source: trunk/third/gcc/explow.c @ 11288

Revision 11288, 38.7 KB checked in by ghudson, 26 years ago (diff)
This commit was generated by cvs2svn to compensate for changes in r11287, which included commits to RCS files with non-trunk default branches.
Line 
1/* Subroutines for manipulating rtx's in semantically interesting ways.
2   Copyright (C) 1987, 91, 94-97, 1998 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING.  If not, write to
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA.  */
20
21
22#include "config.h"
23#include <stdio.h>
24#include "rtl.h"
25#include "tree.h"
26#include "flags.h"
27#include "expr.h"
28#include "hard-reg-set.h"
29#include "insn-config.h"
30#include "recog.h"
31#include "insn-flags.h"
32#include "insn-codes.h"
33
34static rtx break_out_memory_refs        PROTO((rtx));
35static void emit_stack_probe            PROTO((rtx));
36/* Return an rtx for the sum of X and the integer C.
37
38   This function should be used via the `plus_constant' macro.  */
39
40rtx
41plus_constant_wide (x, c)
42     register rtx x;
43     register HOST_WIDE_INT c;
44{
45  register RTX_CODE code;
46  register enum machine_mode mode;
47  register rtx tem;
48  int all_constant = 0;
49
50  if (c == 0)
51    return x;
52
53 restart:
54
55  code = GET_CODE (x);
56  mode = GET_MODE (x);
57  switch (code)
58    {
59    case CONST_INT:
60      return GEN_INT (INTVAL (x) + c);
61
62    case CONST_DOUBLE:
63      {
64        HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
65        HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
66        HOST_WIDE_INT l2 = c;
67        HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
68        HOST_WIDE_INT lv, hv;
69
70        add_double (l1, h1, l2, h2, &lv, &hv);
71
72        return immed_double_const (lv, hv, VOIDmode);
73      }
74
75    case MEM:
76      /* If this is a reference to the constant pool, try replacing it with
77         a reference to a new constant.  If the resulting address isn't
78         valid, don't return it because we have no way to validize it.  */
79      if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
80          && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
81        {
82          /* Any rtl we create here must go in a saveable obstack, since
83             we might have been called from within combine.  */
84          push_obstacks_nochange ();
85          rtl_in_saveable_obstack ();
86          tem
87            = force_const_mem (GET_MODE (x),
88                               plus_constant (get_pool_constant (XEXP (x, 0)),
89                                              c));
90          pop_obstacks ();
91          if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
92            return tem;
93        }
94      break;
95
96    case CONST:
97      /* If adding to something entirely constant, set a flag
98         so that we can add a CONST around the result.  */
99      x = XEXP (x, 0);
100      all_constant = 1;
101      goto restart;
102
103    case SYMBOL_REF:
104    case LABEL_REF:
105      all_constant = 1;
106      break;
107
108    case PLUS:
109      /* The interesting case is adding the integer to a sum.
110         Look for constant term in the sum and combine
111         with C.  For an integer constant term, we make a combined
112         integer.  For a constant term that is not an explicit integer,
113         we cannot really combine, but group them together anyway. 
114
115         Use a recursive call in case the remaining operand is something
116         that we handle specially, such as a SYMBOL_REF.  */
117
118      if (GET_CODE (XEXP (x, 1)) == CONST_INT)
119        return plus_constant (XEXP (x, 0), c + INTVAL (XEXP (x, 1)));
120      else if (CONSTANT_P (XEXP (x, 0)))
121        return gen_rtx (PLUS, mode,
122                        plus_constant (XEXP (x, 0), c),
123                        XEXP (x, 1));
124      else if (CONSTANT_P (XEXP (x, 1)))
125        return gen_rtx (PLUS, mode,
126                        XEXP (x, 0),
127                        plus_constant (XEXP (x, 1), c));
128      break;
129     
130    default:
131      break;
132    }
133
134  if (c != 0)
135    x = gen_rtx (PLUS, mode, x, GEN_INT (c));
136
137  if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
138    return x;
139  else if (all_constant)
140    return gen_rtx (CONST, mode, x);
141  else
142    return x;
143}
144
145/* This is the same as `plus_constant', except that it handles LO_SUM.
146
147   This function should be used via the `plus_constant_for_output' macro.  */
148
149rtx
150plus_constant_for_output_wide (x, c)
151     register rtx x;
152     register HOST_WIDE_INT c;
153{
154  register RTX_CODE code = GET_CODE (x);
155  register enum machine_mode mode = GET_MODE (x);
156  int all_constant = 0;
157
158  if (GET_CODE (x) == LO_SUM)
159    return gen_rtx (LO_SUM, mode, XEXP (x, 0),
160                    plus_constant_for_output (XEXP (x, 1), c));
161
162  else
163    return plus_constant (x, c);
164}
165
166/* If X is a sum, return a new sum like X but lacking any constant terms.
167   Add all the removed constant terms into *CONSTPTR.
168   X itself is not altered.  The result != X if and only if
169   it is not isomorphic to X.  */
170
171rtx
172eliminate_constant_term (x, constptr)
173     rtx x;
174     rtx *constptr;
175{
176  register rtx x0, x1;
177  rtx tem;
178
179  if (GET_CODE (x) != PLUS)
180    return x;
181
182  /* First handle constants appearing at this level explicitly.  */
183  if (GET_CODE (XEXP (x, 1)) == CONST_INT
184      && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
185                                                XEXP (x, 1)))
186      && GET_CODE (tem) == CONST_INT)
187    {
188      *constptr = tem;
189      return eliminate_constant_term (XEXP (x, 0), constptr);
190    }
191
192  tem = const0_rtx;
193  x0 = eliminate_constant_term (XEXP (x, 0), &tem);
194  x1 = eliminate_constant_term (XEXP (x, 1), &tem);
195  if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
196      && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
197                                                *constptr, tem))
198      && GET_CODE (tem) == CONST_INT)
199    {
200      *constptr = tem;
201      return gen_rtx (PLUS, GET_MODE (x), x0, x1);
202    }
203
204  return x;
205}
206
207/* Returns the insn that next references REG after INSN, or 0
208   if REG is clobbered before next referenced or we cannot find
209   an insn that references REG in a straight-line piece of code.  */
210
211rtx
212find_next_ref (reg, insn)
213     rtx reg;
214     rtx insn;
215{
216  rtx next;
217
218  for (insn = NEXT_INSN (insn); insn; insn = next)
219    {
220      next = NEXT_INSN (insn);
221      if (GET_CODE (insn) == NOTE)
222        continue;
223      if (GET_CODE (insn) == CODE_LABEL
224          || GET_CODE (insn) == BARRIER)
225        return 0;
226      if (GET_CODE (insn) == INSN
227          || GET_CODE (insn) == JUMP_INSN
228          || GET_CODE (insn) == CALL_INSN)
229        {
230          if (reg_set_p (reg, insn))
231            return 0;
232          if (reg_mentioned_p (reg, PATTERN (insn)))
233            return insn;
234          if (GET_CODE (insn) == JUMP_INSN)
235            {
236              if (simplejump_p (insn))
237                next = JUMP_LABEL (insn);
238              else
239                return 0;
240            }
241          if (GET_CODE (insn) == CALL_INSN
242              && REGNO (reg) < FIRST_PSEUDO_REGISTER
243              && call_used_regs[REGNO (reg)])
244            return 0;
245        }
246      else
247        abort ();
248    }
249  return 0;
250}
251
252/* Return an rtx for the size in bytes of the value of EXP.  */
253
254rtx
255expr_size (exp)
256     tree exp;
257{
258  tree size = size_in_bytes (TREE_TYPE (exp));
259
260  if (TREE_CODE (size) != INTEGER_CST
261      && contains_placeholder_p (size))
262    size = build (WITH_RECORD_EXPR, sizetype, size, exp);
263
264  return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype),
265                      EXPAND_MEMORY_USE_BAD);
266}
267
268/* Return a copy of X in which all memory references
269   and all constants that involve symbol refs
270   have been replaced with new temporary registers.
271   Also emit code to load the memory locations and constants
272   into those registers.
273
274   If X contains no such constants or memory references,
275   X itself (not a copy) is returned.
276
277   If a constant is found in the address that is not a legitimate constant
278   in an insn, it is left alone in the hope that it might be valid in the
279   address.
280
281   X may contain no arithmetic except addition, subtraction and multiplication.
282   Values returned by expand_expr with 1 for sum_ok fit this constraint.  */
283
284static rtx
285break_out_memory_refs (x)
286     register rtx x;
287{
288  if (GET_CODE (x) == MEM
289      || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
290          && GET_MODE (x) != VOIDmode))
291    x = force_reg (GET_MODE (x), x);
292  else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
293           || GET_CODE (x) == MULT)
294    {
295      register rtx op0 = break_out_memory_refs (XEXP (x, 0));
296      register rtx op1 = break_out_memory_refs (XEXP (x, 1));
297
298      if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
299        x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
300    }
301
302  return x;
303}
304
305#ifdef POINTERS_EXTEND_UNSIGNED
306
307/* Given X, a memory address in ptr_mode, convert it to an address
308   in Pmode, or vice versa (TO_MODE says which way).  We take advantage of
309   the fact that pointers are not allowed to overflow by commuting arithmetic
310   operations over conversions so that address arithmetic insns can be
311   used.  */
312
313rtx
314convert_memory_address (to_mode, x)
315     enum machine_mode to_mode;
316     rtx x;
317{
318  enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
319  rtx temp;
320
321  /* Here we handle some special cases.  If none of them apply, fall through
322     to the default case.  */
323  switch (GET_CODE (x))
324    {
325    case CONST_INT:
326    case CONST_DOUBLE:
327      return x;
328
329    case LABEL_REF:
330      temp = gen_rtx (LABEL_REF, to_mode, XEXP (x, 0));
331      LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
332      return temp;
333
334    case SYMBOL_REF:
335      temp = gen_rtx (SYMBOL_REF, to_mode, XSTR (x, 0));
336      SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x);
337      CONSTANT_POOL_ADDRESS_P (temp) = CONSTANT_POOL_ADDRESS_P (x);
338      return temp;
339
340    case CONST:
341      return gen_rtx (CONST, to_mode,
342                      convert_memory_address (to_mode, XEXP (x, 0)));
343
344    case PLUS:
345    case MULT:
346      /* For addition the second operand is a small constant, we can safely
347         permute the conversion and addition operation.  We can always safely
348         permute them if we are making the address narrower.  In addition,
349         always permute the operations if this is a constant.  */
350      if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
351          || (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT
352              && (INTVAL (XEXP (x, 1)) + 20000 < 40000
353                  || CONSTANT_P (XEXP (x, 0)))))
354        return gen_rtx (GET_CODE (x), to_mode,
355                        convert_memory_address (to_mode, XEXP (x, 0)),
356                        convert_memory_address (to_mode, XEXP (x, 1)));
357      break;
358     
359    default:
360      break;
361    }
362
363  return convert_modes (to_mode, from_mode,
364                        x, POINTERS_EXTEND_UNSIGNED);
365}
366#endif
367
368/* Given a memory address or facsimile X, construct a new address,
369   currently equivalent, that is stable: future stores won't change it.
370
371   X must be composed of constants, register and memory references
372   combined with addition, subtraction and multiplication:
373   in other words, just what you can get from expand_expr if sum_ok is 1.
374
375   Works by making copies of all regs and memory locations used
376   by X and combining them the same way X does.
377   You could also stabilize the reference to this address
378   by copying the address to a register with copy_to_reg;
379   but then you wouldn't get indexed addressing in the reference.  */
380
381rtx
382copy_all_regs (x)
383     register rtx x;
384{
385  if (GET_CODE (x) == REG)
386    {
387      if (REGNO (x) != FRAME_POINTER_REGNUM
388#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
389          && REGNO (x) != HARD_FRAME_POINTER_REGNUM
390#endif
391          )
392        x = copy_to_reg (x);
393    }
394  else if (GET_CODE (x) == MEM)
395    x = copy_to_reg (x);
396  else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
397           || GET_CODE (x) == MULT)
398    {
399      register rtx op0 = copy_all_regs (XEXP (x, 0));
400      register rtx op1 = copy_all_regs (XEXP (x, 1));
401      if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
402        x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
403    }
404  return x;
405}
406
407/* Return something equivalent to X but valid as a memory address
408   for something of mode MODE.  When X is not itself valid, this
409   works by copying X or subexpressions of it into registers.  */
410
411rtx
412memory_address (mode, x)
413     enum machine_mode mode;
414     register rtx x;
415{
416  register rtx oldx = x;
417
418  if (GET_CODE (x) == ADDRESSOF)
419    return x;
420
421#ifdef POINTERS_EXTEND_UNSIGNED
422  if (GET_MODE (x) == ptr_mode)
423    x = convert_memory_address (Pmode, x);
424#endif
425
426  /* By passing constant addresses thru registers
427     we get a chance to cse them.  */
428  if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
429    x = force_reg (Pmode, x);
430
431  /* Accept a QUEUED that refers to a REG
432     even though that isn't a valid address.
433     On attempting to put this in an insn we will call protect_from_queue
434     which will turn it into a REG, which is valid.  */
435  else if (GET_CODE (x) == QUEUED
436      && GET_CODE (QUEUED_VAR (x)) == REG)
437    ;
438
439  /* We get better cse by rejecting indirect addressing at this stage.
440     Let the combiner create indirect addresses where appropriate.
441     For now, generate the code so that the subexpressions useful to share
442     are visible.  But not if cse won't be done!  */
443  else
444    {
445      if (! cse_not_expected && GET_CODE (x) != REG)
446        x = break_out_memory_refs (x);
447
448      /* At this point, any valid address is accepted.  */
449      GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
450
451      /* If it was valid before but breaking out memory refs invalidated it,
452         use it the old way.  */
453      if (memory_address_p (mode, oldx))
454        goto win2;
455
456      /* Perform machine-dependent transformations on X
457         in certain cases.  This is not necessary since the code
458         below can handle all possible cases, but machine-dependent
459         transformations can make better code.  */
460      LEGITIMIZE_ADDRESS (x, oldx, mode, win);
461
462      /* PLUS and MULT can appear in special ways
463         as the result of attempts to make an address usable for indexing.
464         Usually they are dealt with by calling force_operand, below.
465         But a sum containing constant terms is special
466         if removing them makes the sum a valid address:
467         then we generate that address in a register
468         and index off of it.  We do this because it often makes
469         shorter code, and because the addresses thus generated
470         in registers often become common subexpressions.  */
471      if (GET_CODE (x) == PLUS)
472        {
473          rtx constant_term = const0_rtx;
474          rtx y = eliminate_constant_term (x, &constant_term);
475          if (constant_term == const0_rtx
476              || ! memory_address_p (mode, y))
477            x = force_operand (x, NULL_RTX);
478          else
479            {
480              y = gen_rtx (PLUS, GET_MODE (x), copy_to_reg (y), constant_term);
481              if (! memory_address_p (mode, y))
482                x = force_operand (x, NULL_RTX);
483              else
484                x = y;
485            }
486        }
487
488      else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
489        x = force_operand (x, NULL_RTX);
490
491      /* If we have a register that's an invalid address,
492         it must be a hard reg of the wrong class.  Copy it to a pseudo.  */
493      else if (GET_CODE (x) == REG)
494        x = copy_to_reg (x);
495
496      /* Last resort: copy the value to a register, since
497         the register is a valid address.  */
498      else
499        x = force_reg (Pmode, x);
500
501      goto done;
502
503    win2:
504      x = oldx;
505    win:
506      if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
507          /* Don't copy an addr via a reg if it is one of our stack slots.  */
508          && ! (GET_CODE (x) == PLUS
509                && (XEXP (x, 0) == virtual_stack_vars_rtx
510                    || XEXP (x, 0) == virtual_incoming_args_rtx)))
511        {
512          if (general_operand (x, Pmode))
513            x = force_reg (Pmode, x);
514          else
515            x = force_operand (x, NULL_RTX);
516        }
517    }
518
519 done:
520
521  /* If we didn't change the address, we are done.  Otherwise, mark
522     a reg as a pointer if we have REG or REG + CONST_INT.  */
523  if (oldx == x)
524    return x;
525  else if (GET_CODE (x) == REG)
526    mark_reg_pointer (x, 1);
527  else if (GET_CODE (x) == PLUS
528           && GET_CODE (XEXP (x, 0)) == REG
529           && GET_CODE (XEXP (x, 1)) == CONST_INT)
530    mark_reg_pointer (XEXP (x, 0), 1);
531
532  /* OLDX may have been the address on a temporary.  Update the address
533     to indicate that X is now used.  */
534  update_temp_slot_address (oldx, x);
535
536  return x;
537}
538
539/* Like `memory_address' but pretend `flag_force_addr' is 0.  */
540
541rtx
542memory_address_noforce (mode, x)
543     enum machine_mode mode;
544     rtx x;
545{
546  int ambient_force_addr = flag_force_addr;
547  rtx val;
548
549  flag_force_addr = 0;
550  val = memory_address (mode, x);
551  flag_force_addr = ambient_force_addr;
552  return val;
553}
554
555/* Convert a mem ref into one with a valid memory address.
556   Pass through anything else unchanged.  */
557
558rtx
559validize_mem (ref)
560     rtx ref;
561{
562  if (GET_CODE (ref) != MEM)
563    return ref;
564  if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
565    return ref;
566  /* Don't alter REF itself, since that is probably a stack slot.  */
567  return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
568}
569
570/* Return a modified copy of X with its memory address copied
571   into a temporary register to protect it from side effects.
572   If X is not a MEM, it is returned unchanged (and not copied).
573   Perhaps even if it is a MEM, if there is no need to change it.  */
574
575rtx
576stabilize (x)
577     rtx x;
578{
579  register rtx addr;
580  if (GET_CODE (x) != MEM)
581    return x;
582  addr = XEXP (x, 0);
583  if (rtx_unstable_p (addr))
584    {
585      rtx temp = copy_all_regs (addr);
586      rtx mem;
587      if (GET_CODE (temp) != REG)
588        temp = copy_to_reg (temp);
589      mem = gen_rtx (MEM, GET_MODE (x), temp);
590
591      /* Mark returned memref with in_struct if it's in an array or
592         structure.  Copy const and volatile from original memref.  */
593
594      MEM_IN_STRUCT_P (mem) = MEM_IN_STRUCT_P (x) || GET_CODE (addr) == PLUS;
595      RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (x);
596      MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (x);
597      return mem;
598    }
599  return x;
600}
601
602/* Copy the value or contents of X to a new temp reg and return that reg.  */
603
604rtx
605copy_to_reg (x)
606     rtx x;
607{
608  register rtx temp = gen_reg_rtx (GET_MODE (x));
609 
610  /* If not an operand, must be an address with PLUS and MULT so
611     do the computation.  */
612  if (! general_operand (x, VOIDmode))
613    x = force_operand (x, temp);
614 
615  if (x != temp)
616    emit_move_insn (temp, x);
617
618  return temp;
619}
620
621/* Like copy_to_reg but always give the new register mode Pmode
622   in case X is a constant.  */
623
624rtx
625copy_addr_to_reg (x)
626     rtx x;
627{
628  return copy_to_mode_reg (Pmode, x);
629}
630
631/* Like copy_to_reg but always give the new register mode MODE
632   in case X is a constant.  */
633
634rtx
635copy_to_mode_reg (mode, x)
636     enum machine_mode mode;
637     rtx x;
638{
639  register rtx temp = gen_reg_rtx (mode);
640 
641  /* If not an operand, must be an address with PLUS and MULT so
642     do the computation.  */
643  if (! general_operand (x, VOIDmode))
644    x = force_operand (x, temp);
645
646  if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
647    abort ();
648  if (x != temp)
649    emit_move_insn (temp, x);
650  return temp;
651}
652
653/* Load X into a register if it is not already one.
654   Use mode MODE for the register.
655   X should be valid for mode MODE, but it may be a constant which
656   is valid for all integer modes; that's why caller must specify MODE.
657
658   The caller must not alter the value in the register we return,
659   since we mark it as a "constant" register.  */
660
661rtx
662force_reg (mode, x)
663     enum machine_mode mode;
664     rtx x;
665{
666  register rtx temp, insn, set;
667
668  if (GET_CODE (x) == REG)
669    return x;
670  temp = gen_reg_rtx (mode);
671  insn = emit_move_insn (temp, x);
672
673  /* Let optimizers know that TEMP's value never changes
674     and that X can be substituted for it.  Don't get confused
675     if INSN set something else (such as a SUBREG of TEMP).  */
676  if (CONSTANT_P (x)
677      && (set = single_set (insn)) != 0
678      && SET_DEST (set) == temp)
679    {
680      rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
681
682      if (note)
683        XEXP (note, 0) = x;
684      else
685        REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, x, REG_NOTES (insn));
686    }
687  return temp;
688}
689
690/* If X is a memory ref, copy its contents to a new temp reg and return
691   that reg.  Otherwise, return X.  */
692
693rtx
694force_not_mem (x)
695     rtx x;
696{
697  register rtx temp;
698  if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
699    return x;
700  temp = gen_reg_rtx (GET_MODE (x));
701  emit_move_insn (temp, x);
702  return temp;
703}
704
705/* Copy X to TARGET (if it's nonzero and a reg)
706   or to a new temp reg and return that reg.
707   MODE is the mode to use for X in case it is a constant.  */
708
709rtx
710copy_to_suggested_reg (x, target, mode)
711     rtx x, target;
712     enum machine_mode mode;
713{
714  register rtx temp;
715
716  if (target && GET_CODE (target) == REG)
717    temp = target;
718  else
719    temp = gen_reg_rtx (mode);
720
721  emit_move_insn (temp, x);
722  return temp;
723}
724
725/* Return the mode to use to store a scalar of TYPE and MODE.
726   PUNSIGNEDP points to the signedness of the type and may be adjusted
727   to show what signedness to use on extension operations.
728
729   FOR_CALL is non-zero if this call is promoting args for a call.  */
730
731enum machine_mode
732promote_mode (type, mode, punsignedp, for_call)
733     tree type;
734     enum machine_mode mode;
735     int *punsignedp;
736     int for_call;
737{
738  enum tree_code code = TREE_CODE (type);
739  int unsignedp = *punsignedp;
740
741#ifdef PROMOTE_FOR_CALL_ONLY
742  if (! for_call)
743    return mode;
744#endif
745
746  switch (code)
747    {
748#ifdef PROMOTE_MODE
749    case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
750    case CHAR_TYPE:      case REAL_TYPE:       case OFFSET_TYPE:
751      PROMOTE_MODE (mode, unsignedp, type);
752      break;
753#endif
754
755#ifdef POINTERS_EXTEND_UNSIGNED
756    case REFERENCE_TYPE:
757    case POINTER_TYPE:
758      mode = Pmode;
759      unsignedp = POINTERS_EXTEND_UNSIGNED;
760      break;
761#endif
762     
763    default:
764      break;
765    }
766
767  *punsignedp = unsignedp;
768  return mode;
769}
770
771/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
772   This pops when ADJUST is positive.  ADJUST need not be constant.  */
773
774void
775adjust_stack (adjust)
776     rtx adjust;
777{
778  rtx temp;
779  adjust = protect_from_queue (adjust, 0);
780
781  if (adjust == const0_rtx)
782    return;
783
784  temp = expand_binop (Pmode,
785#ifdef STACK_GROWS_DOWNWARD
786                       add_optab,
787#else
788                       sub_optab,
789#endif
790                       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
791                       OPTAB_LIB_WIDEN);
792
793  if (temp != stack_pointer_rtx)
794    emit_move_insn (stack_pointer_rtx, temp);
795}
796
797/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
798   This pushes when ADJUST is positive.  ADJUST need not be constant.  */
799
800void
801anti_adjust_stack (adjust)
802     rtx adjust;
803{
804  rtx temp;
805  adjust = protect_from_queue (adjust, 0);
806
807  if (adjust == const0_rtx)
808    return;
809
810  temp = expand_binop (Pmode,
811#ifdef STACK_GROWS_DOWNWARD
812                       sub_optab,
813#else
814                       add_optab,
815#endif
816                       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
817                       OPTAB_LIB_WIDEN);
818
819  if (temp != stack_pointer_rtx)
820    emit_move_insn (stack_pointer_rtx, temp);
821}
822
823/* Round the size of a block to be pushed up to the boundary required
824   by this machine.  SIZE is the desired size, which need not be constant.  */
825
826rtx
827round_push (size)
828     rtx size;
829{
830#ifdef STACK_BOUNDARY
831  int align = STACK_BOUNDARY / BITS_PER_UNIT;
832  if (align == 1)
833    return size;
834  if (GET_CODE (size) == CONST_INT)
835    {
836      int new = (INTVAL (size) + align - 1) / align * align;
837      if (INTVAL (size) != new)
838        size = GEN_INT (new);
839    }
840  else
841    {
842      /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
843         but we know it can't.  So add ourselves and then do
844         TRUNC_DIV_EXPR.  */
845      size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
846                           NULL_RTX, 1, OPTAB_LIB_WIDEN);
847      size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
848                            NULL_RTX, 1);
849      size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
850    }
851#endif /* STACK_BOUNDARY */
852  return size;
853}
854
855/* Save the stack pointer for the purpose in SAVE_LEVEL.  PSAVE is a pointer
856   to a previously-created save area.  If no save area has been allocated,
857   this function will allocate one.  If a save area is specified, it
858   must be of the proper mode.
859
860   The insns are emitted after insn AFTER, if nonzero, otherwise the insns
861   are emitted at the current position.  */
862
863void
864emit_stack_save (save_level, psave, after)
865     enum save_level save_level;
866     rtx *psave;
867     rtx after;
868{
869  rtx sa = *psave;
870  /* The default is that we use a move insn and save in a Pmode object.  */
871  rtx (*fcn) () = gen_move_insn;
872  enum machine_mode mode = Pmode;
873
874  /* See if this machine has anything special to do for this kind of save.  */
875  switch (save_level)
876    {
877#ifdef HAVE_save_stack_block
878    case SAVE_BLOCK:
879      if (HAVE_save_stack_block)
880        {
881          fcn = gen_save_stack_block;
882          mode = insn_operand_mode[CODE_FOR_save_stack_block][0];
883        }
884      break;
885#endif
886#ifdef HAVE_save_stack_function
887    case SAVE_FUNCTION:
888      if (HAVE_save_stack_function)
889        {
890          fcn = gen_save_stack_function;
891          mode = insn_operand_mode[CODE_FOR_save_stack_function][0];
892        }
893      break;
894#endif
895#ifdef HAVE_save_stack_nonlocal
896    case SAVE_NONLOCAL:
897      if (HAVE_save_stack_nonlocal)
898        {
899          fcn = gen_save_stack_nonlocal;
900          mode = insn_operand_mode[(int) CODE_FOR_save_stack_nonlocal][0];
901        }
902      break;
903#endif
904    default:
905      break;
906    }
907
908  /* If there is no save area and we have to allocate one, do so.  Otherwise
909     verify the save area is the proper mode.  */
910
911  if (sa == 0)
912    {
913      if (mode != VOIDmode)
914        {
915          if (save_level == SAVE_NONLOCAL)
916            *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
917          else
918            *psave = sa = gen_reg_rtx (mode);
919        }
920    }
921  else
922    {
923      if (mode == VOIDmode || GET_MODE (sa) != mode)
924        abort ();
925    }
926
927  if (after)
928    {
929      rtx seq;
930
931      start_sequence ();
932      /* We must validize inside the sequence, to ensure that any instructions
933         created by the validize call also get moved to the right place.  */
934      if (sa != 0)
935        sa = validize_mem (sa);
936      emit_insn (fcn (sa, stack_pointer_rtx));
937      seq = gen_sequence ();
938      end_sequence ();
939      emit_insn_after (seq, after);
940    }
941  else
942    {
943      if (sa != 0)
944        sa = validize_mem (sa);
945      emit_insn (fcn (sa, stack_pointer_rtx));
946    }
947}
948
949/* Restore the stack pointer for the purpose in SAVE_LEVEL.  SA is the save
950   area made by emit_stack_save.  If it is zero, we have nothing to do.
951
952   Put any emitted insns after insn AFTER, if nonzero, otherwise at
953   current position.  */
954
955void
956emit_stack_restore (save_level, sa, after)
957     enum save_level save_level;
958     rtx after;
959     rtx sa;
960{
961  /* The default is that we use a move insn.  */
962  rtx (*fcn) () = gen_move_insn;
963
964  /* See if this machine has anything special to do for this kind of save.  */
965  switch (save_level)
966    {
967#ifdef HAVE_restore_stack_block
968    case SAVE_BLOCK:
969      if (HAVE_restore_stack_block)
970        fcn = gen_restore_stack_block;
971      break;
972#endif
973#ifdef HAVE_restore_stack_function
974    case SAVE_FUNCTION:
975      if (HAVE_restore_stack_function)
976        fcn = gen_restore_stack_function;
977      break;
978#endif
979#ifdef HAVE_restore_stack_nonlocal
980
981    case SAVE_NONLOCAL:
982      if (HAVE_restore_stack_nonlocal)
983        fcn = gen_restore_stack_nonlocal;
984      break;
985#endif
986    default:
987      break;
988    }
989
990  if (sa != 0)
991    sa = validize_mem (sa);
992
993  if (after)
994    {
995      rtx seq;
996
997      start_sequence ();
998      emit_insn (fcn (stack_pointer_rtx, sa));
999      seq = gen_sequence ();
1000      end_sequence ();
1001      emit_insn_after (seq, after);
1002    }
1003  else
1004    emit_insn (fcn (stack_pointer_rtx, sa));
1005}
1006
1007/* Return an rtx representing the address of an area of memory dynamically
1008   pushed on the stack.  This region of memory is always aligned to
1009   a multiple of BIGGEST_ALIGNMENT.
1010
1011   Any required stack pointer alignment is preserved.
1012
1013   SIZE is an rtx representing the size of the area.
1014   TARGET is a place in which the address can be placed.
1015
1016   KNOWN_ALIGN is the alignment (in bits) that we know SIZE has.  */
1017
1018rtx
1019allocate_dynamic_stack_space (size, target, known_align)
1020     rtx size;
1021     rtx target;
1022     int known_align;
1023{
1024  /* If we're asking for zero bytes, it doesn't matter what we point
1025     to since we can't dereference it.  But return a reasonable
1026     address anyway.  */
1027  if (size == const0_rtx)
1028    return virtual_stack_dynamic_rtx;
1029
1030  /* Otherwise, show we're calling alloca or equivalent.  */
1031  current_function_calls_alloca = 1;
1032
1033  /* Ensure the size is in the proper mode.  */
1034  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1035    size = convert_to_mode (Pmode, size, 1);
1036
1037  /* We will need to ensure that the address we return is aligned to
1038     BIGGEST_ALIGNMENT.  If STACK_DYNAMIC_OFFSET is defined, we don't
1039     always know its final value at this point in the compilation (it
1040     might depend on the size of the outgoing parameter lists, for
1041     example), so we must align the value to be returned in that case.
1042     (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1043     STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1044     We must also do an alignment operation on the returned value if
1045     the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1046
1047     If we have to align, we must leave space in SIZE for the hole
1048     that might result from the alignment operation.  */
1049
1050#if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET) || ! defined (STACK_BOUNDARY)
1051#define MUST_ALIGN 1
1052#else
1053#define MUST_ALIGN (STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1054#endif
1055
1056  if (MUST_ALIGN)
1057    {
1058      if (GET_CODE (size) == CONST_INT)
1059        size = GEN_INT (INTVAL (size)
1060                        + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1));
1061      else
1062        size = expand_binop (Pmode, add_optab, size,
1063                             GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1064                             NULL_RTX, 1, OPTAB_LIB_WIDEN);
1065    }
1066
1067#ifdef SETJMP_VIA_SAVE_AREA
1068  /* If setjmp restores regs from a save area in the stack frame,
1069     avoid clobbering the reg save area.  Note that the offset of
1070     virtual_incoming_args_rtx includes the preallocated stack args space.
1071     It would be no problem to clobber that, but it's on the wrong side
1072     of the old save area.  */
1073  {
1074    rtx dynamic_offset
1075      = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1076                      stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1077    size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1078                         NULL_RTX, 1, OPTAB_LIB_WIDEN);
1079  }
1080#endif /* SETJMP_VIA_SAVE_AREA */
1081
1082  /* Round the size to a multiple of the required stack alignment.
1083     Since the stack if presumed to be rounded before this allocation,
1084     this will maintain the required alignment.
1085
1086     If the stack grows downward, we could save an insn by subtracting
1087     SIZE from the stack pointer and then aligning the stack pointer.
1088     The problem with this is that the stack pointer may be unaligned
1089     between the execution of the subtraction and alignment insns and
1090     some machines do not allow this.  Even on those that do, some
1091     signal handlers malfunction if a signal should occur between those
1092     insns.  Since this is an extremely rare event, we have no reliable
1093     way of knowing which systems have this problem.  So we avoid even
1094     momentarily mis-aligning the stack.  */
1095
1096#ifdef STACK_BOUNDARY
1097  /* If we added a variable amount to SIZE,
1098     we can no longer assume it is aligned.  */
1099#if !defined (SETJMP_VIA_SAVE_AREA)
1100  if (MUST_ALIGN || known_align % STACK_BOUNDARY != 0)
1101#endif
1102    size = round_push (size);
1103#endif
1104
1105  do_pending_stack_adjust ();
1106
1107  /* If needed, check that we have the required amount of stack.  Take into
1108     account what has already been checked.  */
1109  if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1110    probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1111
1112  /* Don't use a TARGET that isn't a pseudo.  */
1113  if (target == 0 || GET_CODE (target) != REG
1114      || REGNO (target) < FIRST_PSEUDO_REGISTER)
1115    target = gen_reg_rtx (Pmode);
1116
1117  mark_reg_pointer (target, known_align / BITS_PER_UNIT);
1118
1119  /* Perform the required allocation from the stack.  Some systems do
1120     this differently than simply incrementing/decrementing from the
1121     stack pointer, such as acquiring the space by calling malloc().  */
1122#ifdef HAVE_allocate_stack
1123  if (HAVE_allocate_stack)
1124    {
1125      enum machine_mode mode;
1126
1127      if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][0]
1128          && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][0])
1129                (target, Pmode)))
1130        target = copy_to_mode_reg (Pmode, target);
1131      mode = insn_operand_mode[(int) CODE_FOR_allocate_stack][1];
1132      size = convert_modes (mode, ptr_mode, size, 1);
1133      if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][1]
1134          && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][1])
1135                (size, mode)))
1136        size = copy_to_mode_reg (mode, size);
1137
1138      emit_insn (gen_allocate_stack (target, size));
1139    }
1140  else
1141#endif
1142    {
1143#ifndef STACK_GROWS_DOWNWARD
1144      emit_move_insn (target, virtual_stack_dynamic_rtx);
1145#endif
1146      size = convert_modes (Pmode, ptr_mode, size, 1);
1147      anti_adjust_stack (size);
1148#ifdef STACK_GROWS_DOWNWARD
1149  emit_move_insn (target, virtual_stack_dynamic_rtx);
1150#endif
1151    }
1152
1153  if (MUST_ALIGN)
1154    {
1155      /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1156         but we know it can't.  So add ourselves and then do
1157         TRUNC_DIV_EXPR.  */
1158      target = expand_binop (Pmode, add_optab, target,
1159                             GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1160                             NULL_RTX, 1, OPTAB_LIB_WIDEN);
1161      target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1162                              GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1163                              NULL_RTX, 1);
1164      target = expand_mult (Pmode, target,
1165                            GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1166                            NULL_RTX, 1);
1167    }
1168 
1169  /* Some systems require a particular insn to refer to the stack
1170     to make the pages exist.  */
1171#ifdef HAVE_probe
1172  if (HAVE_probe)
1173    emit_insn (gen_probe ());
1174#endif
1175
1176  /* Record the new stack level for nonlocal gotos.  */
1177  if (nonlocal_goto_handler_slot != 0)
1178    emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1179
1180  return target;
1181}
1182
1183/* Emit one stack probe at ADDRESS, an address within the stack.  */
1184
1185static void
1186emit_stack_probe (address)
1187     rtx address;
1188{
1189  rtx memref = gen_rtx (MEM, word_mode, address);
1190
1191  MEM_VOLATILE_P (memref) = 1;
1192
1193  if (STACK_CHECK_PROBE_LOAD)
1194    emit_move_insn (gen_reg_rtx (word_mode), memref);
1195  else
1196    emit_move_insn (memref, const0_rtx);
1197}
1198
1199/* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1200   FIRST is a constant and size is a Pmode RTX.  These are offsets from the
1201   current stack pointer.  STACK_GROWS_DOWNWARD says whether to add or
1202   subtract from the stack.  If SIZE is constant, this is done
1203   with a fixed number of probes.  Otherwise, we must make a loop.  */
1204
1205#ifdef STACK_GROWS_DOWNWARD
1206#define STACK_GROW_OP MINUS
1207#else
1208#define STACK_GROW_OP PLUS
1209#endif
1210
1211void
1212probe_stack_range (first, size)
1213     HOST_WIDE_INT first;
1214     rtx size;
1215{
1216  /* First see if we have an insn to check the stack.  Use it if so.  */
1217#ifdef HAVE_check_stack
1218  if (HAVE_check_stack)
1219    {
1220      rtx last_addr = force_operand (gen_rtx (STACK_GROW_OP, Pmode,
1221                                              stack_pointer_rtx,
1222                                              plus_constant (size, first)),
1223                                     NULL_RTX);
1224
1225      if (insn_operand_predicate[(int) CODE_FOR_check_stack][0]
1226          && ! ((*insn_operand_predicate[(int) CODE_FOR_check_stack][0])
1227                (last_address, Pmode)))
1228        last_address = copy_to_mode_reg (Pmode, last_address);
1229
1230      emit_insn (gen_check_stack (last_address));
1231      return;
1232    }
1233#endif
1234
1235  /* If we have to generate explicit probes, see if we have a constant
1236     small number of them to generate.  If so, that's the easy case.  */
1237  if (GET_CODE (size) == CONST_INT
1238      && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1239    {
1240      HOST_WIDE_INT offset;
1241
1242      /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1243         for values of N from 1 until it exceeds LAST.  If only one
1244         probe is needed, this will not generate any code.  Then probe
1245         at LAST.  */
1246      for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1247           offset < INTVAL (size);
1248           offset = offset + STACK_CHECK_PROBE_INTERVAL)
1249        emit_stack_probe (gen_rtx (STACK_GROW_OP, Pmode,
1250                                   stack_pointer_rtx, GEN_INT (offset)));
1251
1252      emit_stack_probe (gen_rtx (STACK_GROW_OP, Pmode, stack_pointer_rtx,
1253                                 plus_constant (size, first)));
1254    }
1255
1256  /* In the variable case, do the same as above, but in a loop.  We emit loop
1257     notes so that loop optimization can be done.  */
1258  else
1259    {
1260      rtx test_addr
1261        = force_operand (gen_rtx (STACK_GROW_OP, Pmode, stack_pointer_rtx,
1262                                  GEN_INT (first
1263                                           + STACK_CHECK_PROBE_INTERVAL)),
1264                         NULL_RTX);
1265      rtx last_addr
1266        = force_operand (gen_rtx (STACK_GROW_OP, Pmode, stack_pointer_rtx,
1267                                  plus_constant (size, first)),
1268                         NULL_RTX);
1269      rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1270      rtx loop_lab = gen_label_rtx ();
1271      rtx test_lab = gen_label_rtx ();
1272      rtx end_lab = gen_label_rtx ();
1273      rtx temp;
1274
1275      if (GET_CODE (test_addr) != REG
1276          || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1277        test_addr = force_reg (Pmode, test_addr);
1278
1279      emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
1280      emit_jump (test_lab);
1281
1282      emit_label (loop_lab);
1283      emit_stack_probe (test_addr);
1284
1285      emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
1286
1287#ifdef STACK_GROWS_DOWNWARD
1288#define CMP_OPCODE GTU
1289      temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1290                           1, OPTAB_WIDEN);
1291#else
1292#define CMP_OPCODE LTU
1293      temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1294                           1, OPTAB_WIDEN);
1295#endif
1296
1297      if (temp != test_addr)
1298        abort ();
1299
1300      emit_label (test_lab);
1301      emit_cmp_insn (test_addr, last_addr, CMP_OPCODE, NULL_RTX, Pmode, 1, 0);
1302      emit_jump_insn ((*bcc_gen_fctn[(int) CMP_OPCODE]) (loop_lab));
1303      emit_jump (end_lab);
1304      emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
1305      emit_label (end_lab);
1306
1307      /* If will be doing stupid optimization, show test_addr is still live. */
1308      if (obey_regdecls)
1309        emit_insn (gen_rtx (USE, VOIDmode, test_addr));
1310
1311      emit_stack_probe (last_addr);
1312    }
1313}
1314
1315/* Return an rtx representing the register or memory location
1316   in which a scalar value of data type VALTYPE
1317   was returned by a function call to function FUNC.
1318   FUNC is a FUNCTION_DECL node if the precise function is known,
1319   otherwise 0.  */
1320
1321rtx
1322hard_function_value (valtype, func)
1323     tree valtype;
1324     tree func;
1325{
1326  rtx val = FUNCTION_VALUE (valtype, func);
1327  if (GET_CODE (val) == REG
1328      && GET_MODE (val) == BLKmode)
1329    {
1330      int bytes = int_size_in_bytes (valtype);
1331      enum machine_mode tmpmode;
1332      for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1333           tmpmode != MAX_MACHINE_MODE;
1334           tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1335        {
1336          /* Have we found a large enough mode?  */
1337          if (GET_MODE_SIZE (tmpmode) >= bytes)
1338            break;
1339        }
1340
1341      /* No suitable mode found.  */
1342      if (tmpmode == MAX_MACHINE_MODE)
1343        abort ();
1344
1345      PUT_MODE (val, tmpmode);
1346    }     
1347  return val;
1348}
1349
1350/* Return an rtx representing the register or memory location
1351   in which a scalar value of mode MODE was returned by a library call.  */
1352
1353rtx
1354hard_libcall_value (mode)
1355     enum machine_mode mode;
1356{
1357  return LIBCALL_VALUE (mode);
1358}
1359
1360/* Look up the tree code for a given rtx code
1361   to provide the arithmetic operation for REAL_ARITHMETIC.
1362   The function returns an int because the caller may not know
1363   what `enum tree_code' means.  */
1364
1365int
1366rtx_to_tree_code (code)
1367     enum rtx_code code;
1368{
1369  enum tree_code tcode;
1370
1371  switch (code)
1372    {
1373    case PLUS:
1374      tcode = PLUS_EXPR;
1375      break;
1376    case MINUS:
1377      tcode = MINUS_EXPR;
1378      break;
1379    case MULT:
1380      tcode = MULT_EXPR;
1381      break;
1382    case DIV:
1383      tcode = RDIV_EXPR;
1384      break;
1385    case SMIN:
1386      tcode = MIN_EXPR;
1387      break;
1388    case SMAX:
1389      tcode = MAX_EXPR;
1390      break;
1391    default:
1392      tcode = LAST_AND_UNUSED_TREE_CODE;
1393      break;
1394    }
1395  return ((int) tcode);
1396}
Note: See TracBrowser for help on using the repository browser.