source: trunk/third/gcc/unroll.c @ 11288

Revision 11288, 121.9 KB checked in by ghudson, 26 years ago (diff)
This commit was generated by cvs2svn to compensate for changes in r11287, which included commits to RCS files with non-trunk default branches.
Line 
1/* Try to unroll loops, and split induction variables.
2   Copyright (C) 1992, 93, 94, 95, 97, 1998 Free Software Foundation, Inc.
3   Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING.  If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA.  */
21
22/* Try to unroll a loop, and split induction variables.
23
24   Loops for which the number of iterations can be calculated exactly are
25   handled specially.  If the number of iterations times the insn_count is
26   less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27   Otherwise, we try to unroll the loop a number of times modulo the number
28   of iterations, so that only one exit test will be needed.  It is unrolled
29   a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30   the insn count.
31
32   Otherwise, if the number of iterations can be calculated exactly at
33   run time, and the loop is always entered at the top, then we try to
34   precondition the loop.  That is, at run time, calculate how many times
35   the loop will execute, and then execute the loop body a few times so
36   that the remaining iterations will be some multiple of 4 (or 2 if the
37   loop is large).  Then fall through to a loop unrolled 4 (or 2) times,
38   with only one exit test needed at the end of the loop.
39
40   Otherwise, if the number of iterations can not be calculated exactly,
41   not even at run time, then we still unroll the loop a number of times
42   approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43   but there must be an exit test after each copy of the loop body.
44
45   For each induction variable, which is dead outside the loop (replaceable)
46   or for which we can easily calculate the final value, if we can easily
47   calculate its value at each place where it is set as a function of the
48   current loop unroll count and the variable's value at loop entry, then
49   the induction variable is split into `N' different variables, one for
50   each copy of the loop body.  One variable is live across the backward
51   branch, and the others are all calculated as a function of this variable.
52   This helps eliminate data dependencies, and leads to further opportunities
53   for cse.  */
54
55/* Possible improvements follow:  */
56
57/* ??? Add an extra pass somewhere to determine whether unrolling will
58   give any benefit.  E.g. after generating all unrolled insns, compute the
59   cost of all insns and compare against cost of insns in rolled loop.
60
61   - On traditional architectures, unrolling a non-constant bound loop
62     is a win if there is a giv whose only use is in memory addresses, the
63     memory addresses can be split, and hence giv increments can be
64     eliminated.
65   - It is also a win if the loop is executed many times, and preconditioning
66     can be performed for the loop.
67   Add code to check for these and similar cases.  */
68
69/* ??? Improve control of which loops get unrolled.  Could use profiling
70   info to only unroll the most commonly executed loops.  Perhaps have
71   a user specifyable option to control the amount of code expansion,
72   or the percent of loops to consider for unrolling.  Etc.  */
73
74/* ??? Look at the register copies inside the loop to see if they form a
75   simple permutation.  If so, iterate the permutation until it gets back to
76   the start state.  This is how many times we should unroll the loop, for
77   best results, because then all register copies can be eliminated.
78   For example, the lisp nreverse function should be unrolled 3 times
79   while (this)
80     {
81       next = this->cdr;
82       this->cdr = prev;
83       prev = this;
84       this = next;
85     }
86
87   ??? The number of times to unroll the loop may also be based on data
88   references in the loop.  For example, if we have a loop that references
89   x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times.  */
90
91/* ??? Add some simple linear equation solving capability so that we can
92   determine the number of loop iterations for more complex loops.
93   For example, consider this loop from gdb
94   #define SWAP_TARGET_AND_HOST(buffer,len)
95     {
96       char tmp;
97       char *p = (char *) buffer;
98       char *q = ((char *) buffer) + len - 1;
99       int iterations = (len + 1) >> 1;
100       int i;
101       for (p; p < q; p++, q--;)
102         {
103           tmp = *q;
104           *q = *p;
105           *p = tmp;
106         }
107     }
108   Note that:
109     start value = p = &buffer + current_iteration
110     end value   = q = &buffer + len - 1 - current_iteration
111   Given the loop exit test of "p < q", then there must be "q - p" iterations,
112   set equal to zero and solve for number of iterations:
113     q - p = len - 1 - 2*current_iteration = 0
114     current_iteration = (len - 1) / 2
115   Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116   iterations of this loop.  */
117
118/* ??? Currently, no labels are marked as loop invariant when doing loop
119   unrolling.  This is because an insn inside the loop, that loads the address
120   of a label inside the loop into a register, could be moved outside the loop
121   by the invariant code motion pass if labels were invariant.  If the loop
122   is subsequently unrolled, the code will be wrong because each unrolled
123   body of the loop will use the same address, whereas each actually needs a
124   different address.  A case where this happens is when a loop containing
125   a switch statement is unrolled.
126
127   It would be better to let labels be considered invariant.  When we
128   unroll loops here, check to see if any insns using a label local to the
129   loop were moved before the loop.  If so, then correct the problem, by
130   moving the insn back into the loop, or perhaps replicate the insn before
131   the loop, one copy for each time the loop is unrolled.  */
132
133/* The prime factors looked for when trying to unroll a loop by some
134   number which is modulo the total number of iterations.  Just checking
135   for these 4 prime factors will find at least one factor for 75% of
136   all numbers theoretically.  Practically speaking, this will succeed
137   almost all of the time since loops are generally a multiple of 2
138   and/or 5.  */
139
140#define NUM_FACTORS 4
141
142struct _factor { int factor, count; } factors[NUM_FACTORS]
143  = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
144     
145/* Describes the different types of loop unrolling performed.  */
146
147enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
148
149#include "config.h"
150#include <stdio.h>
151#include "rtl.h"
152#include "insn-config.h"
153#include "integrate.h"
154#include "regs.h"
155#include "recog.h"
156#include "flags.h"
157#include "expr.h"
158#include "loop.h"
159
160/* This controls which loops are unrolled, and by how much we unroll
161   them.  */
162
163#ifndef MAX_UNROLLED_INSNS
164#define MAX_UNROLLED_INSNS 100
165#endif
166
167/* Indexed by register number, if non-zero, then it contains a pointer
168   to a struct induction for a DEST_REG giv which has been combined with
169   one of more address givs.  This is needed because whenever such a DEST_REG
170   giv is modified, we must modify the value of all split address givs
171   that were combined with this DEST_REG giv.  */
172
173static struct induction **addr_combined_regs;
174
175/* Indexed by register number, if this is a splittable induction variable,
176   then this will hold the current value of the register, which depends on the
177   iteration number.  */
178
179static rtx *splittable_regs;
180
181/* Indexed by register number, if this is a splittable induction variable,
182   then this will hold the number of instructions in the loop that modify
183   the induction variable.  Used to ensure that only the last insn modifying
184   a split iv will update the original iv of the dest.  */
185
186static int *splittable_regs_updates;
187
188/* Values describing the current loop's iteration variable.  These are set up
189   by loop_iterations, and used by precondition_loop_p.  */
190
191static rtx loop_iteration_var;
192static rtx loop_initial_value;
193static rtx loop_increment;
194static rtx loop_final_value;
195static enum rtx_code loop_comparison_code;
196
197/* Forward declarations.  */
198
199static void init_reg_map PROTO((struct inline_remap *, int));
200static int precondition_loop_p PROTO((rtx *, rtx *, rtx *, rtx, rtx));
201static rtx calculate_giv_inc PROTO((rtx, rtx, int));
202static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
203static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
204static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
205                                  enum unroll_types, rtx, rtx, rtx, rtx));
206static void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
207static rtx approx_final_value PROTO((enum rtx_code, rtx, int *, int *));
208static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int));
209static int find_splittable_givs PROTO((struct iv_class *,enum unroll_types,
210                                       rtx, rtx, rtx, int));
211static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
212static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
213static rtx remap_split_bivs PROTO((rtx));
214
215/* Try to unroll one loop and split induction variables in the loop.
216
217   The loop is described by the arguments LOOP_END, INSN_COUNT, and
218   LOOP_START.  END_INSERT_BEFORE indicates where insns should be added
219   which need to be executed when the loop falls through.  STRENGTH_REDUCTION_P
220   indicates whether information generated in the strength reduction pass
221   is available.
222
223   This function is intended to be called from within `strength_reduce'
224   in loop.c.  */
225
226void
227unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
228             strength_reduce_p)
229     rtx loop_end;
230     int insn_count;
231     rtx loop_start;
232     rtx end_insert_before;
233     int strength_reduce_p;
234{
235  int i, j, temp;
236  int unroll_number = 1;
237  rtx copy_start, copy_end;
238  rtx insn, copy, sequence, pattern, tem;
239  int max_labelno, max_insnno;
240  rtx insert_before;
241  struct inline_remap *map;
242  char *local_label;
243  char *local_regno;
244  int maxregnum;
245  int new_maxregnum;
246  rtx exit_label = 0;
247  rtx start_label;
248  struct iv_class *bl;
249  int splitting_not_safe = 0;
250  enum unroll_types unroll_type;
251  int loop_preconditioned = 0;
252  rtx safety_label;
253  /* This points to the last real insn in the loop, which should be either
254     a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
255     jumps).  */
256  rtx last_loop_insn;
257
258  /* Don't bother unrolling huge loops.  Since the minimum factor is
259     two, loops greater than one half of MAX_UNROLLED_INSNS will never
260     be unrolled.  */
261  if (insn_count > MAX_UNROLLED_INSNS / 2)
262    {
263      if (loop_dump_stream)
264        fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
265      return;
266    }
267
268  /* When emitting debugger info, we can't unroll loops with unequal numbers
269     of block_beg and block_end notes, because that would unbalance the block
270     structure of the function.  This can happen as a result of the
271     "if (foo) bar; else break;" optimization in jump.c.  */
272  /* ??? Gcc has a general policy that -g is never supposed to change the code
273     that the compiler emits, so we must disable this optimization always,
274     even if debug info is not being output.  This is rare, so this should
275     not be a significant performance problem.  */
276
277  if (1 /* write_symbols != NO_DEBUG */)
278    {
279      int block_begins = 0;
280      int block_ends = 0;
281
282      for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
283        {
284          if (GET_CODE (insn) == NOTE)
285            {
286              if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
287                block_begins++;
288              else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
289                block_ends++;
290            }
291        }
292
293      if (block_begins != block_ends)
294        {
295          if (loop_dump_stream)
296            fprintf (loop_dump_stream,
297                     "Unrolling failure: Unbalanced block notes.\n");
298          return;
299        }
300    }
301
302  /* Determine type of unroll to perform.  Depends on the number of iterations
303     and the size of the loop.  */
304
305  /* If there is no strength reduce info, then set loop_n_iterations to zero.
306     This can happen if strength_reduce can't find any bivs in the loop.
307     A value of zero indicates that the number of iterations could not be
308     calculated.  */
309
310  if (! strength_reduce_p)
311    loop_n_iterations = 0;
312
313  if (loop_dump_stream && loop_n_iterations > 0)
314    fprintf (loop_dump_stream,
315             "Loop unrolling: %d iterations.\n", loop_n_iterations);
316
317  /* Find and save a pointer to the last nonnote insn in the loop.  */
318
319  last_loop_insn = prev_nonnote_insn (loop_end);
320
321  /* Calculate how many times to unroll the loop.  Indicate whether or
322     not the loop is being completely unrolled.  */
323
324  if (loop_n_iterations == 1)
325    {
326      /* If number of iterations is exactly 1, then eliminate the compare and
327         branch at the end of the loop since they will never be taken.
328         Then return, since no other action is needed here.  */
329
330      /* If the last instruction is not a BARRIER or a JUMP_INSN, then
331         don't do anything.  */
332
333      if (GET_CODE (last_loop_insn) == BARRIER)
334        {
335          /* Delete the jump insn.  This will delete the barrier also.  */
336          delete_insn (PREV_INSN (last_loop_insn));
337        }
338      else if (GET_CODE (last_loop_insn) == JUMP_INSN)
339        {
340#ifdef HAVE_cc0
341          /* The immediately preceding insn is a compare which must be
342             deleted.  */
343          delete_insn (last_loop_insn);
344          delete_insn (PREV_INSN (last_loop_insn));
345#else
346          /* The immediately preceding insn may not be the compare, so don't
347             delete it.  */
348          delete_insn (last_loop_insn);
349#endif
350        }
351      return;
352    }
353  else if (loop_n_iterations > 0
354      && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
355    {
356      unroll_number = loop_n_iterations;
357      unroll_type = UNROLL_COMPLETELY;
358    }
359  else if (loop_n_iterations > 0)
360    {
361      /* Try to factor the number of iterations.  Don't bother with the
362         general case, only using 2, 3, 5, and 7 will get 75% of all
363         numbers theoretically, and almost all in practice.  */
364
365      for (i = 0; i < NUM_FACTORS; i++)
366        factors[i].count = 0;
367
368      temp = loop_n_iterations;
369      for (i = NUM_FACTORS - 1; i >= 0; i--)
370        while (temp % factors[i].factor == 0)
371          {
372            factors[i].count++;
373            temp = temp / factors[i].factor;
374          }
375
376      /* Start with the larger factors first so that we generally
377         get lots of unrolling.  */
378
379      unroll_number = 1;
380      temp = insn_count;
381      for (i = 3; i >= 0; i--)
382        while (factors[i].count--)
383          {
384            if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
385              {
386                unroll_number *= factors[i].factor;
387                temp *= factors[i].factor;
388              }
389            else
390              break;
391          }
392
393      /* If we couldn't find any factors, then unroll as in the normal
394         case.  */
395      if (unroll_number == 1)
396        {
397          if (loop_dump_stream)
398            fprintf (loop_dump_stream,
399                     "Loop unrolling: No factors found.\n");
400        }
401      else
402        unroll_type = UNROLL_MODULO;
403    }
404
405
406  /* Default case, calculate number of times to unroll loop based on its
407     size.  */
408  if (unroll_number == 1)
409    {
410      if (8 * insn_count < MAX_UNROLLED_INSNS)
411        unroll_number = 8;
412      else if (4 * insn_count < MAX_UNROLLED_INSNS)
413        unroll_number = 4;
414      else
415        unroll_number = 2;
416
417      unroll_type = UNROLL_NAIVE;
418    }
419
420  /* Now we know how many times to unroll the loop.  */
421
422  if (loop_dump_stream)
423    fprintf (loop_dump_stream,
424             "Unrolling loop %d times.\n", unroll_number);
425
426
427  if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
428    {
429      /* Loops of these types should never start with a jump down to
430         the exit condition test.  For now, check for this case just to
431         be sure.  UNROLL_NAIVE loops can be of this form, this case is
432         handled below.  */
433      insn = loop_start;
434      while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
435        insn = NEXT_INSN (insn);
436      if (GET_CODE (insn) == JUMP_INSN)
437        abort ();
438    }
439
440  if (unroll_type == UNROLL_COMPLETELY)
441    {
442      /* Completely unrolling the loop:  Delete the compare and branch at
443         the end (the last two instructions).   This delete must done at the
444         very end of loop unrolling, to avoid problems with calls to
445         back_branch_in_range_p, which is called by find_splittable_regs.
446         All increments of splittable bivs/givs are changed to load constant
447         instructions.  */
448
449      copy_start = loop_start;
450
451      /* Set insert_before to the instruction immediately after the JUMP_INSN
452         (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
453         the loop will be correctly handled by copy_loop_body.  */
454      insert_before = NEXT_INSN (last_loop_insn);
455
456      /* Set copy_end to the insn before the jump at the end of the loop.  */
457      if (GET_CODE (last_loop_insn) == BARRIER)
458        copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
459      else if (GET_CODE (last_loop_insn) == JUMP_INSN)
460        {
461#ifdef HAVE_cc0
462          /* The instruction immediately before the JUMP_INSN is a compare
463             instruction which we do not want to copy.  */
464          copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
465#else
466          /* The instruction immediately before the JUMP_INSN may not be the
467             compare, so we must copy it.  */
468          copy_end = PREV_INSN (last_loop_insn);
469#endif
470        }
471      else
472        {
473          /* We currently can't unroll a loop if it doesn't end with a
474             JUMP_INSN.  There would need to be a mechanism that recognizes
475             this case, and then inserts a jump after each loop body, which
476             jumps to after the last loop body.  */
477          if (loop_dump_stream)
478            fprintf (loop_dump_stream,
479                     "Unrolling failure: loop does not end with a JUMP_INSN.\n");
480          return;
481        }
482    }
483  else if (unroll_type == UNROLL_MODULO)
484    {
485      /* Partially unrolling the loop:  The compare and branch at the end
486         (the last two instructions) must remain.  Don't copy the compare
487         and branch instructions at the end of the loop.  Insert the unrolled
488         code immediately before the compare/branch at the end so that the
489         code will fall through to them as before.  */
490
491      copy_start = loop_start;
492
493      /* Set insert_before to the jump insn at the end of the loop.
494         Set copy_end to before the jump insn at the end of the loop.  */
495      if (GET_CODE (last_loop_insn) == BARRIER)
496        {
497          insert_before = PREV_INSN (last_loop_insn);
498          copy_end = PREV_INSN (insert_before);
499        }
500      else if (GET_CODE (last_loop_insn) == JUMP_INSN)
501        {
502#ifdef HAVE_cc0
503          /* The instruction immediately before the JUMP_INSN is a compare
504             instruction which we do not want to copy or delete.  */
505          insert_before = PREV_INSN (last_loop_insn);
506          copy_end = PREV_INSN (insert_before);
507#else
508          /* The instruction immediately before the JUMP_INSN may not be the
509             compare, so we must copy it.  */
510          insert_before = last_loop_insn;
511          copy_end = PREV_INSN (last_loop_insn);
512#endif
513        }
514      else
515        {
516          /* We currently can't unroll a loop if it doesn't end with a
517             JUMP_INSN.  There would need to be a mechanism that recognizes
518             this case, and then inserts a jump after each loop body, which
519             jumps to after the last loop body.  */
520          if (loop_dump_stream)
521            fprintf (loop_dump_stream,
522                     "Unrolling failure: loop does not end with a JUMP_INSN.\n");
523          return;
524        }
525    }
526  else
527    {
528      /* Normal case: Must copy the compare and branch instructions at the
529         end of the loop.  */
530
531      if (GET_CODE (last_loop_insn) == BARRIER)
532        {
533          /* Loop ends with an unconditional jump and a barrier.
534             Handle this like above, don't copy jump and barrier.
535             This is not strictly necessary, but doing so prevents generating
536             unconditional jumps to an immediately following label.
537
538             This will be corrected below if the target of this jump is
539             not the start_label.  */
540
541          insert_before = PREV_INSN (last_loop_insn);
542          copy_end = PREV_INSN (insert_before);
543        }
544      else if (GET_CODE (last_loop_insn) == JUMP_INSN)
545        {
546          /* Set insert_before to immediately after the JUMP_INSN, so that
547             NOTEs at the end of the loop will be correctly handled by
548             copy_loop_body.  */
549          insert_before = NEXT_INSN (last_loop_insn);
550          copy_end = last_loop_insn;
551        }
552      else
553        {
554          /* We currently can't unroll a loop if it doesn't end with a
555             JUMP_INSN.  There would need to be a mechanism that recognizes
556             this case, and then inserts a jump after each loop body, which
557             jumps to after the last loop body.  */
558          if (loop_dump_stream)
559            fprintf (loop_dump_stream,
560                     "Unrolling failure: loop does not end with a JUMP_INSN.\n");
561          return;
562        }
563
564      /* If copying exit test branches because they can not be eliminated,
565         then must convert the fall through case of the branch to a jump past
566         the end of the loop.  Create a label to emit after the loop and save
567         it for later use.  Do not use the label after the loop, if any, since
568         it might be used by insns outside the loop, or there might be insns
569         added before it later by final_[bg]iv_value which must be after
570         the real exit label.  */
571      exit_label = gen_label_rtx ();
572
573      insn = loop_start;
574      while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
575        insn = NEXT_INSN (insn);
576
577      if (GET_CODE (insn) == JUMP_INSN)
578        {
579          /* The loop starts with a jump down to the exit condition test.
580             Start copying the loop after the barrier following this
581             jump insn.  */
582          copy_start = NEXT_INSN (insn);
583
584          /* Splitting induction variables doesn't work when the loop is
585             entered via a jump to the bottom, because then we end up doing
586             a comparison against a new register for a split variable, but
587             we did not execute the set insn for the new register because
588             it was skipped over.  */
589          splitting_not_safe = 1;
590          if (loop_dump_stream)
591            fprintf (loop_dump_stream,
592                     "Splitting not safe, because loop not entered at top.\n");
593        }
594      else
595        copy_start = loop_start;
596    }
597
598  /* This should always be the first label in the loop.  */
599  start_label = NEXT_INSN (copy_start);
600  /* There may be a line number note and/or a loop continue note here.  */
601  while (GET_CODE (start_label) == NOTE)
602    start_label = NEXT_INSN (start_label);
603  if (GET_CODE (start_label) != CODE_LABEL)
604    {
605      /* This can happen as a result of jump threading.  If the first insns in
606         the loop test the same condition as the loop's backward jump, or the
607         opposite condition, then the backward jump will be modified to point
608         to elsewhere, and the loop's start label is deleted.
609
610         This case currently can not be handled by the loop unrolling code.  */
611
612      if (loop_dump_stream)
613        fprintf (loop_dump_stream,
614                 "Unrolling failure: unknown insns between BEG note and loop label.\n");
615      return;
616    }
617  if (LABEL_NAME (start_label))
618    {
619      /* The jump optimization pass must have combined the original start label
620         with a named label for a goto.  We can't unroll this case because
621         jumps which go to the named label must be handled differently than
622         jumps to the loop start, and it is impossible to differentiate them
623         in this case.  */
624      if (loop_dump_stream)
625        fprintf (loop_dump_stream,
626                 "Unrolling failure: loop start label is gone\n");
627      return;
628    }
629
630  if (unroll_type == UNROLL_NAIVE
631      && GET_CODE (last_loop_insn) == BARRIER
632      && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
633    {
634      /* In this case, we must copy the jump and barrier, because they will
635         not be converted to jumps to an immediately following label.  */
636
637      insert_before = NEXT_INSN (last_loop_insn);
638      copy_end = last_loop_insn;
639    }
640
641  if (unroll_type == UNROLL_NAIVE
642      && GET_CODE (last_loop_insn) == JUMP_INSN
643      && start_label != JUMP_LABEL (last_loop_insn))
644    {
645      /* ??? The loop ends with a conditional branch that does not branch back
646         to the loop start label.  In this case, we must emit an unconditional
647         branch to the loop exit after emitting the final branch.
648         copy_loop_body does not have support for this currently, so we
649         give up.  It doesn't seem worthwhile to unroll anyways since
650         unrolling would increase the number of branch instructions
651         executed.  */
652      if (loop_dump_stream)
653        fprintf (loop_dump_stream,
654                 "Unrolling failure: final conditional branch not to loop start\n");
655      return;
656    }
657
658  /* Allocate a translation table for the labels and insn numbers.
659     They will be filled in as we copy the insns in the loop.  */
660
661  max_labelno = max_label_num ();
662  max_insnno = get_max_uid ();
663
664  map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
665
666  map->integrating = 0;
667
668  /* Allocate the label map.  */
669
670  if (max_labelno > 0)
671    {
672      map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
673
674      local_label = (char *) alloca (max_labelno);
675      bzero (local_label, max_labelno);
676    }
677  else
678    map->label_map = 0;
679
680  /* Search the loop and mark all local labels, i.e. the ones which have to
681     be distinct labels when copied.  For all labels which might be
682     non-local, set their label_map entries to point to themselves.
683     If they happen to be local their label_map entries will be overwritten
684     before the loop body is copied.  The label_map entries for local labels
685     will be set to a different value each time the loop body is copied.  */
686
687  for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
688    {
689      if (GET_CODE (insn) == CODE_LABEL)
690        local_label[CODE_LABEL_NUMBER (insn)] = 1;
691      else if (GET_CODE (insn) == JUMP_INSN)
692        {
693          if (JUMP_LABEL (insn))
694            set_label_in_map (map,
695                              CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
696                              JUMP_LABEL (insn));
697          else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
698                   || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
699            {
700              rtx pat = PATTERN (insn);
701              int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
702              int len = XVECLEN (pat, diff_vec_p);
703              rtx label;
704
705              for (i = 0; i < len; i++)
706                {
707                  label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
708                  set_label_in_map (map,
709                                    CODE_LABEL_NUMBER (label),
710                                    label);
711                }
712            }
713        }
714    }
715
716  /* Allocate space for the insn map.  */
717
718  map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
719
720  /* Set this to zero, to indicate that we are doing loop unrolling,
721     not function inlining.  */
722  map->inline_target = 0;
723
724  /* The register and constant maps depend on the number of registers
725     present, so the final maps can't be created until after
726     find_splittable_regs is called.  However, they are needed for
727     preconditioning, so we create temporary maps when preconditioning
728     is performed.  */
729
730  /* The preconditioning code may allocate two new pseudo registers.  */
731  maxregnum = max_reg_num ();
732
733  /* Allocate and zero out the splittable_regs and addr_combined_regs
734     arrays.  These must be zeroed here because they will be used if
735     loop preconditioning is performed, and must be zero for that case.
736
737     It is safe to do this here, since the extra registers created by the
738     preconditioning code and find_splittable_regs will never be used
739     to access the splittable_regs[] and addr_combined_regs[] arrays.  */
740
741  splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
742  bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
743  splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
744  bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
745  addr_combined_regs
746    = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
747  bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
748  /* We must limit it to max_reg_before_loop, because only these pseudo
749     registers have valid regno_first_uid info.  Any register created after
750     that is unlikely to be local to the loop anyways.  */
751  local_regno = (char *) alloca (max_reg_before_loop);
752  bzero (local_regno, max_reg_before_loop);
753
754  /* Mark all local registers, i.e. the ones which are referenced only
755     inside the loop.  */
756  if (INSN_UID (copy_end) < max_uid_for_loop)
757  {
758    int copy_start_luid = INSN_LUID (copy_start);
759    int copy_end_luid = INSN_LUID (copy_end);
760
761    /* If a register is used in the jump insn, we must not duplicate it
762       since it will also be used outside the loop.  */
763    if (GET_CODE (copy_end) == JUMP_INSN)
764      copy_end_luid--;
765    /* If copy_start points to the NOTE that starts the loop, then we must
766       use the next luid, because invariant pseudo-regs moved out of the loop
767       have their lifetimes modified to start here, but they are not safe
768       to duplicate.  */
769    if (copy_start == loop_start)
770      copy_start_luid++;
771
772    /* If a pseudo's lifetime is entirely contained within this loop, then we
773       can use a different pseudo in each unrolled copy of the loop.  This
774       results in better code.  */
775    for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
776      if (REGNO_FIRST_UID (j) > 0 && REGNO_FIRST_UID (j) <= max_uid_for_loop
777          && uid_luid[REGNO_FIRST_UID (j)] >= copy_start_luid
778          && REGNO_LAST_UID (j) > 0 && REGNO_LAST_UID (j) <= max_uid_for_loop
779          && uid_luid[REGNO_LAST_UID (j)] <= copy_end_luid)
780        {
781          /* However, we must also check for loop-carried dependencies.
782             If the value the pseudo has at the end of iteration X is
783             used by iteration X+1, then we can not use a different pseudo
784             for each unrolled copy of the loop.  */
785          /* A pseudo is safe if regno_first_uid is a set, and this
786             set dominates all instructions from regno_first_uid to
787             regno_last_uid.  */
788          /* ??? This check is simplistic.  We would get better code if
789             this check was more sophisticated.  */
790          if (set_dominates_use (j, REGNO_FIRST_UID (j), REGNO_LAST_UID (j),
791                                 copy_start, copy_end))
792            local_regno[j] = 1;
793
794          if (loop_dump_stream)
795            {
796              if (local_regno[j])
797                fprintf (loop_dump_stream, "Marked reg %d as local\n", j);
798              else
799                fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
800                         j);
801            }
802        }
803  }
804
805  /* If this loop requires exit tests when unrolled, check to see if we
806     can precondition the loop so as to make the exit tests unnecessary.
807     Just like variable splitting, this is not safe if the loop is entered
808     via a jump to the bottom.  Also, can not do this if no strength
809     reduce info, because precondition_loop_p uses this info.  */
810
811  /* Must copy the loop body for preconditioning before the following
812     find_splittable_regs call since that will emit insns which need to
813     be after the preconditioned loop copies, but immediately before the
814     unrolled loop copies.  */
815
816  /* Also, it is not safe to split induction variables for the preconditioned
817     copies of the loop body.  If we split induction variables, then the code
818     assumes that each induction variable can be represented as a function
819     of its initial value and the loop iteration number.  This is not true
820     in this case, because the last preconditioned copy of the loop body
821     could be any iteration from the first up to the `unroll_number-1'th,
822     depending on the initial value of the iteration variable.  Therefore
823     we can not split induction variables here, because we can not calculate
824     their value.  Hence, this code must occur before find_splittable_regs
825     is called.  */
826
827  if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
828    {
829      rtx initial_value, final_value, increment;
830
831      if (precondition_loop_p (&initial_value, &final_value, &increment,
832                               loop_start, loop_end))
833        {
834          register rtx diff, temp;
835          enum machine_mode mode;
836          rtx *labels;
837          int abs_inc, neg_inc;
838
839          map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
840
841          map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
842          map->const_age_map = (unsigned *) alloca (maxregnum
843                                                    * sizeof (unsigned));
844          map->const_equiv_map_size = maxregnum;
845          global_const_equiv_map = map->const_equiv_map;
846          global_const_equiv_map_size = maxregnum;
847
848          init_reg_map (map, maxregnum);
849
850          /* Limit loop unrolling to 4, since this will make 7 copies of
851             the loop body.  */
852          if (unroll_number > 4)
853            unroll_number = 4;
854
855          /* Save the absolute value of the increment, and also whether or
856             not it is negative.  */
857          neg_inc = 0;
858          abs_inc = INTVAL (increment);
859          if (abs_inc < 0)
860            {
861              abs_inc = - abs_inc;
862              neg_inc = 1;
863            }
864
865          start_sequence ();
866
867          /* Decide what mode to do these calculations in.  Choose the larger
868             of final_value's mode and initial_value's mode, or a full-word if
869             both are constants.  */
870          mode = GET_MODE (final_value);
871          if (mode == VOIDmode)
872            {
873              mode = GET_MODE (initial_value);
874              if (mode == VOIDmode)
875                mode = word_mode;
876            }
877          else if (mode != GET_MODE (initial_value)
878                   && (GET_MODE_SIZE (mode)
879                       < GET_MODE_SIZE (GET_MODE (initial_value))))
880            mode = GET_MODE (initial_value);
881
882          /* Calculate the difference between the final and initial values.
883             Final value may be a (plus (reg x) (const_int 1)) rtx.
884             Let the following cse pass simplify this if initial value is
885             a constant.
886
887             We must copy the final and initial values here to avoid
888             improperly shared rtl.  */
889
890          diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
891                               copy_rtx (initial_value), NULL_RTX, 0,
892                               OPTAB_LIB_WIDEN);
893
894          /* Now calculate (diff % (unroll * abs (increment))) by using an
895             and instruction.  */
896          diff = expand_binop (GET_MODE (diff), and_optab, diff,
897                               GEN_INT (unroll_number * abs_inc - 1),
898                               NULL_RTX, 0, OPTAB_LIB_WIDEN);
899
900          /* Now emit a sequence of branches to jump to the proper precond
901             loop entry point.  */
902
903          labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
904          for (i = 0; i < unroll_number; i++)
905            labels[i] = gen_label_rtx ();
906
907          /* Check for the case where the initial value is greater than or
908             equal to the final value.  In that case, we want to execute
909             exactly one loop iteration.  The code below will fail for this
910             case.  This check does not apply if the loop has a NE
911             comparison at the end.  */
912
913          if (loop_comparison_code != NE)
914            {
915              emit_cmp_insn (initial_value, final_value, neg_inc ? LE : GE,
916                             NULL_RTX, mode, 0, 0);
917              if (neg_inc)
918                emit_jump_insn (gen_ble (labels[1]));
919              else
920                emit_jump_insn (gen_bge (labels[1]));
921              JUMP_LABEL (get_last_insn ()) = labels[1];
922              LABEL_NUSES (labels[1])++;
923            }
924
925          /* Assuming the unroll_number is 4, and the increment is 2, then
926             for a negative increment:  for a positive increment:
927             diff = 0,1   precond 0     diff = 0,7   precond 0
928             diff = 2,3   precond 3     diff = 1,2   precond 1
929             diff = 4,5   precond 2     diff = 3,4   precond 2
930             diff = 6,7   precond 1     diff = 5,6   precond 3  */
931
932          /* We only need to emit (unroll_number - 1) branches here, the
933             last case just falls through to the following code.  */
934
935          /* ??? This would give better code if we emitted a tree of branches
936             instead of the current linear list of branches.  */
937
938          for (i = 0; i < unroll_number - 1; i++)
939            {
940              int cmp_const;
941              enum rtx_code cmp_code;
942
943              /* For negative increments, must invert the constant compared
944                 against, except when comparing against zero.  */
945              if (i == 0)
946                {
947                  cmp_const = 0;
948                  cmp_code = EQ;
949                }
950              else if (neg_inc)
951                {
952                  cmp_const = unroll_number - i;
953                  cmp_code = GE;
954                }
955              else
956                {
957                  cmp_const = i;
958                  cmp_code = LE;
959                }
960
961              emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
962                             cmp_code, NULL_RTX, mode, 0, 0);
963
964              if (i == 0)
965                emit_jump_insn (gen_beq (labels[i]));
966              else if (neg_inc)
967                emit_jump_insn (gen_bge (labels[i]));
968              else
969                emit_jump_insn (gen_ble (labels[i]));
970              JUMP_LABEL (get_last_insn ()) = labels[i];
971              LABEL_NUSES (labels[i])++;
972            }
973
974          /* If the increment is greater than one, then we need another branch,
975             to handle other cases equivalent to 0.  */
976
977          /* ??? This should be merged into the code above somehow to help
978             simplify the code here, and reduce the number of branches emitted.
979             For the negative increment case, the branch here could easily
980             be merged with the `0' case branch above.  For the positive
981             increment case, it is not clear how this can be simplified.  */
982             
983          if (abs_inc != 1)
984            {
985              int cmp_const;
986              enum rtx_code cmp_code;
987
988              if (neg_inc)
989                {
990                  cmp_const = abs_inc - 1;
991                  cmp_code = LE;
992                }
993              else
994                {
995                  cmp_const = abs_inc * (unroll_number - 1) + 1;
996                  cmp_code = GE;
997                }
998
999              emit_cmp_insn (diff, GEN_INT (cmp_const), cmp_code, NULL_RTX,
1000                             mode, 0, 0);
1001
1002              if (neg_inc)
1003                emit_jump_insn (gen_ble (labels[0]));
1004              else
1005                emit_jump_insn (gen_bge (labels[0]));
1006              JUMP_LABEL (get_last_insn ()) = labels[0];
1007              LABEL_NUSES (labels[0])++;
1008            }
1009
1010          sequence = gen_sequence ();
1011          end_sequence ();
1012          emit_insn_before (sequence, loop_start);
1013         
1014          /* Only the last copy of the loop body here needs the exit
1015             test, so set copy_end to exclude the compare/branch here,
1016             and then reset it inside the loop when get to the last
1017             copy.  */
1018
1019          if (GET_CODE (last_loop_insn) == BARRIER)
1020            copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1021          else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1022            {
1023#ifdef HAVE_cc0
1024              /* The immediately preceding insn is a compare which we do not
1025                 want to copy.  */
1026              copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1027#else
1028              /* The immediately preceding insn may not be a compare, so we
1029                 must copy it.  */
1030              copy_end = PREV_INSN (last_loop_insn);
1031#endif
1032            }
1033          else
1034            abort ();
1035
1036          for (i = 1; i < unroll_number; i++)
1037            {
1038              emit_label_after (labels[unroll_number - i],
1039                                PREV_INSN (loop_start));
1040
1041              bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1042              bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
1043              bzero ((char *) map->const_age_map,
1044                     maxregnum * sizeof (unsigned));
1045              map->const_age = 0;
1046
1047              for (j = 0; j < max_labelno; j++)
1048                if (local_label[j])
1049                  set_label_in_map (map, j, gen_label_rtx ());
1050
1051              for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1052                if (local_regno[j])
1053                  map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1054
1055              /* The last copy needs the compare/branch insns at the end,
1056                 so reset copy_end here if the loop ends with a conditional
1057                 branch.  */
1058
1059              if (i == unroll_number - 1)
1060                {
1061                  if (GET_CODE (last_loop_insn) == BARRIER)
1062                    copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1063                  else
1064                    copy_end = last_loop_insn;
1065                }
1066
1067              /* None of the copies are the `last_iteration', so just
1068                 pass zero for that parameter.  */
1069              copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1070                              unroll_type, start_label, loop_end,
1071                              loop_start, copy_end);
1072            }
1073          emit_label_after (labels[0], PREV_INSN (loop_start));
1074
1075          if (GET_CODE (last_loop_insn) == BARRIER)
1076            {
1077              insert_before = PREV_INSN (last_loop_insn);
1078              copy_end = PREV_INSN (insert_before);
1079            }
1080          else
1081            {
1082#ifdef HAVE_cc0
1083              /* The immediately preceding insn is a compare which we do not
1084                 want to copy.  */
1085              insert_before = PREV_INSN (last_loop_insn);
1086              copy_end = PREV_INSN (insert_before);
1087#else
1088              /* The immediately preceding insn may not be a compare, so we
1089                 must copy it.  */
1090              insert_before = last_loop_insn;
1091              copy_end = PREV_INSN (last_loop_insn);
1092#endif
1093            }
1094
1095          /* Set unroll type to MODULO now.  */
1096          unroll_type = UNROLL_MODULO;
1097          loop_preconditioned = 1;
1098        }
1099    }
1100
1101  /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1102     the loop unless all loops are being unrolled.  */
1103  if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1104    {
1105      if (loop_dump_stream)
1106        fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1107      return;
1108    }
1109
1110  /* At this point, we are guaranteed to unroll the loop.  */
1111
1112  /* For each biv and giv, determine whether it can be safely split into
1113     a different variable for each unrolled copy of the loop body.
1114     We precalculate and save this info here, since computing it is
1115     expensive.
1116
1117     Do this before deleting any instructions from the loop, so that
1118     back_branch_in_range_p will work correctly.  */
1119
1120  if (splitting_not_safe)
1121    temp = 0;
1122  else
1123    temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1124                                end_insert_before, unroll_number);
1125
1126  /* find_splittable_regs may have created some new registers, so must
1127     reallocate the reg_map with the new larger size, and must realloc
1128     the constant maps also.  */
1129
1130  maxregnum = max_reg_num ();
1131  map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1132
1133  init_reg_map (map, maxregnum);
1134
1135  /* Space is needed in some of the map for new registers, so new_maxregnum
1136     is an (over)estimate of how many registers will exist at the end.  */
1137  new_maxregnum = maxregnum + (temp * unroll_number * 2);
1138
1139  /* Must realloc space for the constant maps, because the number of registers
1140     may have changed.  */
1141
1142  map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1143  map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1144
1145  map->const_equiv_map_size = new_maxregnum;
1146  global_const_equiv_map = map->const_equiv_map;
1147  global_const_equiv_map_size = new_maxregnum;
1148
1149  /* Search the list of bivs and givs to find ones which need to be remapped
1150     when split, and set their reg_map entry appropriately.  */
1151
1152  for (bl = loop_iv_list; bl; bl = bl->next)
1153    {
1154      if (REGNO (bl->biv->src_reg) != bl->regno)
1155        map->reg_map[bl->regno] = bl->biv->src_reg;
1156#if 0
1157      /* Currently, non-reduced/final-value givs are never split.  */
1158      for (v = bl->giv; v; v = v->next_iv)
1159        if (REGNO (v->src_reg) != bl->regno)
1160          map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1161#endif
1162    }
1163
1164  /* Use our current register alignment and pointer flags.  */
1165  map->regno_pointer_flag = regno_pointer_flag;
1166  map->regno_pointer_align = regno_pointer_align;
1167
1168  /* If the loop is being partially unrolled, and the iteration variables
1169     are being split, and are being renamed for the split, then must fix up
1170     the compare/jump instruction at the end of the loop to refer to the new
1171     registers.  This compare isn't copied, so the registers used in it
1172     will never be replaced if it isn't done here.  */
1173
1174  if (unroll_type == UNROLL_MODULO)
1175    {
1176      insn = NEXT_INSN (copy_end);
1177      if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1178        PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1179    }
1180
1181  /* For unroll_number - 1 times, make a copy of each instruction
1182     between copy_start and copy_end, and insert these new instructions
1183     before the end of the loop.  */
1184
1185  for (i = 0; i < unroll_number; i++)
1186    {
1187      bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1188      bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1189      bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1190      map->const_age = 0;
1191
1192      for (j = 0; j < max_labelno; j++)
1193        if (local_label[j])
1194          set_label_in_map (map, j, gen_label_rtx ());
1195
1196      for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1197        if (local_regno[j])
1198          map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1199
1200      /* If loop starts with a branch to the test, then fix it so that
1201         it points to the test of the first unrolled copy of the loop.  */
1202      if (i == 0 && loop_start != copy_start)
1203        {
1204          insn = PREV_INSN (copy_start);
1205          pattern = PATTERN (insn);
1206         
1207          tem = get_label_from_map (map,
1208                                    CODE_LABEL_NUMBER
1209                                    (XEXP (SET_SRC (pattern), 0)));
1210          SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1211
1212          /* Set the jump label so that it can be used by later loop unrolling
1213             passes.  */
1214          JUMP_LABEL (insn) = tem;
1215          LABEL_NUSES (tem)++;
1216        }
1217
1218      copy_loop_body (copy_start, copy_end, map, exit_label,
1219                      i == unroll_number - 1, unroll_type, start_label,
1220                      loop_end, insert_before, insert_before);
1221    }
1222
1223  /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1224     insn to be deleted.  This prevents any runaway delete_insn call from
1225     more insns that it should, as it always stops at a CODE_LABEL.  */
1226
1227  /* Delete the compare and branch at the end of the loop if completely
1228     unrolling the loop.  Deleting the backward branch at the end also
1229     deletes the code label at the start of the loop.  This is done at
1230     the very end to avoid problems with back_branch_in_range_p.  */
1231
1232  if (unroll_type == UNROLL_COMPLETELY)
1233    safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1234  else
1235    safety_label = emit_label_after (gen_label_rtx (), copy_end);
1236
1237  /* Delete all of the original loop instructions.  Don't delete the
1238     LOOP_BEG note, or the first code label in the loop.  */
1239
1240  insn = NEXT_INSN (copy_start);
1241  while (insn != safety_label)
1242    {
1243      if (insn != start_label)
1244        insn = delete_insn (insn);
1245      else
1246        insn = NEXT_INSN (insn);
1247    }
1248
1249  /* Can now delete the 'safety' label emitted to protect us from runaway
1250     delete_insn calls.  */
1251  if (INSN_DELETED_P (safety_label))
1252    abort ();
1253  delete_insn (safety_label);
1254
1255  /* If exit_label exists, emit it after the loop.  Doing the emit here
1256     forces it to have a higher INSN_UID than any insn in the unrolled loop.
1257     This is needed so that mostly_true_jump in reorg.c will treat jumps
1258     to this loop end label correctly, i.e. predict that they are usually
1259     not taken.  */
1260  if (exit_label)
1261    emit_label_after (exit_label, loop_end);
1262}
1263
1264/* Return true if the loop can be safely, and profitably, preconditioned
1265   so that the unrolled copies of the loop body don't need exit tests.
1266
1267   This only works if final_value, initial_value and increment can be
1268   determined, and if increment is a constant power of 2.
1269   If increment is not a power of 2, then the preconditioning modulo
1270   operation would require a real modulo instead of a boolean AND, and this
1271   is not considered `profitable'.  */
1272
1273/* ??? If the loop is known to be executed very many times, or the machine
1274   has a very cheap divide instruction, then preconditioning is a win even
1275   when the increment is not a power of 2.  Use RTX_COST to compute
1276   whether divide is cheap.  */
1277
1278static int
1279precondition_loop_p (initial_value, final_value, increment, loop_start,
1280                     loop_end)
1281     rtx *initial_value, *final_value, *increment;
1282     rtx loop_start, loop_end;
1283{
1284
1285  if (loop_n_iterations > 0)
1286    {
1287      *initial_value = const0_rtx;
1288      *increment = const1_rtx;
1289      *final_value = GEN_INT (loop_n_iterations);
1290
1291      if (loop_dump_stream)
1292        fprintf (loop_dump_stream,
1293                 "Preconditioning: Success, number of iterations known, %d.\n",
1294                 loop_n_iterations);
1295      return 1;
1296    }
1297
1298  if (loop_initial_value == 0)
1299    {
1300      if (loop_dump_stream)
1301        fprintf (loop_dump_stream,
1302                 "Preconditioning: Could not find initial value.\n");
1303      return 0;
1304    }
1305  else if (loop_increment == 0)
1306    {
1307      if (loop_dump_stream)
1308        fprintf (loop_dump_stream,
1309                 "Preconditioning: Could not find increment value.\n");
1310      return 0;
1311    }
1312  else if (GET_CODE (loop_increment) != CONST_INT)
1313    {
1314      if (loop_dump_stream)
1315        fprintf (loop_dump_stream,
1316                 "Preconditioning: Increment not a constant.\n");
1317      return 0;
1318    }
1319  else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1320           && (exact_log2 (- INTVAL (loop_increment)) < 0))
1321    {
1322      if (loop_dump_stream)
1323        fprintf (loop_dump_stream,
1324                 "Preconditioning: Increment not a constant power of 2.\n");
1325      return 0;
1326    }
1327
1328  /* Unsigned_compare and compare_dir can be ignored here, since they do
1329     not matter for preconditioning.  */
1330
1331  if (loop_final_value == 0)
1332    {
1333      if (loop_dump_stream)
1334        fprintf (loop_dump_stream,
1335                 "Preconditioning: EQ comparison loop.\n");
1336      return 0;
1337    }
1338
1339  /* Must ensure that final_value is invariant, so call invariant_p to
1340     check.  Before doing so, must check regno against max_reg_before_loop
1341     to make sure that the register is in the range covered by invariant_p.
1342     If it isn't, then it is most likely a biv/giv which by definition are
1343     not invariant.  */
1344  if ((GET_CODE (loop_final_value) == REG
1345       && REGNO (loop_final_value) >= max_reg_before_loop)
1346      || (GET_CODE (loop_final_value) == PLUS
1347          && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1348      || ! invariant_p (loop_final_value))
1349    {
1350      if (loop_dump_stream)
1351        fprintf (loop_dump_stream,
1352                 "Preconditioning: Final value not invariant.\n");
1353      return 0;
1354    }
1355
1356  /* Fail for floating point values, since the caller of this function
1357     does not have code to deal with them.  */
1358  if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1359      || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1360    {
1361      if (loop_dump_stream)
1362        fprintf (loop_dump_stream,
1363                 "Preconditioning: Floating point final or initial value.\n");
1364      return 0;
1365    }
1366
1367  /* Now set initial_value to be the iteration_var, since that may be a
1368     simpler expression, and is guaranteed to be correct if all of the
1369     above tests succeed.
1370
1371     We can not use the initial_value as calculated, because it will be
1372     one too small for loops of the form "while (i-- > 0)".  We can not
1373     emit code before the loop_skip_over insns to fix this problem as this
1374     will then give a number one too large for loops of the form
1375     "while (--i > 0)".
1376
1377     Note that all loops that reach here are entered at the top, because
1378     this function is not called if the loop starts with a jump.  */
1379
1380  /* Fail if loop_iteration_var is not live before loop_start, since we need
1381     to test its value in the preconditioning code.  */
1382
1383  if (uid_luid[REGNO_FIRST_UID (REGNO (loop_iteration_var))]
1384      > INSN_LUID (loop_start))
1385    {
1386      if (loop_dump_stream)
1387        fprintf (loop_dump_stream,
1388                 "Preconditioning: Iteration var not live before loop start.\n");
1389      return 0;
1390    }
1391
1392  *initial_value = loop_iteration_var;
1393  *increment = loop_increment;
1394  *final_value = loop_final_value;
1395
1396  /* Success! */
1397  if (loop_dump_stream)
1398    fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1399  return 1;
1400}
1401
1402
1403/* All pseudo-registers must be mapped to themselves.  Two hard registers
1404   must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1405   REGNUM, to avoid function-inlining specific conversions of these
1406   registers.  All other hard regs can not be mapped because they may be
1407   used with different
1408   modes.  */
1409
1410static void
1411init_reg_map (map, maxregnum)
1412     struct inline_remap *map;
1413     int maxregnum;
1414{
1415  int i;
1416
1417  for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1418    map->reg_map[i] = regno_reg_rtx[i];
1419  /* Just clear the rest of the entries.  */
1420  for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1421    map->reg_map[i] = 0;
1422
1423  map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1424    = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1425  map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1426    = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1427}
1428
1429/* Strength-reduction will often emit code for optimized biv/givs which
1430   calculates their value in a temporary register, and then copies the result
1431   to the iv.  This procedure reconstructs the pattern computing the iv;
1432   verifying that all operands are of the proper form.
1433
1434   PATTERN must be the result of single_set.
1435   The return value is the amount that the giv is incremented by.  */
1436
1437static rtx
1438calculate_giv_inc (pattern, src_insn, regno)
1439     rtx pattern, src_insn;
1440     int regno;
1441{
1442  rtx increment;
1443  rtx increment_total = 0;
1444  int tries = 0;
1445
1446 retry:
1447  /* Verify that we have an increment insn here.  First check for a plus
1448     as the set source.  */
1449  if (GET_CODE (SET_SRC (pattern)) != PLUS)
1450    {
1451      /* SR sometimes computes the new giv value in a temp, then copies it
1452         to the new_reg.  */
1453      src_insn = PREV_INSN (src_insn);
1454      pattern = PATTERN (src_insn);
1455      if (GET_CODE (SET_SRC (pattern)) != PLUS)
1456        abort ();
1457                 
1458      /* The last insn emitted is not needed, so delete it to avoid confusing
1459         the second cse pass.  This insn sets the giv unnecessarily.  */
1460      delete_insn (get_last_insn ());
1461    }
1462
1463  /* Verify that we have a constant as the second operand of the plus.  */
1464  increment = XEXP (SET_SRC (pattern), 1);
1465  if (GET_CODE (increment) != CONST_INT)
1466    {
1467      /* SR sometimes puts the constant in a register, especially if it is
1468         too big to be an add immed operand.  */
1469      src_insn = PREV_INSN (src_insn);
1470      increment = SET_SRC (PATTERN (src_insn));
1471
1472      /* SR may have used LO_SUM to compute the constant if it is too large
1473         for a load immed operand.  In this case, the constant is in operand
1474         one of the LO_SUM rtx.  */
1475      if (GET_CODE (increment) == LO_SUM)
1476        increment = XEXP (increment, 1);
1477      else if (GET_CODE (increment) == IOR
1478               || GET_CODE (increment) == ASHIFT
1479               || GET_CODE (increment) == PLUS)
1480        {
1481          /* The rs6000 port loads some constants with IOR.
1482             The alpha port loads some constants with ASHIFT and PLUS.  */
1483          rtx second_part = XEXP (increment, 1);
1484          enum rtx_code code = GET_CODE (increment);
1485
1486          src_insn = PREV_INSN (src_insn);
1487          increment = SET_SRC (PATTERN (src_insn));
1488          /* Don't need the last insn anymore.  */
1489          delete_insn (get_last_insn ());
1490
1491          if (GET_CODE (second_part) != CONST_INT
1492              || GET_CODE (increment) != CONST_INT)
1493            abort ();
1494
1495          if (code == IOR)
1496            increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1497          else if (code == PLUS)
1498            increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1499          else
1500            increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1501        }
1502
1503      if (GET_CODE (increment) != CONST_INT)
1504        abort ();
1505                 
1506      /* The insn loading the constant into a register is no longer needed,
1507         so delete it.  */
1508      delete_insn (get_last_insn ());
1509    }
1510
1511  if (increment_total)
1512    increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1513  else
1514    increment_total = increment;
1515
1516  /* Check that the source register is the same as the register we expected
1517     to see as the source.  If not, something is seriously wrong.  */
1518  if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1519      || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1520    {
1521      /* Some machines (e.g. the romp), may emit two add instructions for
1522         certain constants, so lets try looking for another add immediately
1523         before this one if we have only seen one add insn so far.  */
1524
1525      if (tries == 0)
1526        {
1527          tries++;
1528
1529          src_insn = PREV_INSN (src_insn);
1530          pattern = PATTERN (src_insn);
1531
1532          delete_insn (get_last_insn ());
1533
1534          goto retry;
1535        }
1536
1537      abort ();
1538    }
1539
1540  return increment_total;
1541}
1542
1543/* Copy REG_NOTES, except for insn references, because not all insn_map
1544   entries are valid yet.  We do need to copy registers now though, because
1545   the reg_map entries can change during copying.  */
1546
1547static rtx
1548initial_reg_note_copy (notes, map)
1549     rtx notes;
1550     struct inline_remap *map;
1551{
1552  rtx copy;
1553
1554  if (notes == 0)
1555    return 0;
1556
1557  copy = rtx_alloc (GET_CODE (notes));
1558  PUT_MODE (copy, GET_MODE (notes));
1559
1560  if (GET_CODE (notes) == EXPR_LIST)
1561    XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1562  else if (GET_CODE (notes) == INSN_LIST)
1563    /* Don't substitute for these yet.  */
1564    XEXP (copy, 0) = XEXP (notes, 0);
1565  else
1566    abort ();
1567
1568  XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1569
1570  return copy;
1571}
1572
1573/* Fixup insn references in copied REG_NOTES.  */
1574
1575static void
1576final_reg_note_copy (notes, map)
1577     rtx notes;
1578     struct inline_remap *map;
1579{
1580  rtx note;
1581
1582  for (note = notes; note; note = XEXP (note, 1))
1583    if (GET_CODE (note) == INSN_LIST)
1584      XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1585}
1586
1587/* Copy each instruction in the loop, substituting from map as appropriate.
1588   This is very similar to a loop in expand_inline_function.  */
1589 
1590static void
1591copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1592                unroll_type, start_label, loop_end, insert_before,
1593                copy_notes_from)
1594     rtx copy_start, copy_end;
1595     struct inline_remap *map;
1596     rtx exit_label;
1597     int last_iteration;
1598     enum unroll_types unroll_type;
1599     rtx start_label, loop_end, insert_before, copy_notes_from;
1600{
1601  rtx insn, pattern;
1602  rtx set, tem, copy;
1603  int dest_reg_was_split, i;
1604  rtx cc0_insn = 0;
1605  rtx final_label = 0;
1606  rtx giv_inc, giv_dest_reg, giv_src_reg;
1607
1608  /* If this isn't the last iteration, then map any references to the
1609     start_label to final_label.  Final label will then be emitted immediately
1610     after the end of this loop body if it was ever used.
1611
1612     If this is the last iteration, then map references to the start_label
1613     to itself.  */
1614  if (! last_iteration)
1615    {
1616      final_label = gen_label_rtx ();
1617      set_label_in_map (map, CODE_LABEL_NUMBER (start_label),
1618                        final_label);
1619    }
1620  else
1621    set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1622
1623  start_sequence ();
1624 
1625  insn = copy_start;
1626  do
1627    {
1628      insn = NEXT_INSN (insn);
1629     
1630      map->orig_asm_operands_vector = 0;
1631     
1632      switch (GET_CODE (insn))
1633        {
1634        case INSN:
1635          pattern = PATTERN (insn);
1636          copy = 0;
1637          giv_inc = 0;
1638         
1639          /* Check to see if this is a giv that has been combined with
1640             some split address givs.  (Combined in the sense that
1641             `combine_givs' in loop.c has put two givs in the same register.)
1642             In this case, we must search all givs based on the same biv to
1643             find the address givs.  Then split the address givs.
1644             Do this before splitting the giv, since that may map the
1645             SET_DEST to a new register.  */
1646         
1647          if ((set = single_set (insn))
1648              && GET_CODE (SET_DEST (set)) == REG
1649              && addr_combined_regs[REGNO (SET_DEST (set))])
1650            {
1651              struct iv_class *bl;
1652              struct induction *v, *tv;
1653              int regno = REGNO (SET_DEST (set));
1654             
1655              v = addr_combined_regs[REGNO (SET_DEST (set))];
1656              bl = reg_biv_class[REGNO (v->src_reg)];
1657             
1658              /* Although the giv_inc amount is not needed here, we must call
1659                 calculate_giv_inc here since it might try to delete the
1660                 last insn emitted.  If we wait until later to call it,
1661                 we might accidentally delete insns generated immediately
1662                 below by emit_unrolled_add.  */
1663
1664              giv_inc = calculate_giv_inc (set, insn, regno);
1665
1666              /* Now find all address giv's that were combined with this
1667                 giv 'v'.  */
1668              for (tv = bl->giv; tv; tv = tv->next_iv)
1669                if (tv->giv_type == DEST_ADDR && tv->same == v)
1670                  {
1671                    int this_giv_inc;
1672
1673                    /* If this DEST_ADDR giv was not split, then ignore it.  */
1674                    if (*tv->location != tv->dest_reg)
1675                      continue;
1676
1677                    /* Scale this_giv_inc if the multiplicative factors of
1678                       the two givs are different.  */
1679                    this_giv_inc = INTVAL (giv_inc);
1680                    if (tv->mult_val != v->mult_val)
1681                      this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1682                                      * INTVAL (tv->mult_val));
1683                       
1684                    tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1685                    *tv->location = tv->dest_reg;
1686                   
1687                    if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1688                      {
1689                        /* Must emit an insn to increment the split address
1690                           giv.  Add in the const_adjust field in case there
1691                           was a constant eliminated from the address.  */
1692                        rtx value, dest_reg;
1693                       
1694                        /* tv->dest_reg will be either a bare register,
1695                           or else a register plus a constant.  */
1696                        if (GET_CODE (tv->dest_reg) == REG)
1697                          dest_reg = tv->dest_reg;
1698                        else
1699                          dest_reg = XEXP (tv->dest_reg, 0);
1700                       
1701                        /* Check for shared address givs, and avoid
1702                           incrementing the shared pseudo reg more than
1703                           once.  */
1704                        if (! tv->same_insn)
1705                          {
1706                            /* tv->dest_reg may actually be a (PLUS (REG)
1707                               (CONST)) here, so we must call plus_constant
1708                               to add the const_adjust amount before calling
1709                               emit_unrolled_add below.  */
1710                            value = plus_constant (tv->dest_reg,
1711                                                   tv->const_adjust);
1712
1713                            /* The constant could be too large for an add
1714                               immediate, so can't directly emit an insn
1715                               here.  */
1716                            emit_unrolled_add (dest_reg, XEXP (value, 0),
1717                                               XEXP (value, 1));
1718                          }
1719                       
1720                        /* Reset the giv to be just the register again, in case
1721                           it is used after the set we have just emitted.
1722                           We must subtract the const_adjust factor added in
1723                           above.  */
1724                        tv->dest_reg = plus_constant (dest_reg,
1725                                                      - tv->const_adjust);
1726                        *tv->location = tv->dest_reg;
1727                      }
1728                  }
1729            }
1730         
1731          /* If this is a setting of a splittable variable, then determine
1732             how to split the variable, create a new set based on this split,
1733             and set up the reg_map so that later uses of the variable will
1734             use the new split variable.  */
1735         
1736          dest_reg_was_split = 0;
1737         
1738          if ((set = single_set (insn))
1739              && GET_CODE (SET_DEST (set)) == REG
1740              && splittable_regs[REGNO (SET_DEST (set))])
1741            {
1742              int regno = REGNO (SET_DEST (set));
1743             
1744              dest_reg_was_split = 1;
1745             
1746              /* Compute the increment value for the giv, if it wasn't
1747                 already computed above.  */
1748
1749              if (giv_inc == 0)
1750                giv_inc = calculate_giv_inc (set, insn, regno);
1751              giv_dest_reg = SET_DEST (set);
1752              giv_src_reg = SET_DEST (set);
1753
1754              if (unroll_type == UNROLL_COMPLETELY)
1755                {
1756                  /* Completely unrolling the loop.  Set the induction
1757                     variable to a known constant value.  */
1758                 
1759                  /* The value in splittable_regs may be an invariant
1760                     value, so we must use plus_constant here.  */
1761                  splittable_regs[regno]
1762                    = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1763
1764                  if (GET_CODE (splittable_regs[regno]) == PLUS)
1765                    {
1766                      giv_src_reg = XEXP (splittable_regs[regno], 0);
1767                      giv_inc = XEXP (splittable_regs[regno], 1);
1768                    }
1769                  else
1770                    {
1771                      /* The splittable_regs value must be a REG or a
1772                         CONST_INT, so put the entire value in the giv_src_reg
1773                         variable.  */
1774                      giv_src_reg = splittable_regs[regno];
1775                      giv_inc = const0_rtx;
1776                    }
1777                }
1778              else
1779                {
1780                  /* Partially unrolling loop.  Create a new pseudo
1781                     register for the iteration variable, and set it to
1782                     be a constant plus the original register.  Except
1783                     on the last iteration, when the result has to
1784                     go back into the original iteration var register.  */
1785                 
1786                  /* Handle bivs which must be mapped to a new register
1787                     when split.  This happens for bivs which need their
1788                     final value set before loop entry.  The new register
1789                     for the biv was stored in the biv's first struct
1790                     induction entry by find_splittable_regs.  */
1791
1792                  if (regno < max_reg_before_loop
1793                      && reg_iv_type[regno] == BASIC_INDUCT)
1794                    {
1795                      giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1796                      giv_dest_reg = giv_src_reg;
1797                    }
1798                 
1799#if 0
1800                  /* If non-reduced/final-value givs were split, then
1801                     this would have to remap those givs also.  See
1802                     find_splittable_regs.  */
1803#endif
1804                 
1805                  splittable_regs[regno]
1806                    = GEN_INT (INTVAL (giv_inc)
1807                               + INTVAL (splittable_regs[regno]));
1808                  giv_inc = splittable_regs[regno];
1809                 
1810                  /* Now split the induction variable by changing the dest
1811                     of this insn to a new register, and setting its
1812                     reg_map entry to point to this new register.
1813
1814                     If this is the last iteration, and this is the last insn
1815                     that will update the iv, then reuse the original dest,
1816                     to ensure that the iv will have the proper value when
1817                     the loop exits or repeats.
1818
1819                     Using splittable_regs_updates here like this is safe,
1820                     because it can only be greater than one if all
1821                     instructions modifying the iv are always executed in
1822                     order.  */
1823
1824                  if (! last_iteration
1825                      || (splittable_regs_updates[regno]-- != 1))
1826                    {
1827                      tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1828                      giv_dest_reg = tem;
1829                      map->reg_map[regno] = tem;
1830                    }
1831                  else
1832                    map->reg_map[regno] = giv_src_reg;
1833                }
1834
1835              /* The constant being added could be too large for an add
1836                 immediate, so can't directly emit an insn here.  */
1837              emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1838              copy = get_last_insn ();
1839              pattern = PATTERN (copy);
1840            }
1841          else
1842            {
1843              pattern = copy_rtx_and_substitute (pattern, map);
1844              copy = emit_insn (pattern);
1845            }
1846          REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1847         
1848#ifdef HAVE_cc0
1849          /* If this insn is setting CC0, it may need to look at
1850             the insn that uses CC0 to see what type of insn it is.
1851             In that case, the call to recog via validate_change will
1852             fail.  So don't substitute constants here.  Instead,
1853             do it when we emit the following insn.
1854
1855             For example, see the pyr.md file.  That machine has signed and
1856             unsigned compares.  The compare patterns must check the
1857             following branch insn to see which what kind of compare to
1858             emit.
1859
1860             If the previous insn set CC0, substitute constants on it as
1861             well.  */
1862          if (sets_cc0_p (PATTERN (copy)) != 0)
1863            cc0_insn = copy;
1864          else
1865            {
1866              if (cc0_insn)
1867                try_constants (cc0_insn, map);
1868              cc0_insn = 0;
1869              try_constants (copy, map);
1870            }
1871#else
1872          try_constants (copy, map);
1873#endif
1874
1875          /* Make split induction variable constants `permanent' since we
1876             know there are no backward branches across iteration variable
1877             settings which would invalidate this.  */
1878          if (dest_reg_was_split)
1879            {
1880              int regno = REGNO (SET_DEST (pattern));
1881
1882              if (regno < map->const_equiv_map_size
1883                  && map->const_age_map[regno] == map->const_age)
1884                map->const_age_map[regno] = -1;
1885            }
1886          break;
1887         
1888        case JUMP_INSN:
1889          pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1890          copy = emit_jump_insn (pattern);
1891          REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1892
1893          if (JUMP_LABEL (insn) == start_label && insn == copy_end
1894              && ! last_iteration)
1895            {
1896              /* This is a branch to the beginning of the loop; this is the
1897                 last insn being copied; and this is not the last iteration.
1898                 In this case, we want to change the original fall through
1899                 case to be a branch past the end of the loop, and the
1900                 original jump label case to fall_through.  */
1901
1902              if (invert_exp (pattern, copy))
1903                {
1904                  if (! redirect_exp (&pattern,
1905                                      get_label_from_map (map,
1906                                                          CODE_LABEL_NUMBER
1907                                                          (JUMP_LABEL (insn))),
1908                                      exit_label, copy))
1909                    abort ();
1910                }
1911              else
1912                {
1913                  rtx jmp;
1914                  rtx lab = gen_label_rtx ();
1915                  /* Can't do it by reversing the jump (probably because we
1916                     couldn't reverse the conditions), so emit a new
1917                     jump_insn after COPY, and redirect the jump around
1918                     that.  */
1919                  jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1920                  jmp = emit_barrier_after (jmp);
1921                  emit_label_after (lab, jmp);
1922                  LABEL_NUSES (lab) = 0;
1923                  if (! redirect_exp (&pattern,
1924                                      get_label_from_map (map,
1925                                                          CODE_LABEL_NUMBER
1926                                                          (JUMP_LABEL (insn))),
1927                                      lab, copy))
1928                    abort ();
1929                }
1930            }
1931         
1932#ifdef HAVE_cc0
1933          if (cc0_insn)
1934            try_constants (cc0_insn, map);
1935          cc0_insn = 0;
1936#endif
1937          try_constants (copy, map);
1938
1939          /* Set the jump label of COPY correctly to avoid problems with
1940             later passes of unroll_loop, if INSN had jump label set.  */
1941          if (JUMP_LABEL (insn))
1942            {
1943              rtx label = 0;
1944
1945              /* Can't use the label_map for every insn, since this may be
1946                 the backward branch, and hence the label was not mapped.  */
1947              if ((set = single_set (copy)))
1948                {
1949                  tem = SET_SRC (set);
1950                  if (GET_CODE (tem) == LABEL_REF)
1951                    label = XEXP (tem, 0);
1952                  else if (GET_CODE (tem) == IF_THEN_ELSE)
1953                    {
1954                      if (XEXP (tem, 1) != pc_rtx)
1955                        label = XEXP (XEXP (tem, 1), 0);
1956                      else
1957                        label = XEXP (XEXP (tem, 2), 0);
1958                    }
1959                }
1960
1961              if (label && GET_CODE (label) == CODE_LABEL)
1962                JUMP_LABEL (copy) = label;
1963              else
1964                {
1965                  /* An unrecognizable jump insn, probably the entry jump
1966                     for a switch statement.  This label must have been mapped,
1967                     so just use the label_map to get the new jump label.  */
1968                  JUMP_LABEL (copy)
1969                    = get_label_from_map (map,
1970                                          CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
1971                }
1972         
1973              /* If this is a non-local jump, then must increase the label
1974                 use count so that the label will not be deleted when the
1975                 original jump is deleted.  */
1976              LABEL_NUSES (JUMP_LABEL (copy))++;
1977            }
1978          else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1979                   || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1980            {
1981              rtx pat = PATTERN (copy);
1982              int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1983              int len = XVECLEN (pat, diff_vec_p);
1984              int i;
1985
1986              for (i = 0; i < len; i++)
1987                LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1988            }
1989
1990          /* If this used to be a conditional jump insn but whose branch
1991             direction is now known, we must do something special.  */
1992          if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1993            {
1994#ifdef HAVE_cc0
1995              /* The previous insn set cc0 for us.  So delete it.  */
1996              delete_insn (PREV_INSN (copy));
1997#endif
1998
1999              /* If this is now a no-op, delete it.  */
2000              if (map->last_pc_value == pc_rtx)
2001                {
2002                  /* Don't let delete_insn delete the label referenced here,
2003                     because we might possibly need it later for some other
2004                     instruction in the loop.  */
2005                  if (JUMP_LABEL (copy))
2006                    LABEL_NUSES (JUMP_LABEL (copy))++;
2007                  delete_insn (copy);
2008                  if (JUMP_LABEL (copy))
2009                    LABEL_NUSES (JUMP_LABEL (copy))--;
2010                  copy = 0;
2011                }
2012              else
2013                /* Otherwise, this is unconditional jump so we must put a
2014                   BARRIER after it.  We could do some dead code elimination
2015                   here, but jump.c will do it just as well.  */
2016                emit_barrier ();
2017            }
2018          break;
2019         
2020        case CALL_INSN:
2021          pattern = copy_rtx_and_substitute (PATTERN (insn), map);
2022          copy = emit_call_insn (pattern);
2023          REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2024
2025          /* Because the USAGE information potentially contains objects other
2026             than hard registers, we need to copy it.  */
2027          CALL_INSN_FUNCTION_USAGE (copy)
2028            = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
2029
2030#ifdef HAVE_cc0
2031          if (cc0_insn)
2032            try_constants (cc0_insn, map);
2033          cc0_insn = 0;
2034#endif
2035          try_constants (copy, map);
2036
2037          /* Be lazy and assume CALL_INSNs clobber all hard registers.  */
2038          for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2039            map->const_equiv_map[i] = 0;
2040          break;
2041         
2042        case CODE_LABEL:
2043          /* If this is the loop start label, then we don't need to emit a
2044             copy of this label since no one will use it.  */
2045
2046          if (insn != start_label)
2047            {
2048              copy = emit_label (get_label_from_map (map,
2049                                                     CODE_LABEL_NUMBER (insn)));
2050              map->const_age++;
2051            }
2052          break;
2053         
2054        case BARRIER:
2055          copy = emit_barrier ();
2056          break;
2057         
2058        case NOTE:
2059          /* VTOP notes are valid only before the loop exit test.  If placed
2060             anywhere else, loop may generate bad code.  */
2061             
2062          if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2063              && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2064                  || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2065            copy = emit_note (NOTE_SOURCE_FILE (insn),
2066                              NOTE_LINE_NUMBER (insn));
2067          else
2068            copy = 0;
2069          break;
2070         
2071        default:
2072          abort ();
2073          break;
2074        }
2075     
2076      map->insn_map[INSN_UID (insn)] = copy;
2077    }
2078  while (insn != copy_end);
2079 
2080  /* Now finish coping the REG_NOTES.  */
2081  insn = copy_start;
2082  do
2083    {
2084      insn = NEXT_INSN (insn);
2085      if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2086           || GET_CODE (insn) == CALL_INSN)
2087          && map->insn_map[INSN_UID (insn)])
2088        final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2089    }
2090  while (insn != copy_end);
2091
2092  /* There may be notes between copy_notes_from and loop_end.  Emit a copy of
2093     each of these notes here, since there may be some important ones, such as
2094     NOTE_INSN_BLOCK_END notes, in this group.  We don't do this on the last
2095     iteration, because the original notes won't be deleted.
2096
2097     We can't use insert_before here, because when from preconditioning,
2098     insert_before points before the loop.  We can't use copy_end, because
2099     there may be insns already inserted after it (which we don't want to
2100     copy) when not from preconditioning code.  */
2101
2102  if (! last_iteration)
2103    {
2104      for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2105        {
2106          if (GET_CODE (insn) == NOTE
2107              && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
2108            emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2109        }
2110    }
2111
2112  if (final_label && LABEL_NUSES (final_label) > 0)
2113    emit_label (final_label);
2114
2115  tem = gen_sequence ();
2116  end_sequence ();
2117  emit_insn_before (tem, insert_before);
2118}
2119
2120/* Emit an insn, using the expand_binop to ensure that a valid insn is
2121   emitted.  This will correctly handle the case where the increment value
2122   won't fit in the immediate field of a PLUS insns.  */
2123
2124void
2125emit_unrolled_add (dest_reg, src_reg, increment)
2126     rtx dest_reg, src_reg, increment;
2127{
2128  rtx result;
2129
2130  result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2131                         dest_reg, 0, OPTAB_LIB_WIDEN);
2132
2133  if (dest_reg != result)
2134    emit_move_insn (dest_reg, result);
2135}
2136
2137/* Searches the insns between INSN and LOOP_END.  Returns 1 if there
2138   is a backward branch in that range that branches to somewhere between
2139   LOOP_START and INSN.  Returns 0 otherwise.  */
2140
2141/* ??? This is quadratic algorithm.  Could be rewritten to be linear.
2142   In practice, this is not a problem, because this function is seldom called,
2143   and uses a negligible amount of CPU time on average.  */
2144
2145int
2146back_branch_in_range_p (insn, loop_start, loop_end)
2147     rtx insn;
2148     rtx loop_start, loop_end;
2149{
2150  rtx p, q, target_insn;
2151  rtx orig_loop_end = loop_end;
2152
2153  /* Stop before we get to the backward branch at the end of the loop.  */
2154  loop_end = prev_nonnote_insn (loop_end);
2155  if (GET_CODE (loop_end) == BARRIER)
2156    loop_end = PREV_INSN (loop_end);
2157
2158  /* Check in case insn has been deleted, search forward for first non
2159     deleted insn following it.  */
2160  while (INSN_DELETED_P (insn))
2161    insn = NEXT_INSN (insn);
2162
2163  /* Check for the case where insn is the last insn in the loop.  Deal
2164     with the case where INSN was a deleted loop test insn, in which case
2165     it will now be the NOTE_LOOP_END.  */
2166  if (insn == loop_end || insn == orig_loop_end)
2167    return 0;
2168
2169  for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2170    {
2171      if (GET_CODE (p) == JUMP_INSN)
2172        {
2173          target_insn = JUMP_LABEL (p);
2174         
2175          /* Search from loop_start to insn, to see if one of them is
2176             the target_insn.  We can't use INSN_LUID comparisons here,
2177             since insn may not have an LUID entry.  */
2178          for (q = loop_start; q != insn; q = NEXT_INSN (q))
2179            if (q == target_insn)
2180              return 1;
2181        }
2182    }
2183
2184  return 0;
2185}
2186
2187/* Try to generate the simplest rtx for the expression
2188   (PLUS (MULT mult1 mult2) add1).  This is used to calculate the initial
2189   value of giv's.  */
2190
2191static rtx
2192fold_rtx_mult_add (mult1, mult2, add1, mode)
2193     rtx mult1, mult2, add1;
2194     enum machine_mode mode;
2195{
2196  rtx temp, mult_res;
2197  rtx result;
2198
2199  /* The modes must all be the same.  This should always be true.  For now,
2200     check to make sure.  */
2201  if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2202      || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2203      || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2204    abort ();
2205
2206  /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2207     will be a constant.  */
2208  if (GET_CODE (mult1) == CONST_INT)
2209    {
2210      temp = mult2;
2211      mult2 = mult1;
2212      mult1 = temp;
2213    }
2214
2215  mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2216  if (! mult_res)
2217    mult_res = gen_rtx (MULT, mode, mult1, mult2);
2218
2219  /* Again, put the constant second.  */
2220  if (GET_CODE (add1) == CONST_INT)
2221    {
2222      temp = add1;
2223      add1 = mult_res;
2224      mult_res = temp;
2225    }
2226
2227  result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2228  if (! result)
2229    result = gen_rtx (PLUS, mode, add1, mult_res);
2230
2231  return result;
2232}
2233
2234/* Searches the list of induction struct's for the biv BL, to try to calculate
2235   the total increment value for one iteration of the loop as a constant.
2236
2237   Returns the increment value as an rtx, simplified as much as possible,
2238   if it can be calculated.  Otherwise, returns 0.  */
2239
2240rtx
2241biv_total_increment (bl, loop_start, loop_end)
2242     struct iv_class *bl;
2243     rtx loop_start, loop_end;
2244{
2245  struct induction *v;
2246  rtx result;
2247
2248  /* For increment, must check every instruction that sets it.  Each
2249     instruction must be executed only once each time through the loop.
2250     To verify this, we check that the the insn is always executed, and that
2251     there are no backward branches after the insn that branch to before it.
2252     Also, the insn must have a mult_val of one (to make sure it really is
2253     an increment).  */
2254
2255  result = const0_rtx;
2256  for (v = bl->biv; v; v = v->next_iv)
2257    {
2258      if (v->always_computable && v->mult_val == const1_rtx
2259          && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2260        result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2261      else
2262        return 0;
2263    }
2264
2265  return result;
2266}
2267
2268/* Determine the initial value of the iteration variable, and the amount
2269   that it is incremented each loop.  Use the tables constructed by
2270   the strength reduction pass to calculate these values.
2271
2272   Initial_value and/or increment are set to zero if their values could not
2273   be calculated.  */
2274
2275static void
2276iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2277     rtx iteration_var, *initial_value, *increment;
2278     rtx loop_start, loop_end;
2279{
2280  struct iv_class *bl;
2281  struct induction *v, *b;
2282
2283  /* Clear the result values, in case no answer can be found.  */
2284  *initial_value = 0;
2285  *increment = 0;
2286
2287  /* The iteration variable can be either a giv or a biv.  Check to see
2288     which it is, and compute the variable's initial value, and increment
2289     value if possible.  */
2290
2291  /* If this is a new register, can't handle it since we don't have any
2292     reg_iv_type entry for it.  */
2293  if (REGNO (iteration_var) >= max_reg_before_loop)
2294    {
2295      if (loop_dump_stream)
2296        fprintf (loop_dump_stream,
2297                 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2298      return;
2299    }
2300
2301  /* Reject iteration variables larger than the host wide int size, since they
2302     could result in a number of iterations greater than the range of our
2303     `unsigned HOST_WIDE_INT' variable loop_n_iterations.  */
2304  else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
2305            > HOST_BITS_PER_WIDE_INT))
2306    {
2307      if (loop_dump_stream)
2308        fprintf (loop_dump_stream,
2309                 "Loop unrolling: Iteration var rejected because mode too large.\n");
2310      return;
2311    }
2312  else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2313    {
2314      if (loop_dump_stream)
2315        fprintf (loop_dump_stream,
2316                 "Loop unrolling: Iteration var not an integer.\n");
2317      return;
2318    }
2319  else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2320    {
2321      /* Grab initial value, only useful if it is a constant.  */
2322      bl = reg_biv_class[REGNO (iteration_var)];
2323      *initial_value = bl->initial_value;
2324
2325      *increment = biv_total_increment (bl, loop_start, loop_end);
2326    }
2327  else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2328    {
2329#if 1
2330      /* ??? The code below does not work because the incorrect number of
2331         iterations is calculated when the biv is incremented after the giv
2332         is set (which is the usual case).  This can probably be accounted
2333         for by biasing the initial_value by subtracting the amount of the
2334         increment that occurs between the giv set and the giv test.  However,
2335         a giv as an iterator is very rare, so it does not seem worthwhile
2336         to handle this.  */
2337      /* ??? An example failure is: i = 6; do {;} while (i++ < 9).  */
2338      if (loop_dump_stream)
2339        fprintf (loop_dump_stream,
2340                 "Loop unrolling: Giv iterators are not handled.\n");
2341      return;
2342#else
2343      /* Initial value is mult_val times the biv's initial value plus
2344         add_val.  Only useful if it is a constant.  */
2345      v = reg_iv_info[REGNO (iteration_var)];
2346      bl = reg_biv_class[REGNO (v->src_reg)];
2347      *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2348                                          v->add_val, v->mode);
2349     
2350      /* Increment value is mult_val times the increment value of the biv.  */
2351
2352      *increment = biv_total_increment (bl, loop_start, loop_end);
2353      if (*increment)
2354        *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2355                                        v->mode);
2356#endif
2357    }
2358  else
2359    {
2360      if (loop_dump_stream)
2361        fprintf (loop_dump_stream,
2362                 "Loop unrolling: Not basic or general induction var.\n");
2363      return;
2364    }
2365}
2366
2367/* Calculate the approximate final value of the iteration variable
2368   which has an loop exit test with code COMPARISON_CODE and comparison value
2369   of COMPARISON_VALUE.  Also returns an indication of whether the comparison
2370   was signed or unsigned, and the direction of the comparison.  This info is
2371   needed to calculate the number of loop iterations.  */
2372
2373static rtx
2374approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2375     enum rtx_code comparison_code;
2376     rtx comparison_value;
2377     int *unsigned_p;
2378     int *compare_dir;
2379{
2380  /* Calculate the final value of the induction variable.
2381     The exact final value depends on the branch operator, and increment sign.
2382     This is only an approximate value.  It will be wrong if the iteration
2383     variable is not incremented by one each time through the loop, and
2384     approx final value - start value % increment != 0.  */
2385
2386  *unsigned_p = 0;
2387  switch (comparison_code)
2388    {
2389    case LEU:
2390      *unsigned_p = 1;
2391    case LE:
2392      *compare_dir = 1;
2393      return plus_constant (comparison_value, 1);
2394    case GEU:
2395      *unsigned_p = 1;
2396    case GE:
2397      *compare_dir = -1;
2398      return plus_constant (comparison_value, -1);
2399    case EQ:
2400      /* Can not calculate a final value for this case.  */
2401      *compare_dir = 0;
2402      return 0;
2403    case LTU:
2404      *unsigned_p = 1;
2405    case LT:
2406      *compare_dir = 1;
2407      return comparison_value;
2408      break;
2409    case GTU:
2410      *unsigned_p = 1;
2411    case GT:
2412      *compare_dir = -1;
2413      return comparison_value;
2414    case NE:
2415      *compare_dir = 0;
2416      return comparison_value;
2417    default:
2418      abort ();
2419    }
2420}
2421
2422/* For each biv and giv, determine whether it can be safely split into
2423   a different variable for each unrolled copy of the loop body.  If it
2424   is safe to split, then indicate that by saving some useful info
2425   in the splittable_regs array.
2426
2427   If the loop is being completely unrolled, then splittable_regs will hold
2428   the current value of the induction variable while the loop is unrolled.
2429   It must be set to the initial value of the induction variable here.
2430   Otherwise, splittable_regs will hold the difference between the current
2431   value of the induction variable and the value the induction variable had
2432   at the top of the loop.  It must be set to the value 0 here.
2433
2434   Returns the total number of instructions that set registers that are
2435   splittable.  */
2436
2437/* ?? If the loop is only unrolled twice, then most of the restrictions to
2438   constant values are unnecessary, since we can easily calculate increment
2439   values in this case even if nothing is constant.  The increment value
2440   should not involve a multiply however.  */
2441
2442/* ?? Even if the biv/giv increment values aren't constant, it may still
2443   be beneficial to split the variable if the loop is only unrolled a few
2444   times, since multiplies by small integers (1,2,3,4) are very cheap.  */
2445
2446static int
2447find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2448                     unroll_number)
2449     enum unroll_types unroll_type;
2450     rtx loop_start, loop_end;
2451     rtx end_insert_before;
2452     int unroll_number;
2453{
2454  struct iv_class *bl;
2455  struct induction *v;
2456  rtx increment, tem;
2457  rtx biv_final_value;
2458  int biv_splittable;
2459  int result = 0;
2460
2461  for (bl = loop_iv_list; bl; bl = bl->next)
2462    {
2463      /* Biv_total_increment must return a constant value,
2464         otherwise we can not calculate the split values.  */
2465
2466      increment = biv_total_increment (bl, loop_start, loop_end);
2467      if (! increment || GET_CODE (increment) != CONST_INT)
2468        continue;
2469
2470      /* The loop must be unrolled completely, or else have a known number
2471         of iterations and only one exit, or else the biv must be dead
2472         outside the loop, or else the final value must be known.  Otherwise,
2473         it is unsafe to split the biv since it may not have the proper
2474         value on loop exit.  */
2475
2476      /* loop_number_exit_count is non-zero if the loop has an exit other than
2477         a fall through at the end.  */
2478
2479      biv_splittable = 1;
2480      biv_final_value = 0;
2481      if (unroll_type != UNROLL_COMPLETELY
2482          && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2483              || unroll_type == UNROLL_NAIVE)
2484          && (uid_luid[REGNO_LAST_UID (bl->regno)] >= INSN_LUID (loop_end)
2485              || ! bl->init_insn
2486              || INSN_UID (bl->init_insn) >= max_uid_for_loop
2487              || (uid_luid[REGNO_FIRST_UID (bl->regno)]
2488                  < INSN_LUID (bl->init_insn))
2489              || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2490          && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2491        biv_splittable = 0;
2492
2493      /* If any of the insns setting the BIV don't do so with a simple
2494         PLUS, we don't know how to split it.  */
2495      for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2496        if ((tem = single_set (v->insn)) == 0
2497            || GET_CODE (SET_DEST (tem)) != REG
2498            || REGNO (SET_DEST (tem)) != bl->regno
2499            || GET_CODE (SET_SRC (tem)) != PLUS)
2500          biv_splittable = 0;
2501
2502      /* If final value is non-zero, then must emit an instruction which sets
2503         the value of the biv to the proper value.  This is done after
2504         handling all of the givs, since some of them may need to use the
2505         biv's value in their initialization code.  */
2506
2507      /* This biv is splittable.  If completely unrolling the loop, save
2508         the biv's initial value.  Otherwise, save the constant zero.  */
2509
2510      if (biv_splittable == 1)
2511        {
2512          if (unroll_type == UNROLL_COMPLETELY)
2513            {
2514              /* If the initial value of the biv is itself (i.e. it is too
2515                 complicated for strength_reduce to compute), or is a hard
2516                 register, or it isn't invariant, then we must create a new
2517                 pseudo reg to hold the initial value of the biv.  */
2518
2519              if (GET_CODE (bl->initial_value) == REG
2520                  && (REGNO (bl->initial_value) == bl->regno
2521                      || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2522                      || ! invariant_p (bl->initial_value)))
2523                {
2524                  rtx tem = gen_reg_rtx (bl->biv->mode);
2525                 
2526                  emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2527                                    loop_start);
2528
2529                  if (loop_dump_stream)
2530                    fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2531                             bl->regno, REGNO (tem));
2532
2533                  splittable_regs[bl->regno] = tem;
2534                }
2535              else
2536                splittable_regs[bl->regno] = bl->initial_value;
2537            }
2538          else
2539            splittable_regs[bl->regno] = const0_rtx;
2540
2541          /* Save the number of instructions that modify the biv, so that
2542             we can treat the last one specially.  */
2543
2544          splittable_regs_updates[bl->regno] = bl->biv_count;
2545          result += bl->biv_count;
2546
2547          if (loop_dump_stream)
2548            fprintf (loop_dump_stream,
2549                     "Biv %d safe to split.\n", bl->regno);
2550        }
2551
2552      /* Check every giv that depends on this biv to see whether it is
2553         splittable also.  Even if the biv isn't splittable, givs which
2554         depend on it may be splittable if the biv is live outside the
2555         loop, and the givs aren't.  */
2556
2557      result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2558                                     increment, unroll_number);
2559
2560      /* If final value is non-zero, then must emit an instruction which sets
2561         the value of the biv to the proper value.  This is done after
2562         handling all of the givs, since some of them may need to use the
2563         biv's value in their initialization code.  */
2564      if (biv_final_value)
2565        {
2566          /* If the loop has multiple exits, emit the insns before the
2567             loop to ensure that it will always be executed no matter
2568             how the loop exits.  Otherwise emit the insn after the loop,
2569             since this is slightly more efficient.  */
2570          if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
2571            emit_insn_before (gen_move_insn (bl->biv->src_reg,
2572                                             biv_final_value),
2573                              end_insert_before);
2574          else
2575            {
2576              /* Create a new register to hold the value of the biv, and then
2577                 set the biv to its final value before the loop start.  The biv
2578                 is set to its final value before loop start to ensure that
2579                 this insn will always be executed, no matter how the loop
2580                 exits.  */
2581              rtx tem = gen_reg_rtx (bl->biv->mode);
2582              emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2583                                loop_start);
2584              emit_insn_before (gen_move_insn (bl->biv->src_reg,
2585                                               biv_final_value),
2586                                loop_start);
2587
2588              if (loop_dump_stream)
2589                fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2590                         REGNO (bl->biv->src_reg), REGNO (tem));
2591
2592              /* Set up the mapping from the original biv register to the new
2593                 register.  */
2594              bl->biv->src_reg = tem;
2595            }
2596        }
2597    }
2598  return result;
2599}
2600
2601/* Return 1 if the first and last unrolled copy of the address giv V is valid
2602   for the instruction that is using it.  Do not make any changes to that
2603   instruction.  */
2604
2605static int
2606verify_addresses (v, giv_inc, unroll_number)
2607     struct induction *v;
2608     rtx giv_inc;
2609     int unroll_number;
2610{
2611  int ret = 1;
2612  rtx orig_addr = *v->location;
2613  rtx last_addr = plus_constant (v->dest_reg,
2614                                 INTVAL (giv_inc) * (unroll_number - 1));
2615
2616  /* First check to see if either address would fail.  */
2617  if (! validate_change (v->insn, v->location, v->dest_reg, 0)
2618      || ! validate_change (v->insn, v->location, last_addr, 0))
2619    ret = 0;
2620
2621  /* Now put things back the way they were before.  This will always
2622   succeed.  */
2623  validate_change (v->insn, v->location, orig_addr, 0);
2624
2625  return ret;
2626}
2627
2628/* For every giv based on the biv BL, check to determine whether it is
2629   splittable.  This is a subroutine to find_splittable_regs ().
2630
2631   Return the number of instructions that set splittable registers.  */
2632
2633static int
2634find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2635                      unroll_number)
2636     struct iv_class *bl;
2637     enum unroll_types unroll_type;
2638     rtx loop_start, loop_end;
2639     rtx increment;
2640     int unroll_number;
2641{
2642  struct induction *v, *v2;
2643  rtx final_value;
2644  rtx tem;
2645  int result = 0;
2646
2647  /* Scan the list of givs, and set the same_insn field when there are
2648     multiple identical givs in the same insn.  */
2649  for (v = bl->giv; v; v = v->next_iv)
2650    for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2651      if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2652          && ! v2->same_insn)
2653        v2->same_insn = v;
2654
2655  for (v = bl->giv; v; v = v->next_iv)
2656    {
2657      rtx giv_inc, value;
2658
2659      /* Only split the giv if it has already been reduced, or if the loop is
2660         being completely unrolled.  */
2661      if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2662        continue;
2663
2664      /* The giv can be split if the insn that sets the giv is executed once
2665         and only once on every iteration of the loop.  */
2666      /* An address giv can always be split.  v->insn is just a use not a set,
2667         and hence it does not matter whether it is always executed.  All that
2668         matters is that all the biv increments are always executed, and we
2669         won't reach here if they aren't.  */
2670      if (v->giv_type != DEST_ADDR
2671          && (! v->always_computable
2672              || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2673        continue;
2674     
2675      /* The giv increment value must be a constant.  */
2676      giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2677                                   v->mode);
2678      if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2679        continue;
2680
2681      /* The loop must be unrolled completely, or else have a known number of
2682         iterations and only one exit, or else the giv must be dead outside
2683         the loop, or else the final value of the giv must be known.
2684         Otherwise, it is not safe to split the giv since it may not have the
2685         proper value on loop exit.  */
2686         
2687      /* The used outside loop test will fail for DEST_ADDR givs.  They are
2688         never used outside the loop anyways, so it is always safe to split a
2689         DEST_ADDR giv.  */
2690
2691      final_value = 0;
2692      if (unroll_type != UNROLL_COMPLETELY
2693          && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2694              || unroll_type == UNROLL_NAIVE)
2695          && v->giv_type != DEST_ADDR
2696          /* The next part is true if the pseudo is used outside the loop.
2697             We assume that this is true for any pseudo created after loop
2698             starts, because we don't have a reg_n_info entry for them.  */
2699          && (REGNO (v->dest_reg) >= max_reg_before_loop
2700              || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2701                  /* Check for the case where the pseudo is set by a shift/add
2702                     sequence, in which case the first insn setting the pseudo
2703                     is the first insn of the shift/add sequence.  */
2704                  && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2705                      || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2706                          != INSN_UID (XEXP (tem, 0)))))
2707              /* Line above always fails if INSN was moved by loop opt.  */
2708              || (uid_luid[REGNO_LAST_UID (REGNO (v->dest_reg))]
2709                  >= INSN_LUID (loop_end)))
2710          && ! (final_value = v->final_value))
2711        continue;
2712
2713#if 0
2714      /* Currently, non-reduced/final-value givs are never split.  */
2715      /* Should emit insns after the loop if possible, as the biv final value
2716         code below does.  */
2717
2718      /* If the final value is non-zero, and the giv has not been reduced,
2719         then must emit an instruction to set the final value.  */
2720      if (final_value && !v->new_reg)
2721        {
2722          /* Create a new register to hold the value of the giv, and then set
2723             the giv to its final value before the loop start.  The giv is set
2724             to its final value before loop start to ensure that this insn
2725             will always be executed, no matter how we exit.  */
2726          tem = gen_reg_rtx (v->mode);
2727          emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2728          emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2729                            loop_start);
2730         
2731          if (loop_dump_stream)
2732            fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2733                     REGNO (v->dest_reg), REGNO (tem));
2734         
2735          v->src_reg = tem;
2736        }
2737#endif
2738
2739      /* This giv is splittable.  If completely unrolling the loop, save the
2740         giv's initial value.  Otherwise, save the constant zero for it.  */
2741
2742      if (unroll_type == UNROLL_COMPLETELY)
2743        {
2744          /* It is not safe to use bl->initial_value here, because it may not
2745             be invariant.  It is safe to use the initial value stored in
2746             the splittable_regs array if it is set.  In rare cases, it won't
2747             be set, so then we do exactly the same thing as
2748             find_splittable_regs does to get a safe value.  */
2749          rtx biv_initial_value;
2750
2751          if (splittable_regs[bl->regno])
2752            biv_initial_value = splittable_regs[bl->regno];
2753          else if (GET_CODE (bl->initial_value) != REG
2754                   || (REGNO (bl->initial_value) != bl->regno
2755                       && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2756            biv_initial_value = bl->initial_value;
2757          else
2758            {
2759              rtx tem = gen_reg_rtx (bl->biv->mode);
2760
2761              emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2762                                loop_start);
2763              biv_initial_value = tem;
2764            }
2765          value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2766                                     v->add_val, v->mode);
2767        }
2768      else
2769        value = const0_rtx;
2770
2771      if (v->new_reg)
2772        {
2773          /* If a giv was combined with another giv, then we can only split
2774             this giv if the giv it was combined with was reduced.  This
2775             is because the value of v->new_reg is meaningless in this
2776             case.  */
2777          if (v->same && ! v->same->new_reg)
2778            {
2779              if (loop_dump_stream)
2780                fprintf (loop_dump_stream,
2781                         "giv combined with unreduced giv not split.\n");
2782              continue;
2783            }
2784          /* If the giv is an address destination, it could be something other
2785             than a simple register, these have to be treated differently.  */
2786          else if (v->giv_type == DEST_REG)
2787            {
2788              /* If value is not a constant, register, or register plus
2789                 constant, then compute its value into a register before
2790                 loop start.  This prevents invalid rtx sharing, and should
2791                 generate better code.  We can use bl->initial_value here
2792                 instead of splittable_regs[bl->regno] because this code
2793                 is going before the loop start.  */
2794              if (unroll_type == UNROLL_COMPLETELY
2795                  && GET_CODE (value) != CONST_INT
2796                  && GET_CODE (value) != REG
2797                  && (GET_CODE (value) != PLUS
2798                      || GET_CODE (XEXP (value, 0)) != REG
2799                      || GET_CODE (XEXP (value, 1)) != CONST_INT))
2800                {
2801                  rtx tem = gen_reg_rtx (v->mode);
2802                  emit_iv_add_mult (bl->initial_value, v->mult_val,
2803                                    v->add_val, tem, loop_start);
2804                  value = tem;
2805                }
2806               
2807              splittable_regs[REGNO (v->new_reg)] = value;
2808            }
2809          else
2810            {
2811              /* Splitting address givs is useful since it will often allow us
2812                 to eliminate some increment insns for the base giv as
2813                 unnecessary.  */
2814
2815              /* If the addr giv is combined with a dest_reg giv, then all
2816                 references to that dest reg will be remapped, which is NOT
2817                 what we want for split addr regs. We always create a new
2818                 register for the split addr giv, just to be safe.  */
2819
2820              /* ??? If there are multiple address givs which have been
2821                 combined with the same dest_reg giv, then we may only need
2822                 one new register for them.  Pulling out constants below will
2823                 catch some of the common cases of this.  Currently, I leave
2824                 the work of simplifying multiple address givs to the
2825                 following cse pass.  */
2826             
2827              /* As a special case, if we have multiple identical address givs
2828                 within a single instruction, then we do use a single pseudo
2829                 reg for both.  This is necessary in case one is a match_dup
2830                 of the other.  */
2831
2832              v->const_adjust = 0;
2833
2834              if (v->same_insn)
2835                {
2836                  v->dest_reg = v->same_insn->dest_reg;
2837                  if (loop_dump_stream)
2838                    fprintf (loop_dump_stream,
2839                             "Sharing address givs in insn %d\n",
2840                             INSN_UID (v->insn));
2841                }
2842              else if (unroll_type != UNROLL_COMPLETELY)
2843                {
2844                  /* If not completely unrolling the loop, then create a new
2845                     register to hold the split value of the DEST_ADDR giv.
2846                     Emit insn to initialize its value before loop start.  */
2847                  tem = gen_reg_rtx (v->mode);
2848
2849                  /* If the address giv has a constant in its new_reg value,
2850                     then this constant can be pulled out and put in value,
2851                     instead of being part of the initialization code.  */
2852                 
2853                  if (GET_CODE (v->new_reg) == PLUS
2854                      && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2855                    {
2856                      v->dest_reg
2857                        = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2858                     
2859                      /* Only succeed if this will give valid addresses.
2860                         Try to validate both the first and the last
2861                         address resulting from loop unrolling, if
2862                         one fails, then can't do const elim here.  */
2863                      if (verify_addresses (v, giv_inc, unroll_number))
2864                        {
2865                          /* Save the negative of the eliminated const, so
2866                             that we can calculate the dest_reg's increment
2867                             value later.  */
2868                          v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2869
2870                          v->new_reg = XEXP (v->new_reg, 0);
2871                          if (loop_dump_stream)
2872                            fprintf (loop_dump_stream,
2873                                     "Eliminating constant from giv %d\n",
2874                                     REGNO (tem));
2875                        }
2876                      else
2877                        v->dest_reg = tem;
2878                    }
2879                  else
2880                    v->dest_reg = tem;
2881                 
2882                  /* If the address hasn't been checked for validity yet, do so
2883                     now, and fail completely if either the first or the last
2884                     unrolled copy of the address is not a valid address
2885                     for the instruction that uses it.  */
2886                  if (v->dest_reg == tem
2887                      && ! verify_addresses (v, giv_inc, unroll_number))
2888                    {
2889                      if (loop_dump_stream)
2890                        fprintf (loop_dump_stream,
2891                                 "Invalid address for giv at insn %d\n",
2892                                 INSN_UID (v->insn));
2893                      continue;
2894                    }
2895                 
2896                  /* To initialize the new register, just move the value of
2897                     new_reg into it.  This is not guaranteed to give a valid
2898                     instruction on machines with complex addressing modes.
2899                     If we can't recognize it, then delete it and emit insns
2900                     to calculate the value from scratch.  */
2901                  emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2902                                             copy_rtx (v->new_reg)),
2903                                    loop_start);
2904                  if (recog_memoized (PREV_INSN (loop_start)) < 0)
2905                    {
2906                      rtx sequence, ret;
2907
2908                      /* We can't use bl->initial_value to compute the initial
2909                         value, because the loop may have been preconditioned.
2910                         We must calculate it from NEW_REG.  Try using
2911                         force_operand instead of emit_iv_add_mult.  */
2912                      delete_insn (PREV_INSN (loop_start));
2913
2914                      start_sequence ();
2915                      ret = force_operand (v->new_reg, tem);
2916                      if (ret != tem)
2917                        emit_move_insn (tem, ret);
2918                      sequence = gen_sequence ();
2919                      end_sequence ();
2920                      emit_insn_before (sequence, loop_start);
2921
2922                      if (loop_dump_stream)
2923                        fprintf (loop_dump_stream,
2924                                 "Invalid init insn, rewritten.\n");
2925                    }
2926                }
2927              else
2928                {
2929                  v->dest_reg = value;
2930                 
2931                  /* Check the resulting address for validity, and fail
2932                     if the resulting address would be invalid.  */
2933                  if (! verify_addresses (v, giv_inc, unroll_number))
2934                    {
2935                      if (loop_dump_stream)
2936                        fprintf (loop_dump_stream,
2937                                 "Invalid address for giv at insn %d\n",
2938                                 INSN_UID (v->insn));
2939                      continue;
2940                    }
2941                }
2942             
2943              /* Store the value of dest_reg into the insn.  This sharing
2944                 will not be a problem as this insn will always be copied
2945                 later.  */
2946             
2947              *v->location = v->dest_reg;
2948             
2949              /* If this address giv is combined with a dest reg giv, then
2950                 save the base giv's induction pointer so that we will be
2951                 able to handle this address giv properly.  The base giv
2952                 itself does not have to be splittable.  */
2953             
2954              if (v->same && v->same->giv_type == DEST_REG)
2955                addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2956             
2957              if (GET_CODE (v->new_reg) == REG)
2958                {
2959                  /* This giv maybe hasn't been combined with any others.
2960                     Make sure that it's giv is marked as splittable here.  */
2961                 
2962                  splittable_regs[REGNO (v->new_reg)] = value;
2963                 
2964                  /* Make it appear to depend upon itself, so that the
2965                     giv will be properly split in the main loop above.  */
2966                  if (! v->same)
2967                    {
2968                      v->same = v;
2969                      addr_combined_regs[REGNO (v->new_reg)] = v;
2970                    }
2971                }
2972
2973              if (loop_dump_stream)
2974                fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2975            }
2976        }
2977      else
2978        {
2979#if 0
2980          /* Currently, unreduced giv's can't be split.  This is not too much
2981             of a problem since unreduced giv's are not live across loop
2982             iterations anyways.  When unrolling a loop completely though,
2983             it makes sense to reduce&split givs when possible, as this will
2984             result in simpler instructions, and will not require that a reg
2985             be live across loop iterations.  */
2986         
2987          splittable_regs[REGNO (v->dest_reg)] = value;
2988          fprintf (stderr, "Giv %d at insn %d not reduced\n",
2989                   REGNO (v->dest_reg), INSN_UID (v->insn));
2990#else
2991          continue;
2992#endif
2993        }
2994     
2995      /* Unreduced givs are only updated once by definition.  Reduced givs
2996         are updated as many times as their biv is.  Mark it so if this is
2997         a splittable register.  Don't need to do anything for address givs
2998         where this may not be a register.  */
2999
3000      if (GET_CODE (v->new_reg) == REG)
3001        {
3002          int count = 1;
3003          if (! v->ignore)
3004            count = reg_biv_class[REGNO (v->src_reg)]->biv_count;
3005
3006          splittable_regs_updates[REGNO (v->new_reg)] = count;
3007        }
3008
3009      result++;
3010     
3011      if (loop_dump_stream)
3012        {
3013          int regnum;
3014         
3015          if (GET_CODE (v->dest_reg) == CONST_INT)
3016            regnum = -1;
3017          else if (GET_CODE (v->dest_reg) != REG)
3018            regnum = REGNO (XEXP (v->dest_reg, 0));
3019          else
3020            regnum = REGNO (v->dest_reg);
3021          fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3022                   regnum, INSN_UID (v->insn));
3023        }
3024    }
3025
3026  return result;
3027}
3028
3029/* Try to prove that the register is dead after the loop exits.  Trace every
3030   loop exit looking for an insn that will always be executed, which sets
3031   the register to some value, and appears before the first use of the register
3032   is found.  If successful, then return 1, otherwise return 0.  */
3033
3034/* ?? Could be made more intelligent in the handling of jumps, so that
3035   it can search past if statements and other similar structures.  */
3036
3037static int
3038reg_dead_after_loop (reg, loop_start, loop_end)
3039     rtx reg, loop_start, loop_end;
3040{
3041  rtx insn, label;
3042  enum rtx_code code;
3043  int jump_count = 0;
3044  int label_count = 0;
3045  int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
3046
3047  /* In addition to checking all exits of this loop, we must also check
3048     all exits of inner nested loops that would exit this loop.  We don't
3049     have any way to identify those, so we just give up if there are any
3050     such inner loop exits.  */
3051     
3052  for (label = loop_number_exit_labels[this_loop_num]; label;
3053       label = LABEL_NEXTREF (label))
3054    label_count++;
3055
3056  if (label_count != loop_number_exit_count[this_loop_num])
3057    return 0;
3058
3059  /* HACK: Must also search the loop fall through exit, create a label_ref
3060     here which points to the loop_end, and append the loop_number_exit_labels
3061     list to it.  */
3062  label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
3063  LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
3064
3065  for ( ; label; label = LABEL_NEXTREF (label))
3066    {
3067      /* Succeed if find an insn which sets the biv or if reach end of
3068         function.  Fail if find an insn that uses the biv, or if come to
3069         a conditional jump.  */
3070
3071      insn = NEXT_INSN (XEXP (label, 0));
3072      while (insn)
3073        {
3074          code = GET_CODE (insn);
3075          if (GET_RTX_CLASS (code) == 'i')
3076            {
3077              rtx set;
3078
3079              if (reg_referenced_p (reg, PATTERN (insn)))
3080                return 0;
3081
3082              set = single_set (insn);
3083              if (set && rtx_equal_p (SET_DEST (set), reg))
3084                break;
3085            }
3086
3087          if (code == JUMP_INSN)
3088            {
3089              if (GET_CODE (PATTERN (insn)) == RETURN)
3090                break;
3091              else if (! simplejump_p (insn)
3092                       /* Prevent infinite loop following infinite loops.  */
3093                       || jump_count++ > 20)
3094                return 0;
3095              else
3096                insn = JUMP_LABEL (insn);
3097            }
3098
3099          insn = NEXT_INSN (insn);
3100        }
3101    }
3102
3103  /* Success, the register is dead on all loop exits.  */
3104  return 1;
3105}
3106
3107/* Try to calculate the final value of the biv, the value it will have at
3108   the end of the loop.  If we can do it, return that value.  */
3109 
3110rtx
3111final_biv_value (bl, loop_start, loop_end)
3112     struct iv_class *bl;
3113     rtx loop_start, loop_end;
3114{
3115  rtx increment, tem;
3116
3117  /* ??? This only works for MODE_INT biv's.  Reject all others for now.  */
3118
3119  if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3120    return 0;
3121
3122  /* The final value for reversed bivs must be calculated differently than
3123      for ordinary bivs.  In this case, there is already an insn after the
3124     loop which sets this biv's final value (if necessary), and there are
3125     no other loop exits, so we can return any value.  */
3126  if (bl->reversed)
3127    {
3128      if (loop_dump_stream)
3129        fprintf (loop_dump_stream,
3130                 "Final biv value for %d, reversed biv.\n", bl->regno);
3131                 
3132      return const0_rtx;
3133    }
3134
3135  /* Try to calculate the final value as initial value + (number of iterations
3136     * increment).  For this to work, increment must be invariant, the only
3137     exit from the loop must be the fall through at the bottom (otherwise
3138     it may not have its final value when the loop exits), and the initial
3139     value of the biv must be invariant.  */
3140
3141  if (loop_n_iterations != 0
3142      && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
3143      && invariant_p (bl->initial_value))
3144    {
3145      increment = biv_total_increment (bl, loop_start, loop_end);
3146     
3147      if (increment && invariant_p (increment))
3148        {
3149          /* Can calculate the loop exit value, emit insns after loop
3150             end to calculate this value into a temporary register in
3151             case it is needed later.  */
3152
3153          tem = gen_reg_rtx (bl->biv->mode);
3154          /* Make sure loop_end is not the last insn.  */
3155          if (NEXT_INSN (loop_end) == 0)
3156            emit_note_after (NOTE_INSN_DELETED, loop_end);
3157          emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3158                            bl->initial_value, tem, NEXT_INSN (loop_end));
3159
3160          if (loop_dump_stream)
3161            fprintf (loop_dump_stream,
3162                     "Final biv value for %d, calculated.\n", bl->regno);
3163         
3164          return tem;
3165        }
3166    }
3167
3168  /* Check to see if the biv is dead at all loop exits.  */
3169  if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3170    {
3171      if (loop_dump_stream)
3172        fprintf (loop_dump_stream,
3173                 "Final biv value for %d, biv dead after loop exit.\n",
3174                 bl->regno);
3175
3176      return const0_rtx;
3177    }
3178
3179  return 0;
3180}
3181
3182/* Try to calculate the final value of the giv, the value it will have at
3183   the end of the loop.  If we can do it, return that value.  */
3184
3185rtx
3186final_giv_value (v, loop_start, loop_end)
3187     struct induction *v;
3188     rtx loop_start, loop_end;
3189{
3190  struct iv_class *bl;
3191  rtx insn;
3192  rtx increment, tem;
3193  rtx insert_before, seq;
3194
3195  bl = reg_biv_class[REGNO (v->src_reg)];
3196
3197  /* The final value for givs which depend on reversed bivs must be calculated
3198     differently than for ordinary givs.  In this case, there is already an
3199     insn after the loop which sets this giv's final value (if necessary),
3200     and there are no other loop exits, so we can return any value.  */
3201  if (bl->reversed)
3202    {
3203      if (loop_dump_stream)
3204        fprintf (loop_dump_stream,
3205                 "Final giv value for %d, depends on reversed biv\n",
3206                 REGNO (v->dest_reg));
3207      return const0_rtx;
3208    }
3209
3210  /* Try to calculate the final value as a function of the biv it depends
3211     upon.  The only exit from the loop must be the fall through at the bottom
3212     (otherwise it may not have its final value when the loop exits).  */
3213     
3214  /* ??? Can calculate the final giv value by subtracting off the
3215     extra biv increments times the giv's mult_val.  The loop must have
3216     only one exit for this to work, but the loop iterations does not need
3217     to be known.  */
3218
3219  if (loop_n_iterations != 0
3220      && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
3221    {
3222      /* ?? It is tempting to use the biv's value here since these insns will
3223         be put after the loop, and hence the biv will have its final value
3224         then.  However, this fails if the biv is subsequently eliminated.
3225         Perhaps determine whether biv's are eliminable before trying to
3226         determine whether giv's are replaceable so that we can use the
3227         biv value here if it is not eliminable.  */
3228
3229      /* We are emitting code after the end of the loop, so we must make
3230         sure that bl->initial_value is still valid then.  It will still
3231         be valid if it is invariant.  */
3232
3233      increment = biv_total_increment (bl, loop_start, loop_end);
3234
3235      if (increment && invariant_p (increment)
3236          && invariant_p (bl->initial_value))
3237        {
3238          /* Can calculate the loop exit value of its biv as
3239             (loop_n_iterations * increment) + initial_value */
3240             
3241          /* The loop exit value of the giv is then
3242             (final_biv_value - extra increments) * mult_val + add_val.
3243             The extra increments are any increments to the biv which
3244             occur in the loop after the giv's value is calculated.
3245             We must search from the insn that sets the giv to the end
3246             of the loop to calculate this value.  */
3247
3248          insert_before = NEXT_INSN (loop_end);
3249
3250          /* Put the final biv value in tem.  */
3251          tem = gen_reg_rtx (bl->biv->mode);
3252          emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3253                            bl->initial_value, tem, insert_before);
3254
3255          /* Subtract off extra increments as we find them.  */
3256          for (insn = NEXT_INSN (v->insn); insn != loop_end;
3257               insn = NEXT_INSN (insn))
3258            {
3259              struct induction *biv;
3260
3261              for (biv = bl->biv; biv; biv = biv->next_iv)
3262                if (biv->insn == insn)
3263                  {
3264                    start_sequence ();
3265                    tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3266                                        biv->add_val, NULL_RTX, 0,
3267                                        OPTAB_LIB_WIDEN);
3268                    seq = gen_sequence ();
3269                    end_sequence ();
3270                    emit_insn_before (seq, insert_before);
3271                  }
3272            }
3273         
3274          /* Now calculate the giv's final value.  */
3275          emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3276                            insert_before);
3277         
3278          if (loop_dump_stream)
3279            fprintf (loop_dump_stream,
3280                     "Final giv value for %d, calc from biv's value.\n",
3281                     REGNO (v->dest_reg));
3282
3283          return tem;
3284        }
3285    }
3286
3287  /* Replaceable giv's should never reach here.  */
3288  if (v->replaceable)
3289    abort ();
3290
3291  /* Check to see if the biv is dead at all loop exits.  */
3292  if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3293    {
3294      if (loop_dump_stream)
3295        fprintf (loop_dump_stream,
3296                 "Final giv value for %d, giv dead after loop exit.\n",
3297                 REGNO (v->dest_reg));
3298
3299      return const0_rtx;
3300    }
3301
3302  return 0;
3303}
3304
3305
3306/* Calculate the number of loop iterations.  Returns the exact number of loop
3307   iterations if it can be calculated, otherwise returns zero.  */
3308
3309unsigned HOST_WIDE_INT
3310loop_iterations (loop_start, loop_end)
3311     rtx loop_start, loop_end;
3312{
3313  rtx comparison, comparison_value;
3314  rtx iteration_var, initial_value, increment, final_value;
3315  enum rtx_code comparison_code;
3316  HOST_WIDE_INT i;
3317  int increment_dir;
3318  int unsigned_compare, compare_dir, final_larger;
3319  unsigned long tempu;
3320  rtx last_loop_insn;
3321
3322  /* First find the iteration variable.  If the last insn is a conditional
3323     branch, and the insn before tests a register value, make that the
3324     iteration variable.  */
3325 
3326  loop_initial_value = 0;
3327  loop_increment = 0;
3328  loop_final_value = 0;
3329  loop_iteration_var = 0;
3330
3331  /* We used to use pren_nonnote_insn here, but that fails because it might
3332     accidentally get the branch for a contained loop if the branch for this
3333     loop was deleted.  We can only trust branches immediately before the
3334     loop_end.  */
3335  last_loop_insn = PREV_INSN (loop_end);
3336
3337  comparison = get_condition_for_loop (last_loop_insn);
3338  if (comparison == 0)
3339    {
3340      if (loop_dump_stream)
3341        fprintf (loop_dump_stream,
3342                 "Loop unrolling: No final conditional branch found.\n");
3343      return 0;
3344    }
3345
3346  /* ??? Get_condition may switch position of induction variable and
3347     invariant register when it canonicalizes the comparison.  */
3348
3349  comparison_code = GET_CODE (comparison);
3350  iteration_var = XEXP (comparison, 0);
3351  comparison_value = XEXP (comparison, 1);
3352
3353  if (GET_CODE (iteration_var) != REG)
3354    {
3355      if (loop_dump_stream)
3356        fprintf (loop_dump_stream,
3357                 "Loop unrolling: Comparison not against register.\n");
3358      return 0;
3359    }
3360
3361  /* Loop iterations is always called before any new registers are created
3362     now, so this should never occur.  */
3363
3364  if (REGNO (iteration_var) >= max_reg_before_loop)
3365    abort ();
3366
3367  iteration_info (iteration_var, &initial_value, &increment,
3368                  loop_start, loop_end);
3369  if (initial_value == 0)
3370    /* iteration_info already printed a message.  */
3371    return 0;
3372
3373  /* If the comparison value is an invariant register, then try to find
3374     its value from the insns before the start of the loop.  */
3375
3376  if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3377    {
3378      rtx insn, set;
3379   
3380      for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3381        {
3382          if (GET_CODE (insn) == CODE_LABEL)
3383            break;
3384
3385          else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3386                   && reg_set_p (comparison_value, insn))
3387            {
3388              /* We found the last insn before the loop that sets the register.
3389                 If it sets the entire register, and has a REG_EQUAL note,
3390                 then use the value of the REG_EQUAL note.  */
3391              if ((set = single_set (insn))
3392                  && (SET_DEST (set) == comparison_value))
3393                {
3394                  rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3395
3396                  /* Only use the REG_EQUAL note if it is a constant.
3397                     Other things, divide in particular, will cause
3398                     problems later if we use them.  */
3399                  if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3400                      && CONSTANT_P (XEXP (note, 0)))
3401                    comparison_value = XEXP (note, 0);
3402                }
3403              break;
3404            }
3405        }
3406    }
3407
3408  final_value = approx_final_value (comparison_code, comparison_value,
3409                                    &unsigned_compare, &compare_dir);
3410
3411  /* Save the calculated values describing this loop's bounds, in case
3412     precondition_loop_p will need them later.  These values can not be
3413     recalculated inside precondition_loop_p because strength reduction
3414     optimizations may obscure the loop's structure.  */
3415
3416  loop_iteration_var = iteration_var;
3417  loop_initial_value = initial_value;
3418  loop_increment = increment;
3419  loop_final_value = final_value;
3420  loop_comparison_code = comparison_code;
3421
3422  if (increment == 0)
3423    {
3424      if (loop_dump_stream)
3425        fprintf (loop_dump_stream,
3426                 "Loop unrolling: Increment value can't be calculated.\n");
3427      return 0;
3428    }
3429  else if (GET_CODE (increment) != CONST_INT)
3430    {
3431      if (loop_dump_stream)
3432        fprintf (loop_dump_stream,
3433                 "Loop unrolling: Increment value not constant.\n");
3434      return 0;
3435    }
3436  else if (GET_CODE (initial_value) != CONST_INT)
3437    {
3438      if (loop_dump_stream)
3439        fprintf (loop_dump_stream,
3440                 "Loop unrolling: Initial value not constant.\n");
3441      return 0;
3442    }
3443  else if (final_value == 0)
3444    {
3445      if (loop_dump_stream)
3446        fprintf (loop_dump_stream,
3447                 "Loop unrolling: EQ comparison loop.\n");
3448      return 0;
3449    }
3450  else if (GET_CODE (final_value) != CONST_INT)
3451    {
3452      if (loop_dump_stream)
3453        fprintf (loop_dump_stream,
3454                 "Loop unrolling: Final value not constant.\n");
3455      return 0;
3456    }
3457
3458  /* ?? Final value and initial value do not have to be constants.
3459     Only their difference has to be constant.  When the iteration variable
3460     is an array address, the final value and initial value might both
3461     be addresses with the same base but different constant offsets.
3462     Final value must be invariant for this to work.
3463
3464     To do this, need some way to find the values of registers which are
3465     invariant.  */
3466
3467  /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1.  */
3468  if (unsigned_compare)
3469    final_larger
3470      = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3471         > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3472        - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3473           < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3474  else
3475    final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3476      - (INTVAL (final_value) < INTVAL (initial_value));
3477
3478  if (INTVAL (increment) > 0)
3479    increment_dir = 1;
3480  else if (INTVAL (increment) == 0)
3481    increment_dir = 0;
3482  else
3483    increment_dir = -1;
3484
3485  /* There are 27 different cases: compare_dir = -1, 0, 1;
3486     final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3487     There are 4 normal cases, 4 reverse cases (where the iteration variable
3488     will overflow before the loop exits), 4 infinite loop cases, and 15
3489     immediate exit (0 or 1 iteration depending on loop type) cases.
3490     Only try to optimize the normal cases.  */
3491     
3492  /* (compare_dir/final_larger/increment_dir)
3493     Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3494     Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3495     Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3496     Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3497
3498  /* ?? If the meaning of reverse loops (where the iteration variable
3499     will overflow before the loop exits) is undefined, then could
3500     eliminate all of these special checks, and just always assume
3501     the loops are normal/immediate/infinite.  Note that this means
3502     the sign of increment_dir does not have to be known.  Also,
3503     since it does not really hurt if immediate exit loops or infinite loops
3504     are optimized, then that case could be ignored also, and hence all
3505     loops can be optimized.
3506
3507     According to ANSI Spec, the reverse loop case result is undefined,
3508     because the action on overflow is undefined.
3509
3510     See also the special test for NE loops below.  */
3511
3512  if (final_larger == increment_dir && final_larger != 0
3513      && (final_larger == compare_dir || compare_dir == 0))
3514    /* Normal case.  */
3515    ;
3516  else
3517    {
3518      if (loop_dump_stream)
3519        fprintf (loop_dump_stream,
3520                 "Loop unrolling: Not normal loop.\n");
3521      return 0;
3522    }
3523
3524  /* Calculate the number of iterations, final_value is only an approximation,
3525     so correct for that.  Note that tempu and loop_n_iterations are
3526     unsigned, because they can be as large as 2^n - 1.  */
3527
3528  i = INTVAL (increment);
3529  if (i > 0)
3530    tempu = INTVAL (final_value) - INTVAL (initial_value);
3531  else if (i < 0)
3532    {
3533      tempu = INTVAL (initial_value) - INTVAL (final_value);
3534      i = -i;
3535    }
3536  else
3537    abort ();
3538
3539  /* For NE tests, make sure that the iteration variable won't miss the
3540     final value.  If tempu mod i is not zero, then the iteration variable
3541     will overflow before the loop exits, and we can not calculate the
3542     number of iterations.  */
3543  if (compare_dir == 0 && (tempu % i) != 0)
3544    return 0;
3545
3546  return tempu / i + ((tempu % i) != 0);
3547}
3548
3549/* Replace uses of split bivs with their split pseudo register.  This is
3550   for original instructions which remain after loop unrolling without
3551   copying.  */
3552
3553static rtx
3554remap_split_bivs (x)
3555     rtx x;
3556{
3557  register enum rtx_code code;
3558  register int i;
3559  register char *fmt;
3560
3561  if (x == 0)
3562    return x;
3563
3564  code = GET_CODE (x);
3565  switch (code)
3566    {
3567    case SCRATCH:
3568    case PC:
3569    case CC0:
3570    case CONST_INT:
3571    case CONST_DOUBLE:
3572    case CONST:
3573    case SYMBOL_REF:
3574    case LABEL_REF:
3575      return x;
3576
3577    case REG:
3578#if 0
3579      /* If non-reduced/final-value givs were split, then this would also
3580         have to remap those givs also.  */
3581#endif
3582      if (REGNO (x) < max_reg_before_loop
3583          && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3584        return reg_biv_class[REGNO (x)]->biv->src_reg;
3585      break;
3586     
3587    default:
3588      break;
3589    }
3590
3591  fmt = GET_RTX_FORMAT (code);
3592  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3593    {
3594      if (fmt[i] == 'e')
3595        XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3596      if (fmt[i] == 'E')
3597        {
3598          register int j;
3599          for (j = 0; j < XVECLEN (x, i); j++)
3600            XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3601        }
3602    }
3603  return x;
3604}
3605
3606/* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3607   FIST_UID is always executed if LAST_UID is), then return 1.  Otherwise
3608   return 0.  COPY_START is where we can start looking for the insns
3609   FIRST_UID and LAST_UID.  COPY_END is where we stop looking for these
3610   insns.
3611
3612   If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3613   must dominate LAST_UID.
3614
3615   If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3616   may not dominate LAST_UID.
3617
3618   If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3619   must dominate LAST_UID.  */
3620
3621int
3622set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3623     int regno;
3624     int first_uid;
3625     int last_uid;
3626     rtx copy_start;
3627     rtx copy_end;
3628{
3629  int passed_jump = 0;
3630  rtx p = NEXT_INSN (copy_start);
3631
3632  while (INSN_UID (p) != first_uid)
3633    {
3634      if (GET_CODE (p) == JUMP_INSN)
3635        passed_jump= 1;
3636      /* Could not find FIRST_UID.  */
3637      if (p == copy_end)
3638        return 0;
3639      p = NEXT_INSN (p);
3640    }
3641
3642  /* Verify that FIRST_UID is an insn that entirely sets REGNO.  */
3643  if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
3644      || ! dead_or_set_regno_p (p, regno))
3645    return 0;
3646
3647  /* FIRST_UID is always executed.  */
3648  if (passed_jump == 0)
3649    return 1;
3650
3651  while (INSN_UID (p) != last_uid)
3652    {
3653      /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3654         can not be sure that FIRST_UID dominates LAST_UID.  */
3655      if (GET_CODE (p) == CODE_LABEL)
3656        return 0;
3657      /* Could not find LAST_UID, but we reached the end of the loop, so
3658         it must be safe.  */
3659      else if (p == copy_end)
3660        return 1;
3661      p = NEXT_INSN (p);
3662    }
3663
3664  /* FIRST_UID is always executed if LAST_UID is executed.  */
3665  return 1;
3666}
Note: See TracBrowser for help on using the repository browser.