmicro, nothing is done now. */
1101
1102#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
1103
1104/* Go to LABEL if ADDR (a legitimate address expression)
1105   has an effect that depends on the machine mode it is used for.
1106   On the VAX, the predecrement and postincrement address depend thus
1107   (the amount of decrement or increment being the length of the operand)
1108   and all indexed address depend thus (because the index scale factor
1109   is the length of the operand).
1110   The Gmicro mimics the VAX now. Since ADDE is legitimate, it cannot
1111   include auto-inc/dec. */
1112
1113/* Unnecessary ??? */
1114#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)        \
1115 { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC)       \
1116     goto LABEL; }
1117
1118
1119/* Specify the machine mode that this machine uses
1120   for the index in the tablejump instruction.  */
1121/* #define CASE_VECTOR_MODE HImode */
1122#define CASE_VECTOR_MODE SImode
1123
1124/* Define this if the tablejump instruction expects the table
1125   to contain offsets from the address of the table.
1126   Do not define this if the table should contain absolute addresses.  */
1127#define CASE_VECTOR_PC_RELATIVE
1128
1129/* Specify the tree operation to be used to convert reals to integers.  */
1130#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1131
1132/* This is the kind of divide that is easiest to do in the general case.  */
1133#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1134
1135/* Define this as 1 if `char' should by default be signed; else as 0.  */
1136#define DEFAULT_SIGNED_CHAR 1
1137
1138/* Max number of bytes we can move from memory to memory
1139   in one reasonably fast instruction.  */
1140#define MOVE_MAX 4
1141
1142/* Define this if zero-extension is slow (more than one real instruction).  */
1143/* #define SLOW_ZERO_EXTEND */
1144
1145/* Nonzero if access to memory by bytes is slow and undesirable.  */
1146#define SLOW_BYTE_ACCESS 0
1147
1148/* Define if shifts truncate the shift count
1149   which implies one can omit a sign-extension or zero-extension
1150   of a shift count.  */
1151/* #define SHIFT_COUNT_TRUNCATED */
1152
1153/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1154   is done just by pretending it is already truncated.  */
1155#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1156
1157/* We assume that the store-condition-codes instructions store 0 for false
1158   and some other value for true.  This is the value stored for true.  */
1159
1160/* #define STORE_FLAG_VALUE -1 */
1161
1162/* When a prototype says `char' or `short', really pass an `int'.  */
1163#define PROMOTE_PROTOTYPES
1164
1165/* Specify the machine mode that pointers have.
1166   After generation of rtl, the compiler makes no further distinction
1167   between pointers and any other objects of this machine mode.  */
1168#define Pmode SImode
1169
1170/* A function address in a call instruction
1171   is a byte address (for indexing purposes)
1172   so give the MEM rtx a byte's mode.  */
1173#define FUNCTION_MODE QImode
1174
1175/* Compute the cost of computing a constant rtl expression RTX
1176   whose rtx-code is CODE.  The body of this macro is a portion
1177   of a switch statement.  If the code is computed here,
1178   return it with a return statement.  Otherwise, break from the switch.  */
1179
1180#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1181  case CONST_INT:                                               \
1182    if ((unsigned) INTVAL (RTX) < 8) return 0;                  \
1183    if ((unsigned) (INTVAL (RTX) + 0x80) < 0x100) return 1;     \
1184    if ((unsigned) (INTVAL (RTX) + 0x8000) < 0x10000) return 2; \
1185  case CONST:                                                   \
1186  case LABEL_REF:                                               \
1187  case SYMBOL_REF:                                              \
1188    return 3;                                                   \
1189  case CONST_DOUBLE:                                            \
1190    return 5;
1191
1192/* Define subroutines to call to handle multiply and divide.
1193   The `*' prevents an underscore from being prepended by the compiler.  */
1194/* Use libgcc on Gmicro */
1195/* #define UDIVSI3_LIBCALL "*udiv" */
1196/* #define UMODSI3_LIBCALL "*urem" */
1197
1198
1199/* Tell final.c how to eliminate redundant test instructions.  */
1200
1201/* Here we define machine-dependent flags and fields in cc_status
1202   (see `conditions.h').  */
1203
1204/* Set if the cc value is actually in the FPU, so a floating point
1205   conditional branch must be output.  */
1206#define CC_IN_FPU 04000
1207
1208/* Store in cc_status the expressions
1209   that the condition codes will describe
1210   after execution of an instruction whose pattern is EXP.
1211   Do not alter them if the instruction would not alter the cc's.  */
1212
1213/* Since Gmicro's compare instructions depend on the branch condition,
1214   all branch should be kept.
1215   More work must be done to optimize condition code !! M.Yuhara */
1216
1217#define NOTICE_UPDATE_CC(EXP, INSN) {CC_STATUS_INIT;}
1218
1219/* The skeleton of the next macro is taken from "vax.h".
1220   FPU-reg manipulation is added.  M.Yuhara */
1221/* Now comment out.
1222#define NOTICE_UPDATE_CC(EXP, INSN) {   \
1223  if (GET_CODE (EXP) == SET) {                                  \
1224      if ( !FPU_REG_P (XEXP (EXP, 0))                           \
1225          && (XEXP (EXP, 0) != cc0_rtx)                         \
1226          && (FPU_REG_P (XEXP (EXP, 1))                         \
1227              || GET_CODE (XEXP (EXP, 1)) == FIX                \
1228              || GET_CODE (XEXP (EXP, 1)) == FLOAT_TRUNCATE     \
1229              || GET_CODE (XEXP (EXP, 1)) == FLOAT_EXTEND)) {   \
1230         CC_STATUS_INIT;                                        \
1231      } else if (GET_CODE (SET_SRC (EXP)) == CALL) {            \
1232         CC_STATUS_INIT;                                        \
1233      } else if (GET_CODE (SET_DEST (EXP)) != PC) {             \
1234          cc_status.flags = 0;                                  \
1235          cc_status.value1 = SET_DEST (EXP);                    \
1236          cc_status.value2 = SET_SRC (EXP);                     \
1237      }                                                         \
1238  } else if (GET_CODE (EXP) == PARALLEL                         \
1239           && GET_CODE (XVECEXP (EXP, 0, 0)) == SET             \
1240           && GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) {\
1241      cc_status.flags = 0;                                      \
1242      cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0));        \
1243      cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0));         \
1244  /* PARALLELs whose first element sets the PC are aob, sob VAX insns.  \
1245     They do change the cc's.  So drop through and forget the cc's. * / \
1246  } else CC_STATUS_INIT;                                                \
1247  if (cc_status.value1 && GET_CODE (cc_status.value1) == REG    \
1248      && cc_status.value2                                       \
1249      && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))  \
1250    cc_status.value2 = 0;                                       \
1251  if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM    \
1252      && cc_status.value2                                       \
1253      && GET_CODE (cc_status.value2) == MEM)                    \
1254    cc_status.value2 = 0;                                       \
1255  if ( (cc_status.value1 && FPU_REG_P (cc_status.value1))       \
1256      || (cc_status.value2 && FPU_REG_P (cc_status.value2)))    \
1257    cc_status.flags = CC_IN_FPU;                                \
1258}
1259*/
1260
1261#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV)  \
1262{ if (cc_prev_status.flags & CC_IN_FPU)         \
1263    return FLOAT;                               \
1264  if (cc_prev_status.flags & CC_NO_OVERFLOW)    \
1265    return NO_OV;                               \
1266  return NORMAL; }
1267
1268/* Control the assembler format that we output.  */
1269
1270/* Output before read-only data.  */
1271
1272#define TEXT_SECTION_ASM_OP ".section text,code,align=4"
1273
1274/* Output before writable data.  */
1275
1276#define DATA_SECTION_ASM_OP ".section data,data,align=4"
1277
1278/* Output before uninitialized data. */
1279
1280#define BSS_SECTION_ASM_OP ".section bss,data,align=4"
1281
1282#define EXTRA_SECTIONS in_bss
1283
1284#define EXTRA_SECTION_FUNCTIONS \
1285void                                                            \
1286bss_section ()                                                  \
1287{                                                               \
1288    if (in_section != in_bss) {                                 \
1289        fprintf (asm_out_file, "%s\n", BSS_SECTION_ASM_OP);     \
1290        in_section = in_bss;                                    \
1291    }                                                           \
1292}
1293
1294/* Output at beginning of assembler file.
1295   It is not appropriate for this to print a list of the options used,
1296   since that's not the convention that we use.  */
1297
1298#define ASM_FILE_START(FILE)
1299
1300/* Output at the end of assembler file. */
1301
1302#define ASM_FILE_END(FILE)  fprintf (FILE, "\t.end\n");
1303
1304
1305/* Don't try to define `gcc_compiled.' since the assembler do not
1306   accept symbols with periods and GDB doesn't run on this machine anyway.  */
1307#define ASM_IDENTIFY_GCC(FILE)
1308
1309
1310/* Output to assembler file text saying following lines
1311   may contain character constants, extra white space, comments, etc.  */
1312
1313#define ASM_APP_ON ""
1314/* #define ASM_APP_ON "#APP\n" */
1315
1316/* Output to assembler file text saying following lines
1317   no longer contain unusual constructs.  */
1318
1319#define ASM_APP_OFF ""
1320/* #define ASM_APP_OFF ";#NO_APP\n" */
1321
1322/* How to refer to registers in assembler output.
1323   This sequence is indexed by compiler's hard-register-number (see above).  */
1324
1325#define REGISTER_NAMES \
1326{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",        \
1327 "r8", "r9", "r10", "r11", "r12", "r13", "fp", "sp",    \
1328 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
1329 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15"}
1330
1331/* How to renumber registers for dbx and gdb. */
1332
1333#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1334
1335/* Define this if gcc should produce debugging output for dbx in response
1336   to the -g flag. This does not work for the Gmicro now */
1337
1338#define DBX_DEBUGGING_INFO
1339
1340/* This is how to output the definition of a user-level label named NAME,
1341   such as the label on a static function or variable NAME.  */
1342
1343#define ASM_OUTPUT_LABEL(FILE,NAME) {   \
1344    assemble_name (FILE, NAME); \
1345    fputs (":\n", FILE);        \
1346}
1347
1348/* This is how to output a command to make the user-level label named NAME
1349   defined for reference from other files.  */
1350
1351#define ASM_GLOBALIZE_LABEL(FILE,NAME) {\
1352    fputs ("\t.global ", FILE); \
1353    assemble_name (FILE, NAME); \
1354    fputs ("\n", FILE);         \
1355}
1356
1357/* This is how to output a command to make the external label named NAME
1358   which are not defined in the file to be referable */
1359/* ".import" does not work ??? */
1360
1361#define ASM_OUTPUT_EXTERNAL(FILE,DECL,NAME) { \
1362    fputs ("\t.global ", FILE); \
1363    assemble_name (FILE, NAME); \
1364    fputs ("\n", FILE);         \
1365}
1366
1367
1368/* This is how to output a reference to a user-level label named NAME.
1369   `assemble_name' uses this.  */
1370
1371#define ASM_OUTPUT_LABELREF(FILE,NAME)  \
1372  fprintf (FILE, "_%s", NAME)
1373
1374/* This is how to output an internal numbered label where
1375   PREFIX is the class of label and NUM is the number within the class.  */
1376
1377#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM)      \
1378  fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1379
1380/* This is how to store into the string LABEL
1381   the symbol_ref name of an internal numbered label where
1382   PREFIX is the class of label and NUM is the number within the class.
1383   This is suitable for output with `assemble_name'.  */
1384
1385#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)   \
1386  sprintf (LABEL, "*%s%d", PREFIX, NUM)
1387
1388/* This is how to output an assembler line defining a `double' constant.  */
1389
1390/* do {...} while(0) is necessary, because these macros are used as
1391    if (xxx) MACRO; else ....
1392                  ^
1393*/
1394
1395
1396#define ASM_OUTPUT_DOUBLE(FILE,VALUE)  \
1397do { union { double d; long l[2];} tem;                                 \
1398     tem.d = (VALUE);                                                   \
1399     fprintf (FILE, "\t.fdata.d h'%x%08x.d\n", tem.l[0], tem.l[1]);     \
1400} while(0)
1401
1402
1403/* This is how to output an assembler line defining a `float' constant.  */
1404
1405#define ASM_OUTPUT_FLOAT(FILE,VALUE)  \
1406do { union { float f; long l;} tem;                     \
1407     tem.f = (VALUE);                                   \
1408     fprintf (FILE, "\t.fdata.s h'%x.s\n", tem.l);      \
1409} while(0)
1410
1411/* This is how to output an assembler line defining an `int' constant.  */
1412
1413#define ASM_OUTPUT_INT(FILE,VALUE)  \
1414( fprintf (FILE, "\t.data.w "),                 \
1415  output_addr_const (FILE, (VALUE)),            \
1416  fprintf (FILE, "\n"))
1417
1418/* Likewise for `char' and `short' constants.  */
1419
1420#define ASM_OUTPUT_SHORT(FILE,VALUE)  \
1421( fprintf (FILE, "\t.data.h "),                 \
1422  output_addr_const (FILE, (VALUE)),            \
1423  fprintf (FILE, "\n"))
1424
1425#define ASM_OUTPUT_CHAR(FILE,VALUE)  \
1426( fprintf (FILE, "\t.data.b "),                 \
1427  output_addr_const (FILE, (VALUE)),            \
1428  fprintf (FILE, "\n"))
1429
1430/* This is how to output an assembler line for a numeric constant byte.  */
1431
1432#define ASM_OUTPUT_BYTE(FILE,VALUE)  \
1433  fprintf (FILE, "\t.data.b h'%x\n", (VALUE))
1434
1435#define ASM_OUTPUT_ASCII(FILE,P,SIZE)  \
1436  output_ascii ((FILE), (P), (SIZE))
1437
1438/* This is how to output an insn to push a register on the stack.
1439   It need not be very fast code.  */
1440
1441#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)  \
1442  fprintf (FILE, "\tmov %s,@-sp\n", reg_names[REGNO])
1443
1444/* This is how to output an insn to pop a register from the stack.
1445   It need not be very fast code.  */
1446
1447#define ASM_OUTPUT_REG_POP(FILE,REGNO)  \
1448  fprintf (FILE, "\tmov @sp+,%s\n", reg_names[REGNO])
1449
1450/* This is how to output an element of a case-vector that is absolute.
1451   (The Gmicro does not use such vectors,
1452   but we must define this macro anyway.)  */
1453
1454#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1455  fprintf (FILE, "\t.data.w L%d\n", VALUE)
1456
1457
1458/* This is how to output an element of a case-vector that is relative.  */
1459
1460#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)  \
1461  fprintf (FILE, "\t.data.w L%d-L%d\n", VALUE, REL)
1462
1463
1464/* This is how to output an assembler line
1465   that says to advance the location counter
1466   to a multiple of 2**LOG bytes.  */
1467
1468#define ASM_OUTPUT_ALIGN(FILE,LOG)  \
1469  fprintf (FILE, "\t.align %d\n", (1 << (LOG)));
1470
1471#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1472  fprintf (FILE, "\t.res.b %d\n", (SIZE))
1473
1474/* This says how to output an assembler line
1475   to define a global common symbol.  */
1476
1477#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1478( bss_section (),                               \
1479  assemble_name ((FILE), (NAME)),               \
1480  fprintf ((FILE), ":\t.res.b %d\n", (ROUNDED)),\
1481  fprintf ((FILE), "\t.export "),               \
1482  assemble_name ((FILE), (NAME)),               \
1483  fprintf ((FILE), "\n") )
1484
1485/* This says how to output an assembler line
1486   to define a local common symbol.  */
1487
1488#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)  \
1489( bss_section (),                               \
1490  assemble_name ((FILE), (NAME)),               \
1491  fprintf ((FILE), ":\t.res.b %d\n", (ROUNDED)))
1492
1493/* Store in OUTPUT a string (made with alloca) containing
1494   an assembler-name for a local static variable named NAME.
1495   LABELNO is an integer which is different for each call.  */
1496
1497/* $__ is unique ????? M.Yuhara */
1498#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)  \
1499( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 12),    \
1500  sprintf ((OUTPUT), "$__%s%d", (NAME), (LABELNO)))
1501
1502/* Define the parentheses used to group arithmetic operations
1503   in assembler code.  */
1504
1505#define ASM_OPEN_PAREN "("
1506#define ASM_CLOSE_PAREN ")"
1507
1508/* Define results of standard character escape sequences.  */
1509#define TARGET_BELL 007
1510#define TARGET_BS 010
1511#define TARGET_TAB 011
1512#define TARGET_NEWLINE 012
1513#define TARGET_VT 013
1514#define TARGET_FF 014
1515#define TARGET_CR 015
1516
1517/* Output a float value (represented as a C double) as an immediate operand.
1518   This macro is a Gmicro/68k-specific macro.  */
1519
1520#define ASM_OUTPUT_FLOAT_OPERAND(FILE,VALUE)    \
1521do { union { float f; long l;} tem;             \
1522  tem.f = (VALUE);                              \
1523  fprintf (FILE, "#h'%x.s", tem.l);             \
1524} while(0)
1525
1526
1527/* Output a double value (represented as a C double) as an immediate operand.
1528   This macro is a 68k-specific macro.  */
1529#define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE)   \
1530do { union { double d; long l[2];} tem;         \
1531  tem.d = (VALUE);                              \
1532  fprintf (FILE, "#h'%x%08x.d", tem.l[0], tem.l[1]);    \
1533} while(0)
1534
1535/* Print operand X (an rtx) in assembler syntax to file FILE.
1536   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1537   For `%' followed by punctuation, CODE is the punctuation and X is null.
1538
1539   On the Gmicro, we use several CODE characters:
1540   'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
1541   'b' for branch target label.
1542   '-' for an operand pushing on the stack.
1543   '+' for an operand pushing on the stack.
1544   '#' for an immediate operand prefix
1545*/
1546
1547#define PRINT_OPERAND_PUNCT_VALID_P(CODE)       \
1548  ( (CODE) == '#' || (CODE) == '-'              \
1549     || (CODE) == '+' || (CODE) == '@' || (CODE) == '!')
1550
1551
1552#define PRINT_OPERAND(FILE, X, CODE)  \
1553{ int i;                                                                \
1554  static char *reg_name[] = REGISTER_NAMES;                             \
1555/* fprintf (stderr, "PRINT_OPERAND CODE=%c(0x%x), ", CODE, CODE);\
1556myprcode(GET_CODE(X)); */       \
1557  if (CODE == '#') fprintf (FILE, "#");                                 \
1558  else if (CODE == '-') fprintf (FILE, "@-sp");                         \
1559  else if (CODE == '+') fprintf (FILE, "@sp+");                         \
1560  else if (CODE == 's') fprintf (stderr, "err: PRINT_OPERAND <s>\n");   \
1561  else if (CODE == '!') fprintf (stderr, "err: PRINT_OPERAND <!>\n");   \
1562  else if (CODE == '.') fprintf (stderr, "err: PRINT_OPERAND <.>\n");   \
1563  else if (CODE == 'b') {                                               \
1564    if (GET_CODE (X) == MEM)                                            \
1565        output_addr_const (FILE, XEXP (X, 0));  /* for bsr */           \
1566    else                                                                \
1567        output_addr_const (FILE, X);  /* for bcc */                     \
1568  }                                                                     \
1569  else if (CODE == 'p')                                                 \
1570    print_operand_address (FILE, X);                                    \
1571  else if (GET_CODE (X) == REG)                                         \
1572    fprintf (FILE, "%s", reg_name[REGNO (X)]);                          \
1573  else if (GET_CODE (X) == MEM)                                         \
1574    output_address (XEXP (X, 0));                                       \
1575  else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode)      \
1576    { union { double d; int i[2]; } u;                                  \
1577      union { float f; int i; } u1;                                     \
1578      u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X);    \
1579      u1.f = u.d;                                                       \
1580      if (CODE == 'f')                                                  \
1581        ASM_OUTPUT_FLOAT_OPERAND (FILE, u1.f);                          \
1582      else                                                              \
1583        fprintf (FILE, "#h'%x", u1.i); }                                \
1584  else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == DFmode)      \
1585    { union { double d; int i[2]; } u;                                  \
1586      u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X);    \
1587      ASM_OUTPUT_DOUBLE_OPERAND (FILE, u.d); }                          \
1588  else { putc ('#', FILE);                                              \
1589output_addr_const (FILE, X); }}
1590
1591/* Note that this contains a kludge that knows that the only reason
1592   we have an address (plus (label_ref...) (reg...))
1593   is in the insn before a tablejump, and we know that m68k.md
1594   generates a label LInnn: on such an insn.  */
1595#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1596    { print_operand_address (FILE, ADDR); }
1597
1598/*
1599Local variables:
1600version-control: t
1601End:
1602*/
Note: See TracBrowser for help on using the repository browser.