source: trunk/third/gcc/gcc.info-4 @ 11288

Revision 11288, 49.3 KB checked in by ghudson, 26 years ago (diff)
This commit was generated by cvs2svn to compensate for changes in r11287, which included commits to RCS files with non-trunk default branches.
Line 
1This is Info file gcc.info, produced by Makeinfo version 1.67 from the
2input file gcc.texi.
3
4   This file documents the use and the internals of the GNU compiler.
5
6   Published by the Free Software Foundation 59 Temple Place - Suite 330
7Boston, MA 02111-1307 USA
8
9   Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
10Free Software Foundation, Inc.
11
12   Permission is granted to make and distribute verbatim copies of this
13manual provided the copyright notice and this permission notice are
14preserved on all copies.
15
16   Permission is granted to copy and distribute modified versions of
17this manual under the conditions for verbatim copying, provided also
18that the sections entitled "GNU General Public License," "Funding for
19Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
20included exactly as in the original, and provided that the entire
21resulting derived work is distributed under the terms of a permission
22notice identical to this one.
23
24   Permission is granted to copy and distribute translations of this
25manual into another language, under the above conditions for modified
26versions, except that the sections entitled "GNU General Public
27License," "Funding for Free Software," and "Protect Your Freedom--Fight
28`Look And Feel'", and this permission notice, may be included in
29translations approved by the Free Software Foundation instead of in the
30original English.
31
32
33File: gcc.info,  Node: M88K Options,  Next: RS/6000 and PowerPC Options,  Prev: M32R/D Options,  Up: Submodel Options
34
35M88K Options
36------------
37
38   These `-m' options are defined for Motorola 88k architectures:
39
40`-m88000'
41     Generate code that works well on both the m88100 and the m88110.
42
43`-m88100'
44     Generate code that works best for the m88100, but that also runs
45     on the m88110.
46
47`-m88110'
48     Generate code that works best for the m88110, and may not run on
49     the m88100.
50
51`-mbig-pic'
52     Obsolete option to be removed from the next revision.  Use `-fPIC'.
53
54`-midentify-revision'
55     Include an `ident' directive in the assembler output recording the
56     source file name, compiler name and version, timestamp, and
57     compilation flags used.
58
59`-mno-underscores'
60     In assembler output, emit symbol names without adding an underscore
61     character at the beginning of each name.  The default is to use an
62     underscore as prefix on each name.
63
64`-mocs-debug-info'
65`-mno-ocs-debug-info'
66     Include (or omit) additional debugging information (about
67     registers used in each stack frame) as specified in the 88open
68     Object Compatibility Standard, "OCS".  This extra information
69     allows debugging of code that has had the frame pointer
70     eliminated.  The default for DG/UX, SVr4, and Delta 88 SVr3.2 is
71     to include this information; other 88k configurations omit this
72     information by default.
73
74`-mocs-frame-position'
75     When emitting COFF debugging information for automatic variables
76     and parameters stored on the stack, use the offset from the
77     canonical frame address, which is the stack pointer (register 31)
78     on entry to the function.  The DG/UX, SVr4, Delta88 SVr3.2, and
79     BCS configurations use `-mocs-frame-position'; other 88k
80     configurations have the default `-mno-ocs-frame-position'.
81
82`-mno-ocs-frame-position'
83     When emitting COFF debugging information for automatic variables
84     and parameters stored on the stack, use the offset from the frame
85     pointer register (register 30).  When this option is in effect,
86     the frame pointer is not eliminated when debugging information is
87     selected by the -g switch.
88
89`-moptimize-arg-area'
90`-mno-optimize-arg-area'
91     Control how function arguments are stored in stack frames.
92     `-moptimize-arg-area' saves space by optimizing them, but this
93     conflicts with the 88open specifications.  The opposite
94     alternative, `-mno-optimize-arg-area', agrees with 88open
95     standards.  By default GNU CC does not optimize the argument area.
96
97`-mshort-data-NUM'
98     Generate smaller data references by making them relative to `r0',
99     which allows loading a value using a single instruction (rather
100     than the usual two).  You control which data references are
101     affected by specifying NUM with this option.  For example, if you
102     specify `-mshort-data-512', then the data references affected are
103     those involving displacements of less than 512 bytes.
104     `-mshort-data-NUM' is not effective for NUM greater than 64k.
105
106`-mserialize-volatile'
107`-mno-serialize-volatile'
108     Do, or don't, generate code to guarantee sequential consistency of
109     volatile memory references.  By default, consistency is guaranteed.
110
111     The order of memory references made by the MC88110 processor does
112     not always match the order of the instructions requesting those
113     references.  In particular, a load instruction may execute before
114     a preceding store instruction.  Such reordering violates
115     sequential consistency of volatile memory references, when there
116     are multiple processors.   When consistency must be guaranteed,
117     GNU C generates special instructions, as needed, to force
118     execution in the proper order.
119
120     The MC88100 processor does not reorder memory references and so
121     always provides sequential consistency.  However, by default, GNU
122     C generates the special instructions to guarantee consistency even
123     when you use `-m88100', so that the code may be run on an MC88110
124     processor.  If you intend to run your code only on the MC88100
125     processor, you may use `-mno-serialize-volatile'.
126
127     The extra code generated to guarantee consistency may affect the
128     performance of your application.  If you know that you can safely
129     forgo this guarantee, you may use `-mno-serialize-volatile'.
130
131`-msvr4'
132`-msvr3'
133     Turn on (`-msvr4') or off (`-msvr3') compiler extensions related
134     to System V release 4 (SVr4).  This controls the following:
135
136       1. Which variant of the assembler syntax to emit.
137
138       2. `-msvr4' makes the C preprocessor recognize `#pragma weak'
139          that is used on System V release 4.
140
141       3. `-msvr4' makes GNU CC issue additional declaration directives
142          used in SVr4.
143
144     `-msvr4' is the default for the m88k-motorola-sysv4 and
145     m88k-dg-dgux m88k configurations. `-msvr3' is the default for all
146     other m88k configurations.
147
148`-mversion-03.00'
149     This option is obsolete, and is ignored.
150
151`-mno-check-zero-division'
152`-mcheck-zero-division'
153     Do, or don't, generate code to guarantee that integer division by
154     zero will be detected.  By default, detection is guaranteed.
155
156     Some models of the MC88100 processor fail to trap upon integer
157     division by zero under certain conditions.  By default, when
158     compiling code that might be run on such a processor, GNU C
159     generates code that explicitly checks for zero-valued divisors and
160     traps with exception number 503 when one is detected.  Use of
161     mno-check-zero-division suppresses such checking for code
162     generated to run on an MC88100 processor.
163
164     GNU C assumes that the MC88110 processor correctly detects all
165     instances of integer division by zero.  When `-m88110' is
166     specified, both `-mcheck-zero-division' and
167     `-mno-check-zero-division' are ignored, and no explicit checks for
168     zero-valued divisors are generated.
169
170`-muse-div-instruction'
171     Use the div instruction for signed integer division on the MC88100
172     processor.  By default, the div instruction is not used.
173
174     On the MC88100 processor the signed integer division instruction
175     div) traps to the operating system on a negative operand.  The
176     operating system transparently completes the operation, but at a
177     large cost in execution time.  By default, when compiling code
178     that might be run on an MC88100 processor, GNU C emulates signed
179     integer division using the unsigned integer division instruction
180     divu), thereby avoiding the large penalty of a trap to the
181     operating system.  Such emulation has its own, smaller, execution
182     cost in both time and space.  To the extent that your code's
183     important signed integer division operations are performed on two
184     nonnegative operands, it may be desirable to use the div
185     instruction directly.
186
187     On the MC88110 processor the div instruction (also known as the
188     divs instruction) processes negative operands without trapping to
189     the operating system.  When `-m88110' is specified,
190     `-muse-div-instruction' is ignored, and the div instruction is used
191     for signed integer division.
192
193     Note that the result of dividing INT_MIN by -1 is undefined.  In
194     particular, the behavior of such a division with and without
195     `-muse-div-instruction'  may differ.
196
197`-mtrap-large-shift'
198`-mhandle-large-shift'
199     Include code to detect bit-shifts of more than 31 bits;
200     respectively, trap such shifts or emit code to handle them
201     properly.  By default GNU CC makes no special provision for large
202     bit shifts.
203
204`-mwarn-passed-structs'
205     Warn when a function passes a struct as an argument or result.
206     Structure-passing conventions have changed during the evolution of
207     the C language, and are often the source of portability problems.
208     By default, GNU CC issues no such warning.
209
210
211File: gcc.info,  Node: RS/6000 and PowerPC Options,  Next: RT Options,  Prev: M88K Options,  Up: Submodel Options
212
213IBM RS/6000 and PowerPC Options
214-------------------------------
215
216   These `-m' options are defined for the IBM RS/6000 and PowerPC:
217`-mpower'
218`-mno-power'
219`-mpower2'
220`-mno-power2'
221`-mpowerpc'
222`-mno-powerpc'
223`-mpowerpc-gpopt'
224`-mno-powerpc-gpopt'
225`-mpowerpc-gfxopt'
226`-mno-powerpc-gfxopt'
227     GNU CC supports two related instruction set architectures for the
228     RS/6000 and PowerPC.  The "POWER" instruction set are those
229     instructions supported by the `rios' chip set used in the original
230     RS/6000 systems and the "PowerPC" instruction set is the
231     architecture of the Motorola MPC5xx, MPC6xx, MPC8xx
232     microprocessors, and the IBM 4xx microprocessors.
233
234     Neither architecture is a subset of the other.  However there is a
235     large common subset of instructions supported by both.  An MQ
236     register is included in processors supporting the POWER
237     architecture.
238
239     You use these options to specify which instructions are available
240     on the processor you are using.  The default value of these
241     options is determined when configuring GNU CC.  Specifying the
242     `-mcpu=CPU_TYPE' overrides the specification of these options.  We
243     recommend you use the `-mcpu=CPU_TYPE' option rather than the
244     options listed above.
245
246     The `-mpower' option allows GNU CC to generate instructions that
247     are found only in the POWER architecture and to use the MQ
248     register.  Specifying `-mpower2' implies `-power' and also allows
249     GNU CC to generate instructions that are present in the POWER2
250     architecture but not the original POWER architecture.
251
252     The `-mpowerpc' option allows GNU CC to generate instructions that
253     are found only in the 32-bit subset of the PowerPC architecture.
254     Specifying `-mpowerpc-gpopt' implies `-mpowerpc' and also allows
255     GNU CC to use the optional PowerPC architecture instructions in the
256     General Purpose group, including floating-point square root.
257     Specifying `-mpowerpc-gfxopt' implies `-mpowerpc' and also allows
258     GNU CC to use the optional PowerPC architecture instructions in
259     the Graphics group, including floating-point select.
260
261     If you specify both `-mno-power' and `-mno-powerpc', GNU CC will
262     use only the instructions in the common subset of both
263     architectures plus some special AIX common-mode calls, and will
264     not use the MQ register.  Specifying both `-mpower' and `-mpowerpc'
265     permits GNU CC to use any instruction from either architecture and
266     to allow use of the MQ register; specify this for the Motorola
267     MPC601.
268
269`-mnew-mnemonics'
270`-mold-mnemonics'
271     Select which mnemonics to use in the generated assembler code.
272     `-mnew-mnemonics' requests output that uses the assembler mnemonics
273     defined for the PowerPC architecture, while `-mold-mnemonics'
274     requests the assembler mnemonics defined for the POWER
275     architecture.  Instructions defined in only one architecture have
276     only one mnemonic; GNU CC uses that mnemonic irrespective of which
277     of these options is specified.
278
279     PowerPC assemblers support both the old and new mnemonics, as will
280     later POWER assemblers.  Current POWER assemblers only support the
281     old mnemonics.  Specify `-mnew-mnemonics' if you have an assembler
282     that supports them, otherwise specify `-mold-mnemonics'.
283
284     The default value of these options depends on how GNU CC was
285     configured.  Specifying `-mcpu=CPU_TYPE' sometimes overrides the
286     value of these option.  Unless you are building a cross-compiler,
287     you should normally not specify either `-mnew-mnemonics' or
288     `-mold-mnemonics', but should instead accept the default.
289
290`-mcpu=CPU_TYPE'
291     Set architecture type, register usage, choice of mnemonics, and
292     instruction scheduling parameters for machine type CPU_TYPE.
293     Supported values for CPU_TYPE are `rs6000', `rios1', `rios2',
294     `rsc', `601', `602', `603', `603e', `604', `604e', `620', `power',
295     `power2', `powerpc', `403', `505', `801', `821', `823', and `860'
296     and `common'.  `-mcpu=power', `-mcpu=power2', and `-mcpu=powerpc'
297     specify generic POWER, POWER2 and pure PowerPC (i.e., not MPC601)
298     architecture machine types, with an appropriate, generic processor
299     model assumed for scheduling purposes.
300
301     Specifying any of the following options: `-mcpu=rios1',
302     `-mcpu=rios2', `-mcpu=rsc', `-mcpu=power', or `-mcpu=power2'
303     enables the `-mpower' option and disables the `-mpowerpc' option;
304     `-mcpu=601' enables both the `-mpower' and `-mpowerpc' options.
305     All of `-mcpu=602', `-mcpu=603', `-mcpu=603e', `-mcpu=604',
306     `-mcpu=620', enable the `-mpowerpc' option and disable the
307     `-mpower' option.  Exactly similarly, all of `-mcpu=403',
308     `-mcpu=505', `-mcpu=821', `-mcpu=860' and `-mcpu=powerpc' enable
309     the `-mpowerpc' option and disable the `-mpower' option.
310     `-mcpu=common' disables both the `-mpower' and `-mpowerpc' options.
311
312     AIX versions 4 or greater selects `-mcpu=common' by default, so
313     that code will operate on all members of the RS/6000 and PowerPC
314     families.  In that case, GNU CC will use only the instructions in
315     the common subset of both architectures plus some special AIX
316     common-mode calls, and will not use the MQ register.  GNU CC
317     assumes a generic processor model for scheduling purposes.
318
319     Specifying any of the options `-mcpu=rios1', `-mcpu=rios2',
320     `-mcpu=rsc', `-mcpu=power', or `-mcpu=power2' also disables the
321     `new-mnemonics' option.  Specifying `-mcpu=601', `-mcpu=602',
322     `-mcpu=603', `-mcpu=603e', `-mcpu=604', `620', `403', or
323     `-mcpu=powerpc' also enables the `new-mnemonics' option.
324
325     Specifying `-mcpu=403', `-mcpu=821', or `-mcpu=860' also enables
326     the `-msoft-float' option.
327
328`-mtune=CPU_TYPE'
329     Set the instruction scheduling parameters for machine type
330     CPU_TYPE, but do not set the architecture type, register usage,
331     choice of mnemonics like `-mcpu='CPU_TYPE would.  The same values
332     for CPU_TYPE are used for `-mtune='CPU_TYPE as for
333     `-mcpu='CPU_TYPE.  The `-mtune='CPU_TYPE option overrides the
334     `-mcpu='CPU_TYPE option in terms of instruction scheduling
335     parameters.
336
337`-mfull-toc'
338`-mno-fp-in-toc'
339`-mno-sum-in-toc'
340`-mminimal-toc'
341     Modify generation of the TOC (Table Of Contents), which is created
342     for every executable file.  The `-mfull-toc' option is selected by
343     default.  In that case, GNU CC will allocate at least one TOC
344     entry for each unique non-automatic variable reference in your
345     program.  GNU CC will also place floating-point constants in the
346     TOC.  However, only 16,384 entries are available in the TOC.
347
348     If you receive a linker error message that saying you have
349     overflowed the available TOC space, you can reduce the amount of
350     TOC space used with the `-mno-fp-in-toc' and `-mno-sum-in-toc'
351     options.  `-mno-fp-in-toc' prevents GNU CC from putting
352     floating-point constants in the TOC and `-mno-sum-in-toc' forces
353     GNU CC to generate code to calculate the sum of an address and a
354     constant at run-time instead of putting that sum into the TOC.
355     You may specify one or both of these options.  Each causes GNU CC
356     to produce very slightly slower and larger code at the expense of
357     conserving TOC space.
358
359     If you still run out of space in the TOC even when you specify
360     both of these options, specify `-mminimal-toc' instead.  This
361     option causes GNU CC to make only one TOC entry for every file.
362     When you specify this option, GNU CC will produce code that is
363     slower and larger but which uses extremely little TOC space.  You
364     may wish to use this option only on files that contain less
365     frequently executed code.
366
367`-mxl-call'
368`-mno-xl-call'
369     On AIX, pass floating-point arguments to prototyped functions
370     beyond the register save area (RSA) on the stack in addition to
371     argument FPRs.  The AIX calling convention was extended but not
372     initially documented to handle an obscure K&R C case of calling a
373     function that takes the address of its arguments with fewer
374     arguments than declared.  AIX XL compilers assume that floating
375     point arguments which do not fit in the RSA are on the stack when
376     they compile a subroutine without optimization.  Because always
377     storing floating-point arguments on the stack is inefficient and
378     rarely needed, this option is not enabled by default and only is
379     necessary when calling subroutines compiled by AIX XL compilers
380     without optimization.
381
382`-mthreads'
383     Support "AIX Threads".  Link an application written to use
384     "pthreads" with special libraries and startup code to enable the
385     application to run.
386
387`-mpe'
388     Support "IBM RS/6000 SP" "Parallel Environment" (PE).  Link an
389     application written to use message passing with special startup
390     code to enable the application to run.  The system must have PE
391     installed in the standard location (`/usr/lpp/ppe.poe/'), or the
392     `specs' file must be overridden with the `-specs=' option to
393     specify the appropriate directory location.  The Parallel
394     Environment does not support threads, so the `-mpe' option and the
395     `-mthreads' option are incompatible.
396
397`-msoft-float'
398`-mhard-float'
399     Generate code that does not use (uses) the floating-point register
400     set.  Software floating point emulation is provided if you use the
401     `-msoft-float' option, and pass the option to GNU CC when linking.
402
403`-mmultiple'
404`-mno-multiple'
405     Generate code that uses (does not use) the load multiple word
406     instructions and the store multiple word instructions.  These
407     instructions are generated by default on POWER systems, and not
408     generated on PowerPC systems.  Do not use `-mmultiple' on little
409     endian PowerPC systems, since those instructions do not work when
410     the processor is in little endian mode.
411
412`-mstring'
413`-mno-string'
414     Generate code that uses (does not use) the load string
415     instructions and the store string word instructions to save
416     multiple registers and do small block moves.  These instructions
417     are generated by default on POWER systems, and not generated on
418     PowerPC systems.  Do not use `-mstring' on little endian PowerPC
419     systems, since those instructions do not work when the processor
420     is in little endian mode.
421
422`-mupdate'
423`-mno-update'
424     Generate code that uses (does not use) the load or store
425     instructions that update the base register to the address of the
426     calculated memory location.  These instructions are generated by
427     default.  If you use `-mno-update', there is a small window
428     between the time that the stack pointer is updated and the address
429     of the previous frame is stored, which means code that walks the
430     stack frame across interrupts or signals may get corrupted data.
431
432`-mfused-madd'
433`-mno-fused-madd'
434     Generate code that uses (does not use) the floating point multiply
435     and accumulate instructions.  These instructions are generated by
436     default if hardware floating is used.
437
438`-mno-bit-align'
439`-mbit-align'
440     On System V.4 and embedded PowerPC systems do not (do) force
441     structures and unions that contain bit fields to be aligned to the
442     base type of the bit field.
443
444     For example, by default a structure containing nothing but 8
445     `unsigned' bitfields of length 1 would be aligned to a 4 byte
446     boundary and have a size of 4 bytes.  By using `-mno-bit-align',
447     the structure would be aligned to a 1 byte boundary and be one
448     byte in size.
449
450`-mno-strict-align'
451`-mstrict-align'
452     On System V.4 and embedded PowerPC systems do not (do) assume that
453     unaligned memory references will be handled by the system.
454
455`-mrelocatable'
456`-mno-relocatable'
457     On embedded PowerPC systems generate code that allows (does not
458     allow) the program to be relocated to a different address at
459     runtime.  If you use `-mrelocatable' on any module, all objects
460     linked together must be compiled with `-mrelocatable' or
461     `-mrelocatable-lib'.
462
463`-mrelocatable-lib'
464`-mno-relocatable-lib'
465     On embedded PowerPC systems generate code that allows (does not
466     allow) the program to be relocated to a different address at
467     runtime.  Modules compiled with `-mrelocatable-lib' can be linked
468     with either modules compiled without `-mrelocatable' and
469     `-mrelocatable-lib' or with modules compiled with the
470     `-mrelocatable' options.
471
472`-mno-toc'
473`-mtoc'
474     On System V.4 and embedded PowerPC systems do not (do) assume that
475     register 2 contains a pointer to a global area pointing to the
476     addresses used in the program.
477
478`-mno-traceback'
479`-mtraceback'
480     On embedded PowerPC systems do not (do) generate a traceback tag
481     before the start of the function.  This tag can be used by the
482     debugger to identify where the start of a function is.
483
484`-mlittle'
485`-mlittle-endian'
486     On System V.4 and embedded PowerPC systems compile code for the
487     processor in little endian mode.  The `-mlittle-endian' option is
488     the same as `-mlittle'.
489
490`-mbig'
491`-mbig-endian'
492     On System V.4 and embedded PowerPC systems compile code for the
493     processor in big endian mode.  The `-mbig-endian' option is the
494     same as `-mbig'.
495
496`-mcall-sysv'
497     On System V.4 and embedded PowerPC systems compile code using
498     calling conventions that adheres to the March 1995 draft of the
499     System V Application Binary Interface, PowerPC processor
500     supplement.  This is the default unless you configured GCC using
501     `powerpc-*-eabiaix'.
502
503`-mcall-sysv-eabi'
504     Specify both `-mcall-sysv' and `-meabi' options.
505
506`-mcall-sysv-noeabi'
507     Specify both `-mcall-sysv' and `-mno-eabi' options.
508
509`-mcall-aix'
510     On System V.4 and embedded PowerPC systems compile code using
511     calling conventions that are similar to those used on AIX.  This
512     is the default if you configured GCC using `powerpc-*-eabiaix'.
513
514`-mcall-solaris'
515     On System V.4 and embedded PowerPC systems compile code for the
516     Solaris operating system.
517
518`-mcall-linux'
519     On System V.4 and embedded PowerPC systems compile code for the
520     Linux-based GNU system.
521
522`-mprototype'
523`-mno-prototype'
524     On System V.4 and embedded PowerPC systems assume that all calls to
525     variable argument functions are properly prototyped.  Otherwise,
526     the compiler must insert an instruction before every non
527     prototyped call to set or clear bit 6 of the condition code
528     register (CR) to indicate whether floating point values were
529     passed in the floating point registers in case the function takes
530     a variable arguments.  With `-mprototype', only calls to
531     prototyped variable argument functions will set or clear the bit.
532
533`-msim'
534     On embedded PowerPC systems, assume that the startup module is
535     called `sim-crt0.o' and that the standard C libraries are
536     `libsim.a' and `libc.a'.  This is the default for
537     `powerpc-*-eabisim'.  configurations.
538
539`-mmvme'
540     On embedded PowerPC systems, assume that the startup module is
541     called `crt0.o' and the standard C libraries are `libmvme.a' and
542     `libc.a'.
543
544`-mads'
545     On embedded PowerPC systems, assume that the startup module is
546     called `crt0.o' and the standard C libraries are `libads.a' and
547     `libc.a'.
548
549`-myellowknife'
550     On embedded PowerPC systems, assume that the startup module is
551     called `crt0.o' and the standard C libraries are `libyk.a' and
552     `libc.a'.
553
554`-memb'
555     On embedded PowerPC systems, set the PPC_EMB bit in the ELF flags
556     header to indicate that `eabi' extended relocations are used.
557
558`-meabi'
559`-mno-eabi'
560     On System V.4 and embedded PowerPC systems do (do not) adhere to
561     the Embedded Applications Binary Interface (eabi) which is a set of
562     modifications to the System V.4 specifications.  Selecting `-meabi'
563     means that the stack is aligned to an 8 byte boundary, a function
564     `__eabi' is called to from `main' to set up the eabi environment,
565     and the `-msdata' option can use both `r2' and `r13' to point to
566     two separate small data areas.  Selecting `-mno-eabi' means that
567     the stack is aligned to a 16 byte boundary, do not call an
568     initialization function from `main', and the `-msdata' option will
569     only use `r13' to point to a single small data area.  The `-meabi'
570     option is on by default if you configured GCC using one of the
571     `powerpc*-*-eabi*' options.
572
573`-msdata=eabi'
574     On System V.4 and embedded PowerPC systems, put small initialized
575     `const' global and static data in the `.sdata2' section, which is
576     pointed to by register `r2'.  Put small initialized non-`const'
577     global and static data in the `.sdata' section, which is pointed
578     to by register `r13'.  Put small uninitialized global and static
579     data in the `.sbss' section, which is adjacent to the `.sdata'
580     section.  The `-msdata=eabi' option is incompatible with the
581     `-mrelocatable' option.  The `-msdata=eabi' option also sets the
582     `-memb' option.
583
584`-msdata=sysv'
585     On System V.4 and embedded PowerPC systems, put small global and
586     static data in the `.sdata' section, which is pointed to by
587     register `r13'.  Put small uninitialized global and static data in
588     the `.sbss' section, which is adjacent to the `.sdata' section.
589     The `-msdata=sysv' option is incompatible with the `-mrelocatable'
590     option.
591
592`-msdata=default'
593`-msdata'
594     On System V.4 and embedded PowerPC systems, if `-meabi' is used,
595     compile code the same as `-msdata=eabi', otherwise compile code the
596     same as `-msdata=sysv'.
597
598`-msdata-data'
599     On System V.4 and embedded PowerPC systems, put small global and
600     static data in the `.sdata' section.  Put small uninitialized
601     global and static data in the `.sbss' section.  Do not use
602     register `r13' to address small data however.  This is the default
603     behavior unless other `-msdata' options are used.
604
605`-msdata=none'
606`-mno-sdata'
607     On embedded PowerPC systems, put all initialized global and static
608     data in the `.data' section, and all uninitialized data in the
609     `.bss' section.
610
611`-G NUM'
612     On embedded PowerPC systems, put global and static items less than
613     or equal to NUM bytes into the small data or bss sections instead
614     of the normal data or bss section.  By default, NUM is 8.  The `-G
615     NUM' switch is also passed to the linker.  All modules should be
616     compiled with the same `-G NUM' value.
617
618`-mregnames'
619`-mno-regnames'
620     On System V.4 and embedded PowerPC systems do (do not) emit
621     register names in the assembly language output using symbolic
622     forms.
623
624
625File: gcc.info,  Node: RT Options,  Next: MIPS Options,  Prev: RS/6000 and PowerPC Options,  Up: Submodel Options
626
627IBM RT Options
628--------------
629
630   These `-m' options are defined for the IBM RT PC:
631
632`-min-line-mul'
633     Use an in-line code sequence for integer multiplies.  This is the
634     default.
635
636`-mcall-lib-mul'
637     Call `lmul$$' for integer multiples.
638
639`-mfull-fp-blocks'
640     Generate full-size floating point data blocks, including the
641     minimum amount of scratch space recommended by IBM.  This is the
642     default.
643
644`-mminimum-fp-blocks'
645     Do not include extra scratch space in floating point data blocks.
646     This results in smaller code, but slower execution, since scratch
647     space must be allocated dynamically.
648
649`-mfp-arg-in-fpregs'
650     Use a calling sequence incompatible with the IBM calling
651     convention in which floating point arguments are passed in
652     floating point registers.  Note that `varargs.h' and `stdargs.h'
653     will not work with floating point operands if this option is
654     specified.
655
656`-mfp-arg-in-gregs'
657     Use the normal calling convention for floating point arguments.
658     This is the default.
659
660`-mhc-struct-return'
661     Return structures of more than one word in memory, rather than in a
662     register.  This provides compatibility with the MetaWare HighC (hc)
663     compiler.  Use the option `-fpcc-struct-return' for compatibility
664     with the Portable C Compiler (pcc).
665
666`-mnohc-struct-return'
667     Return some structures of more than one word in registers, when
668     convenient.  This is the default.  For compatibility with the
669     IBM-supplied compilers, use the option `-fpcc-struct-return' or the
670     option `-mhc-struct-return'.
671
672
673File: gcc.info,  Node: MIPS Options,  Next: i386 Options,  Prev: RT Options,  Up: Submodel Options
674
675MIPS Options
676------------
677
678   These `-m' options are defined for the MIPS family of computers:
679
680`-mcpu=CPU TYPE'
681     Assume the defaults for the machine type CPU TYPE when scheduling
682     instructions.  The choices for CPU TYPE are `r2000', `r3000',
683     `r4000', `r4400', `r4600', and `r6000'.  While picking a specific
684     CPU TYPE will schedule things appropriately for that particular
685     chip, the compiler will not generate any code that does not meet
686     level 1 of the MIPS ISA (instruction set architecture) without the
687     `-mips2' or `-mips3' switches being used.
688
689`-mips1'
690     Issue instructions from level 1 of the MIPS ISA.  This is the
691     default.  `r3000' is the default CPU TYPE at this ISA level.
692
693`-mips2'
694     Issue instructions from level 2 of the MIPS ISA (branch likely,
695     square root instructions).  `r6000' is the default CPU TYPE at this
696     ISA level.
697
698`-mips3'
699     Issue instructions from level 3 of the MIPS ISA (64 bit
700     instructions).  `r4000' is the default CPU TYPE at this ISA level.
701     This option does not change the sizes of any of the C data types.
702
703`-mfp32'
704     Assume that 32 32-bit floating point registers are available.
705     This is the default.
706
707`-mfp64'
708     Assume that 32 64-bit floating point registers are available.
709     This is the default when the `-mips3' option is used.
710
711`-mgp32'
712     Assume that 32 32-bit general purpose registers are available.
713     This is the default.
714
715`-mgp64'
716     Assume that 32 64-bit general purpose registers are available.
717     This is the default when the `-mips3' option is used.
718
719`-mint64'
720     Types long, int, and pointer are 64 bits.  This works only if
721     `-mips3' is also specified.
722
723`-mlong64'
724     Types long and pointer are 64 bits, and type int is 32 bits.  This
725     works only if `-mips3' is also specified.
726
727`-mmips-as'
728     Generate code for the MIPS assembler, and invoke `mips-tfile' to
729     add normal debug information.  This is the default for all
730     platforms except for the OSF/1 reference platform, using the
731     OSF/rose object format.  If the either of the `-gstabs' or
732     `-gstabs+' switches are used, the `mips-tfile' program will
733     encapsulate the stabs within MIPS ECOFF.
734
735`-mgas'
736     Generate code for the GNU assembler.  This is the default on the
737     OSF/1 reference platform, using the OSF/rose object format.  Also,
738     this is the default if the configure option `--with-gnu-as' is
739     used.
740
741`-msplit-addresses'
742`-mno-split-addresses'
743     Generate code to load the high and low parts of address constants
744     separately.  This allows `gcc' to optimize away redundant loads of
745     the high order bits of addresses.  This optimization requires GNU
746     as and GNU ld.  This optimization is enabled by default for some
747     embedded targets where GNU as and GNU ld are standard.
748
749`-mrnames'
750`-mno-rnames'
751     The `-mrnames' switch says to output code using the MIPS software
752     names for the registers, instead of the hardware names (ie, A0
753     instead of $4).  The only known assembler that supports this option
754     is the Algorithmics assembler.
755
756`-mgpopt'
757`-mno-gpopt'
758     The `-mgpopt' switch says to write all of the data declarations
759     before the instructions in the text section, this allows the MIPS
760     assembler to generate one word memory references instead of using
761     two words for short global or static data items.  This is on by
762     default if optimization is selected.
763
764`-mstats'
765`-mno-stats'
766     For each non-inline function processed, the `-mstats' switch
767     causes the compiler to emit one line to the standard error file to
768     print statistics about the program (number of registers saved,
769     stack size, etc.).
770
771`-mmemcpy'
772`-mno-memcpy'
773     The `-mmemcpy' switch makes all block moves call the appropriate
774     string function (`memcpy' or `bcopy') instead of possibly
775     generating inline code.
776
777`-mmips-tfile'
778`-mno-mips-tfile'
779     The `-mno-mips-tfile' switch causes the compiler not postprocess
780     the object file with the `mips-tfile' program, after the MIPS
781     assembler has generated it to add debug support.  If `mips-tfile'
782     is not run, then no local variables will be available to the
783     debugger.  In addition, `stage2' and `stage3' objects will have
784     the temporary file names passed to the assembler embedded in the
785     object file, which means the objects will not compare the same.
786     The `-mno-mips-tfile' switch should only be used when there are
787     bugs in the `mips-tfile' program that prevents compilation.
788
789`-msoft-float'
790     Generate output containing library calls for floating point.
791     *Warning:* the requisite libraries are not part of GNU CC.
792     Normally the facilities of the machine's usual C compiler are
793     used, but this can't be done directly in cross-compilation.  You
794     must make your own arrangements to provide suitable library
795     functions for cross-compilation.
796
797`-mhard-float'
798     Generate output containing floating point instructions.  This is
799     the default if you use the unmodified sources.
800
801`-mabicalls'
802`-mno-abicalls'
803     Emit (or do not emit) the pseudo operations `.abicalls',
804     `.cpload', and `.cprestore' that some System V.4 ports use for
805     position independent code.
806
807`-mlong-calls'
808`-mno-long-calls'
809     Do all calls with the `JALR' instruction, which requires loading
810     up a function's address into a register before the call.  You need
811     to use this switch, if you call outside of the current 512
812     megabyte segment to functions that are not through pointers.
813
814`-mhalf-pic'
815`-mno-half-pic'
816     Put pointers to extern references into the data section and load
817     them up, rather than put the references in the text section.
818
819`-membedded-pic'
820`-mno-embedded-pic'
821     Generate PIC code suitable for some embedded systems.  All calls
822     are made using PC relative address, and all data is addressed
823     using the $gp register.  This requires GNU as and GNU ld which do
824     most of the work.
825
826`-membedded-data'
827`-mno-embedded-data'
828     Allocate variables to the read-only data section first if
829     possible, then next in the small data section if possible,
830     otherwise in data.  This gives slightly slower code than the
831     default, but reduces the amount of RAM required when executing,
832     and thus may be preferred for some embedded systems.
833
834`-msingle-float'
835`-mdouble-float'
836     The `-msingle-float' switch tells gcc to assume that the floating
837     point coprocessor only supports single precision operations, as on
838     the `r4650' chip.  The `-mdouble-float' switch permits gcc to use
839     double precision operations.  This is the default.
840
841`-mmad'
842`-mno-mad'
843     Permit use of the `mad', `madu' and `mul' instructions, as on the
844     `r4650' chip.
845
846`-m4650'
847     Turns on `-msingle-float', `-mmad', and, at least for now,
848     `-mcpu=r4650'.
849
850`-EL'
851     Compile code for the processor in little endian mode.  The
852     requisite libraries are assumed to exist.
853
854`-EB'
855     Compile code for the processor in big endian mode.  The requisite
856     libraries are assumed to exist.
857
858`-G NUM'
859     Put global and static items less than or equal to NUM bytes into
860     the small data or bss sections instead of the normal data or bss
861     section.  This allows the assembler to emit one word memory
862     reference instructions based on the global pointer (GP or $28),
863     instead of the normal two words used.  By default, NUM is 8 when
864     the MIPS assembler is used, and 0 when the GNU assembler is used.
865     The `-G NUM' switch is also passed to the assembler and linker.
866     All modules should be compiled with the same `-G NUM' value.
867
868`-nocpp'
869     Tell the MIPS assembler to not run it's preprocessor over user
870     assembler files (with a `.s' suffix) when assembling them.
871
872   These options are defined by the macro `TARGET_SWITCHES' in the
873machine description.  The default for the options is also defined by
874that macro, which enables you to change the defaults.
875
876
877File: gcc.info,  Node: i386 Options,  Next: HPPA Options,  Prev: MIPS Options,  Up: Submodel Options
878
879Intel 386 Options
880-----------------
881
882   These `-m' options are defined for the i386 family of computers:
883
884`-mcpu=CPU TYPE'
885     Assume the defaults for the machine type CPU TYPE when scheduling
886     instructions.  The choices for CPU TYPE are: `i386', `i486',
887     `i586' (`pentium'), `pentium', `i686' (`pentiumpro') and
888     `pentiumpro'. While picking a specific CPU TYPE will schedule
889     things appropriately for that particular chip, the compiler will
890     not generate any code that does not run on the i386 without the
891     `-march=CPU TYPE' option being used.
892
893`-march=CPU TYPE'
894     Generate instructions for the machine type CPU TYPE.  The choices
895     for CPU TYPE are: `i386', `i486', `pentium', and `pentiumpro'.
896     Specifying `-march=CPU TYPE' implies `-mcpu=CPU TYPE'.
897
898`-m386'
899`-m486'
900`-mpentium'
901`-mpentiumpro'
902     Synonyms for -mcpu=i386, -mcpu=i486, -mcpu=pentium, and
903     -mcpu=pentiumpro respectively.
904
905`-mieee-fp'
906`-mno-ieee-fp'
907     Control whether or not the compiler uses IEEE floating point
908     comparisons.  These handle correctly the case where the result of a
909     comparison is unordered.
910
911`-msoft-float'
912     Generate output containing library calls for floating point.
913     *Warning:* the requisite libraries are not part of GNU CC.
914     Normally the facilities of the machine's usual C compiler are
915     used, but this can't be done directly in cross-compilation.  You
916     must make your own arrangements to provide suitable library
917     functions for cross-compilation.
918
919     On machines where a function returns floating point results in the
920     80387 register stack, some floating point opcodes may be emitted
921     even if `-msoft-float' is used.
922
923`-mno-fp-ret-in-387'
924     Do not use the FPU registers for return values of functions.
925
926     The usual calling convention has functions return values of types
927     `float' and `double' in an FPU register, even if there is no FPU.
928     The idea is that the operating system should emulate an FPU.
929
930     The option `-mno-fp-ret-in-387' causes such values to be returned
931     in ordinary CPU registers instead.
932
933`-mno-fancy-math-387'
934     Some 387 emulators do not support the `sin', `cos' and `sqrt'
935     instructions for the 387.  Specify this option to avoid generating
936     those instructions. This option is the default on FreeBSD.  As of
937     revision 2.6.1, these instructions are not generated unless you
938     also use the `-ffast-math' switch.
939
940`-malign-double'
941`-mno-align-double'
942     Control whether GNU CC aligns `double', `long double', and `long
943     long' variables on a two word boundary or a one word boundary.
944     Aligning `double' variables on a two word boundary will produce
945     code that runs somewhat faster on a `Pentium' at the expense of
946     more memory.
947
948     *Warning:* if you use the `-malign-double' switch, structures
949     containing the above types will be aligned differently than the
950     published application binary interface specifications for the 386.
951
952`-msvr3-shlib'
953`-mno-svr3-shlib'
954     Control whether GNU CC places uninitialized locals into `bss' or
955     `data'.  `-msvr3-shlib' places these locals into `bss'.  These
956     options are meaningful only on System V Release 3.
957
958`-mno-wide-multiply'
959`-mwide-multiply'
960     Control whether GNU CC uses the `mul' and `imul' that produce 64
961     bit results in `eax:edx' from 32 bit operands to do `long long'
962     multiplies and 32-bit division by constants.
963
964`-mrtd'
965     Use a different function-calling convention, in which functions
966     that take a fixed number of arguments return with the `ret' NUM
967     instruction, which pops their arguments while returning.  This
968     saves one instruction in the caller since there is no need to pop
969     the arguments there.
970
971     You can specify that an individual function is called with this
972     calling sequence with the function attribute `stdcall'.  You can
973     also override the `-mrtd' option by using the function attribute
974     `cdecl'. *Note Function Attributes::
975
976     *Warning:* this calling convention is incompatible with the one
977     normally used on Unix, so you cannot use it if you need to call
978     libraries compiled with the Unix compiler.
979
980     Also, you must provide function prototypes for all functions that
981     take variable numbers of arguments (including `printf'); otherwise
982     incorrect code will be generated for calls to those functions.
983
984     In addition, seriously incorrect code will result if you call a
985     function with too many arguments.  (Normally, extra arguments are
986     harmlessly ignored.)
987
988`-mreg-alloc=REGS'
989     Control the default allocation order of integer registers.  The
990     string REGS is a series of letters specifying a register.  The
991     supported letters are: `a' allocate EAX; `b' allocate EBX; `c'
992     allocate ECX; `d' allocate EDX; `S' allocate ESI; `D' allocate
993     EDI; `B' allocate EBP.
994
995`-mregparm=NUM'
996     Control how many registers are used to pass integer arguments.  By
997     default, no registers are used to pass arguments, and at most 3
998     registers can be used.  You can control this behavior for a
999     specific function by using the function attribute `regparm'.
1000     *Note Function Attributes::
1001
1002     *Warning:* if you use this switch, and NUM is nonzero, then you
1003     must build all modules with the same value, including any
1004     libraries.  This includes the system libraries and startup modules.
1005
1006`-malign-loops=NUM'
1007     Align loops to a 2 raised to a NUM byte boundary.  If
1008     `-malign-loops' is not specified, the default is 2.
1009
1010`-malign-jumps=NUM'
1011     Align instructions that are only jumped to to a 2 raised to a NUM
1012     byte boundary.  If `-malign-jumps' is not specified, the default is
1013     2 if optimizing for a 386, and 4 if optimizing for a 486.
1014
1015`-malign-functions=NUM'
1016     Align the start of functions to a 2 raised to NUM byte boundary.
1017     If `-malign-functions' is not specified, the default is 2 if
1018     optimizing for a 386, and 4 if optimizing for a 486.
1019
1020
1021File: gcc.info,  Node: HPPA Options,  Next: Intel 960 Options,  Prev: i386 Options,  Up: Submodel Options
1022
1023HPPA Options
1024------------
1025
1026   These `-m' options are defined for the HPPA family of computers:
1027
1028`-mpa-risc-1-0'
1029     Generate code for a PA 1.0 processor.
1030
1031`-mpa-risc-1-1'
1032     Generate code for a PA 1.1 processor.
1033
1034`-mbig-switch'
1035     Generate code suitable for big switch tables.  Use this option
1036     only if the assembler/linker complain about out of range branches
1037     within a switch table.
1038
1039`-mjump-in-delay'
1040     Fill delay slots of function calls with unconditional jump
1041     instructions by modifying the return pointer for the function call
1042     to be the target of the conditional jump.
1043
1044`-mdisable-fpregs'
1045     Prevent floating point registers from being used in any manner.
1046     This is necessary for compiling kernels which perform lazy context
1047     switching of floating point registers.  If you use this option and
1048     attempt to perform floating point operations, the compiler will
1049     abort.
1050
1051`-mdisable-indexing'
1052     Prevent the compiler from using indexing address modes.  This
1053     avoids some rather obscure problems when compiling MIG generated
1054     code under MACH.
1055
1056`-mno-space-regs'
1057     Generate code that assumes the target has no space registers.
1058     This allows GCC to generate faster indirect calls and use unscaled
1059     index address modes.
1060
1061     Such code is suitable for level 0 PA systems and kernels.
1062
1063`-mfast-indirect-calls'
1064     Generate code that assumes calls never cross space boundaries.
1065     This allows GCC to emit code which performs faster indirect calls.
1066
1067     This option will not work in the presense of shared libraries or
1068     nested functions.
1069
1070`-mspace'
1071     Optimize for space rather than execution time.  Currently this only
1072     enables out of line function prologues and epilogues.  This option
1073     is incompatible with PIC code generation and profiling.
1074
1075`-mlong-load-store'
1076     Generate 3-instruction load and store sequences as sometimes
1077     required by the HP-UX 10 linker.  This is equivalent to the `+k'
1078     option to the HP compilers.
1079
1080`-mportable-runtime'
1081     Use the portable calling conventions proposed by HP for ELF
1082     systems.
1083
1084`-mgas'
1085     Enable the use of assembler directives only GAS understands.
1086
1087`-mschedule=CPU TYPE'
1088     Schedule code according to the constraints for the machine type
1089     CPU TYPE.  The choices for CPU TYPE are `700' for 7N0 machines,
1090     `7100' for 7N5 machines, and `7100' for 7N2 machines.  `7100' is
1091     the default for CPU TYPE.
1092
1093     Note the `7100LC' scheduling information is incomplete and using
1094     `7100LC' often leads to bad schedules.  For now it's probably best
1095     to use `7100' instead of `7100LC' for the 7N2 machines.
1096
1097`-mlinker-opt'
1098     Enable the optimization pass in the HPUX linker.  Note this makes
1099     symbolic debugging impossible.  It also triggers a bug in the HPUX
1100     8 and HPUX 9 linkers in which they give bogus error messages when
1101     linking some programs.
1102
1103`-msoft-float'
1104     Generate output containing library calls for floating point.
1105     *Warning:* the requisite libraries are not available for all HPPA
1106     targets.  Normally the facilities of the machine's usual C
1107     compiler are used, but this cannot be done directly in
1108     cross-compilation.  You must make your own arrangements to provide
1109     suitable library functions for cross-compilation.  The embedded
1110     target `hppa1.1-*-pro' does provide software floating point
1111     support.
1112
1113     `-msoft-float' changes the calling convention in the output file;
1114     therefore, it is only useful if you compile *all* of a program with
1115     this option.  In particular, you need to compile `libgcc.a', the
1116     library that comes with GNU CC, with `-msoft-float' in order for
1117     this to work.
1118
1119
1120File: gcc.info,  Node: Intel 960 Options,  Next: DEC Alpha Options,  Prev: HPPA Options,  Up: Submodel Options
1121
1122Intel 960 Options
1123-----------------
1124
1125   These `-m' options are defined for the Intel 960 implementations:
1126
1127`-mCPU TYPE'
1128     Assume the defaults for the machine type CPU TYPE for some of the
1129     other options, including instruction scheduling, floating point
1130     support, and addressing modes.  The choices for CPU TYPE are `ka',
1131     `kb', `mc', `ca', `cf', `sa', and `sb'.  The default is `kb'.
1132
1133`-mnumerics'
1134`-msoft-float'
1135     The `-mnumerics' option indicates that the processor does support
1136     floating-point instructions.  The `-msoft-float' option indicates
1137     that floating-point support should not be assumed.
1138
1139`-mleaf-procedures'
1140`-mno-leaf-procedures'
1141     Do (or do not) attempt to alter leaf procedures to be callable
1142     with the `bal' instruction as well as `call'.  This will result in
1143     more efficient code for explicit calls when the `bal' instruction
1144     can be substituted by the assembler or linker, but less efficient
1145     code in other cases, such as calls via function pointers, or using
1146     a linker that doesn't support this optimization.
1147
1148`-mtail-call'
1149`-mno-tail-call'
1150     Do (or do not) make additional attempts (beyond those of the
1151     machine-independent portions of the compiler) to optimize
1152     tail-recursive calls into branches.  You may not want to do this
1153     because the detection of cases where this is not valid is not
1154     totally complete.  The default is `-mno-tail-call'.
1155
1156`-mcomplex-addr'
1157`-mno-complex-addr'
1158     Assume (or do not assume) that the use of a complex addressing
1159     mode is a win on this implementation of the i960.  Complex
1160     addressing modes may not be worthwhile on the K-series, but they
1161     definitely are on the C-series.  The default is currently
1162     `-mcomplex-addr' for all processors except the CB and CC.
1163
1164`-mcode-align'
1165`-mno-code-align'
1166     Align code to 8-byte boundaries for faster fetching (or don't
1167     bother).  Currently turned on by default for C-series
1168     implementations only.
1169
1170`-mic-compat'
1171`-mic2.0-compat'
1172`-mic3.0-compat'
1173     Enable compatibility with iC960 v2.0 or v3.0.
1174
1175`-masm-compat'
1176`-mintel-asm'
1177     Enable compatibility with the iC960 assembler.
1178
1179`-mstrict-align'
1180`-mno-strict-align'
1181     Do not permit (do permit) unaligned accesses.
1182
1183`-mold-align'
1184     Enable structure-alignment compatibility with Intel's gcc release
1185     version 1.3 (based on gcc 1.37).  This option implies
1186     `-mstrict-align'.
1187
Note: See TracBrowser for help on using the repository browser.